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 Two important features of the points in the LiDAR point clouds are the spatial and the color 
features. The spatial feature is mostly used in the point cloud processing field due to its 3D 
informative and distinctive characteristic. The local geometric difference derived from the 
spatial features of the points is usually benefited by graph-based point cloud segmentation 
methods, because the geometric features of the local point groups are highly distinctive. In this 
paper, we use both the geometric and color differences of the adjacent local point groups at 
the impact rates 0.3, 0.5, and 0.7 and cooperate the Euclidean and the vector color differences 
within several averaging techniques for the color difference. The difference forms have been 
tested within a graph-based segmentation method on four point cloud segmentation datasets, 
two indoor and two outdoor, using their spatial and color information. The geometric mean as 
an averaging techniques increases the segmentation success for the all datasets except one 
outdoor when the color differences are used in the segmentation at the impact rate 0.3, while 
the harmonic mean increases the success for the all datasets the successes except the other 
outdoor at the same impact rate. According to the test results, the cooperating of the Euclidean 
and vector angular color difference measurements can considerable increase the 
segmentation success on the point clouds with color information in a high quality. 

 
 
 
 

1. INTRODUCTION  
 
Point clouds are 3D spatial and usually colored data 

obtained with light detection and ranging systems 
(LiDAR) (Strom et al., 2010). Because the points in a 
LiDAR point cloud inherently come as high amount and 
unorganized, to extract meaningful information from the 
data is a challenging problem (Li et al., 2017). The point 
cloud segmentation, which groups the points to reduce 
the data to be processed and extract new features, is an 
intermediate stage through the process of extracting 
meaningful information (Barnea and Filin, 2013). 

Graph-based segmentation methods are widely 
preferred to segment the data for the segmentation 
process in both the image and point cloud processing 
fields. An efficient graph-based method (EGS) proposed 
for 2D image segmentation in (Felzenszwalb and 
Huttenlocher, 2004) is a widespread segmentation 
method due to the fastness and segmentation success. In 
this method, the nearby vertices (elements) are assumed 

to be connected by weighted edges. The weight values 
are weighted considering the differences in the color 
values between pixels for the 2D image segmentation 
process. Because the structures of 3D point clouds are 
unorganized unlike 2D images, it is difficult to process 3D 
point clouds. To deal with this problem, the points are 
usually grouped into regular 3D volumes (voxels) by the 
octree organization (Su et al., 2016; Xu et al., 2017). In 
this way, the edges are assumed between the adjacent 
voxels. 

On the other hand, it is an advantage for the point 
cloud processing field that LiDAR data has 3D spatial 
features. The 3D feature provides geometrical features 
which are more distinctive according to the color feature. 
Therefore, most graph-based point cloud segmentation 
methods use the local surface orientation difference for 
weighting the connections instead of color difference (Vo 
et al., 2015; Xu et al., 2018a). The other reason for the 
preference of geometrical differences is that the color 
feature is usually misleading because the color 
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information of the points is sensitive to the brightness 
varying according to the light and the reflectiveness 
varying according to the materials of objects (Xu et al., 
2018a). Another problem is that some spatially adjacent 
objects have similar colors. Nevertheless, some methods 
allow users to use color information with an adjustable 
influence rate, while some use color information at a 
certain rate (Papon et al., 2013; Strom et al., 2010; Zhu et 
al., 2017). 

The quality of the color information of point clouds 
varies and quite affects the success of the segmentation 
stage if the color information is used at the rate that is 
higher than 0. In this work, we enforce to increases the 
segmentation success by using the color information 
more efficiently. In this reason, we focus on the local 
color differences methods between two adjacent 
elements in the RGB (red, green, and blue) color space. In 
the literature, the Euclidean distance is widely used for 
the color difference between the two elements (Aijazi et 
al., 2013; Bassier et al., 2017; Dutta et al., 2014; Papon et 
al., 2013; Strom et al., 2010). On the other hand, Chen et 
al. 2019 use the spectral angle as color difference in their 
study. In this work, we use the vector angular difference 
and cooperate with the Euclidean distance in some 
forms. The tested cooperation forms consist of the 
arithmetic, geometric and harmonic means of the two 
measurements. 

Through our experiments, two indoor coarse and 
two outdoor fine point cloud segmentation datasets that 
include the RGB (red, green, and blue) color information 
of the points and reference segments. The color 
measures have been tested on the method EGS at the 
intervals 0.3, 0.5, and 0.7. The graphical results for two 
datasets are shown in the experimental results. As a 
quantitative segmentation evaluation, the Accuracy 
success measurement (Polak et al., 2009) has been used 
by looking at the compatibility between the result and 
reference segments after pairing them mutually one-to-
one. According to the Accuracy values, the cooperated 
color difference measurements increases the 
segmentation success at the influence rate 0.3 for nearly 
all of the tested datasets. 

The main contribution of this study is to present a 
new approach on the color distance measure for color 
informed point cloud segmentation. The result show that 
the cooperating of the Euclidean and vector angular 
differences by averaging as geometric and harmonic can 
significantly increases the segmentation success when 
the color information is a high quality in point clouds. 

 

2. METHOD 
 

2.1. Voxelization 
 

Voxels are equal-sized 3D cubic volumes and of 
regular/organized data structures (Lohmann, 1998). For 
the voxel organization, the octree data structure has been 
used in this study like many studies in the literature. The 
octree organization is performed through dividing the 
volumes into eight equal-sized sub-volumes by starting 
from the sup-volume that covers all points in the point 
cloud and specified according to the desired voxel size 
until the sub-volumes reach the intended voxel size. The 

voxel size refers to the length of an edge of the voxels. 
Through the voxelization process, the points are 
appointed into the voxels according to spatial 
coordinates. 

 

2.2. EGS Segmentation Method 
 

Felzenszwalb and Huttenlocher, 2004 proposed a 
new segmentation method, named as “Efficient Graph-
Based Method” (EGS), in 2004. The method runs 
successfully on 2D images in an effectively short time. 
The method regards the data elements (pixels for 2D 
images) as vertices and the connection between the 
adjacent vertices as edges. The edges are weighted with 
the Euclidean distance between the color vectors of the 
two vertices that are ends of the edges. In Fig. (1), the 
stages of the segmentation is presented. 

According to the method, at first, each element is 
seen as a segment and has a unique segment label. The 
edges are sorted in ascending order according to their 
weight values. Beginning from the smallest edges, the 
edges are considered to remove from the graph with 
respect to the criterion in Eq. (1). If the weight value 
𝑤(𝑢, 𝑣) of the edge between the vertices 𝑢 and 𝑣 meets 
the criteria, the edge is removed from the graph. 
Otherwise, the segments at the ends of the edge are 
involved in the same segments, and the elements in the 
two segments are labeled with the same segment label. If 
the segment labels are already the same, the edge is not 
evaluated by the criterion and directly removed. In Eq. 
(1), 𝐼𝑛𝑡(𝑢) and 𝐼𝑛𝑡(𝑣) are the longest edge in the 
segments 𝑆𝑢 and 𝑆𝑣, respectively. |𝑆𝑢| and |𝑆𝑣| refer to the 
number of elements in the segments 𝑆𝑢 and 𝑆𝑣, 
respectively. The parameter 𝑘 determines the degree of 
segmentation (under-segmentation or over-
segmentation).  
 

𝒘(𝒖, 𝒗) > 𝒎𝒊𝒏 (𝑰𝒏𝒕(𝒖) +
𝒌

|𝑺𝒖|
, 𝑰𝒏𝒕(𝒗) +

𝒌

|𝑺𝒗|
) (1) 

 
 
2.3 Geometric Difference 
 

The most used feature of the point groups in the 
voxels is the surface normals (Rabbani et al., 2006). The 
normal vectors give the inclination of the local 3D 
surfaces and the PCA (Principal Component Analyses) 
method is the most used technique to obtain it (Lari and 
Habib, 2014). The angle between the normals of two 
adjacent voxels is one of the basic geometric differences. 

The normalized form 𝒅𝒖𝒗̃ of the vector 𝒅𝒖𝒗 between the 
spatial centers 𝑿𝒖 and 𝑿𝒗 of two-point groups is a way to 
estimate the orientation through two adjacent local 
surfaces (Stein et al., 2014; Verdoja et al., 2017; Xu et al., 

2018a). The angles  𝛼𝑢 and 𝛼𝑣 between the vector 𝒅𝒖𝒗̃ 
and the normals 𝒏𝒖̃ and 𝒏𝒗̃ used widely to measure a 
geometric difference from the two local surfaces. As the 
geometric difference 𝐷𝑢𝑣

𝐺  in this work, we have used the 
formula in Eq. (2). 
 

𝑫𝒖𝒗
𝑮 =

𝜶𝒖 + 𝜶𝒗
𝟐

 (2) 
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The angles 𝜷𝒖 and 𝜷𝒗 in Fig. 2 (a) and Fig. 2 (b) are 

the acute angles between the normals and the vector 𝒅𝒖𝒗̃, 
namely, the angles can be in the range 0-90o. The angles 
𝜶𝒖 and 𝜶𝒗 are obtained by subtracting the angles 𝜷𝒖 and 
𝜷𝒗 from 90o. 
 
2.4 Color Difference 
 

LiDAR systems can integrate the spatial and color 
information about the scanned surfaces. In this way, the 
points in a point cloud save the values of both the 
coordinate and color vectors. The color information 
exists generally as RGB values. Each RGB color vector 
denotes a vector in the RGB color space. 

In the graph-based segmentation methods, the 
Euclidean distance between two color vectors is the most 
used measurement technique to measure the 
similarity/dissimilarity. To weight the edges between 
the vertices (voxels) with the Euclidean distance in point 
clouds, the mean RGB color values (𝑢𝑅, 𝑢𝐺  and 𝑢𝐵) of the 
points in the voxel 𝑢 are used. The Euclidean distance 
𝐸𝑢𝑣
𝑅𝐺𝐵 for color differences between the adjacent voxels 𝑢 

and 𝑣 can be calculated with Eq. (3) and seen in Fig. 3. 
 

𝑬𝒖𝒗
𝑹𝑮𝑩 = √(𝒖𝑹 − 𝒗𝑹)𝟐 + (𝒖𝑮 − 𝒗𝑮)𝟐 + (𝒖𝑩 − 𝒗𝑩)𝟐 (3) 

 

The vector angular difference is another distance 
measurement technique between two vectors as seen in 
Fig. 3. The angular difference 𝐴̂𝑢𝑣

𝑅𝐺𝐵 between two color 
vectors 𝒖𝑹𝑮𝑩 and 𝒗𝑹𝑮𝑩 can be in the range 0-.90o. The 
greater the angular difference, the greater the color tone 
difference. If the angular difference is small but the 
vector length difference is high between two RGB color 
vectors, their color tone is similar but color 
lightness/darkness is different.  This case allows the 
varying brightness over the surfaces to be ignored in the 
color-supported segmentation process. 

In this work, the values of the scaled Euclidean and 
vector angular differences, and their different 
cooperated forms in Table 1 are tested, with the different 
influence rates, to weight values of edges. To evaluate 
both the color differences within the equal range, the 
calculated Euclidean distance 𝑬𝑹𝑮𝑩 are scaled to the 
range 0-90 like the vector angular difference 𝑨̂𝑹𝑮𝑩 and 
the geometric difference 𝑫𝑮. In the normalization 
operation for the scaled Euclidean distance 𝑬̂𝑹𝑮𝑩, the 
lower and upper limits were considered as 0 and the 
maximum distance among the calculated Euclidean 
distance values. 
 
 
 

 
Figure 1. The weighting stage in the segmentation 
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Figure 2. Some geometric differences between two local 
surfaces 
 

 
Figure 3. The Euclidean and vector angular differences 
between two color vectors 
 

Table 1. Cooperation forms of color differences 
Name Color Difference Form 

Euclidean color difference 𝐸̂𝑅𝐺𝐵 
Vector angular color 
difference 

𝐴̂𝑅𝐺𝐵 

Arithmetic mean 
𝐸̂𝑅𝐺𝐵 + 𝐴̂𝑅𝐺𝐵

2
 

Geometric mean √𝐸̂𝑅𝐺𝐵 × 𝐴̂𝑅𝐺𝐵  

Harmonic mean 2 ×
𝐸̂𝑅𝐺𝐵 × 𝐴̂𝑅𝐺𝐵

𝐸̂𝑅𝐺𝐵 + 𝐴̂𝑅𝐺𝐵
 

 

3. EXPERIMENTAL RESULTS  
 
3.1 Datasets 
 

To test the color difference forms, the forms have 
been tested on four sample point cloud datasets (two 
indoors which are named as “Indoor 1” and “Indoor 2”, 
and two outdoors which are named as “Outdoor 1” and 
“Outdoor 2”). The indoor datasets are coarse 
segmentation datasets prepared for segmantic 
segmentation by (Armeni et al., 2016), while the outdoor 
datasets are cropped from outdoor building scans, which 
have been prepared from the two large-scale point cloud 
classification benchmark datasets (Hackel et al., 2017) 
with reference segments by (Xu et al., 2018a) and used 
by permission of (Xu et al., 2018b). The test data are 
shown with their original RGB colors in Fig. 4. 
 
 

3.2 Results 
 

In our experiments, the color difference forms in 
Table 1 have been used at the influence rates 0.3, 0.5, and 
0.7 with the geometric difference in Eq. (2) for the weight 
values of edges of the EGS method with the segmentation 
parameter 𝑘 in the range 0-300 with 10 intervals. The 
voxel size was specified as 0.1 like the study (Xu et al., 
2018a).  

As a quantitative evaluation, Accuracy measurement 
is used (Saglam and Baykan, 2019). According to the 
Accuracy measurement for segmentation success, the 
result segments and the reference segments have been 
paired firstly one-to-one, mutually. The pairing process 
is carried out according to the study (Awrangjeb and 
Fraser, 2014). After the pairing process, some segments 
among the result and reference segments may not be 
paired with any mutual segments. The ratio of the 
number of common points in the segment pairs to the 
number of points in the reference data indicates the 
Accuracy value. 

In Table 2, the Accuracy results of the segmentation 
results with the best 𝑘 parameter according to the color 
difference forms at the influence rates 0.3, 0.5, and 0.7 
are taken part. In Fig. 5, the colored presentations of 
some segmentation results with reference data are 
demonstrated. 
 

4. CONCLUSION 
 

The process of point cloud segmentation is an 
important intermediate stage to extract meaningful 
information from the raw point clouds. The spatial 
geometric features are the most used property for graph-
based point cloud segmentation methods. In this paper, 
we have added the color influence to local dissimilarity 
to weight connections in the graph structure at several 
influence rate. In the weighting method, the Euclidean 
and vector angular color differences are cooperated in 
some forms as arithmetic mean, geometric mean and 
harmonic means. The test was carried out on two indoor 
and two outdoor datasets using an efficient graph-based 
segmentation method. The method that cooperates the 
two color difference measures, especially the geometric 
mean and the harmonic mean, has substantially 
increased the segmentation success on the indoor 
datasets. On the other hand, the successes on the outdoor 
datasets is increased slightly because of the lack of color 
information on the outdoor datasets. The geometric 
mean as an averaging techniques increases the 
segmentation success for the all datasets except one 
outdoor when the color differences are used in the 
segmentation at the impact rate 03, while the harmonic 
mean increases the success for the all datasets the 
successes except the other outdoor at the same impact 
rate. The results show that the method is very useful 
when the segmentation are processed on the point 
clouds with sufficient color information. 
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Figure 4.  The original versions of the datasets used for segmentation 
 
Table 2. Accuracy results of the colour difference forms 

Color difference form Color influence rate 
Dataset 

Indoor 1 Indoor 2 Outdoor 1 Outdoor 2 
No color 0 0.6997 0.7187 0.6879 0.8036 

Scaled Euclidean difference 0.3 0.7057 0.7528 0.6076 0.7820 

Scaled Euclidean difference 0.5 0.7093 0.7158 0.5718 0.7209 

Scaled Euclidean difference 0.7 0.6641 0.7058 0.4792 0.7058 

Vector angular difference 0.3 0.6807 0.7232 0.6593 0.7847 

Vector angular difference 0.5 0.7154 0.7876 0.6928 0.7507 

Vector angular difference 0.7 0.7080 0.7588 0.6384 0.6968 

Arithmetic mean 0.3 0.6931 0.6873 0.6225 0.7810 

Arithmetic mean 0.5 0.7282 0.7643 0.5564 0.7342 

Arithmetic mean 0.7 0.6579 0.7484 0.4912 0.6868 

Geometric mean 0.3 0.7094 0.7937 0.6849 0.8176 

Geometric mean 0.5 0.7351 0.7566 0.6294 0.7960 

Geometric mean 0.7 0.7077 0.7153 0.5703 0.7168 

Harmonic mean 0.3 0.7048 0.7436 0.7132 0.7782 

Harmonic mean 0.5 0.7884 0.7386 0.6770 0.7787 

Harmonic mean 0.7 0.7670 0.7763 0.5501 0.6761 
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Figure 5.  The colored reference data and segmentation results (with no color and some cooperated forms) 
 
 
 
 
 
 
 
 
 



International Journal of Engineering and Geosciences– 2021; 6(3); 117-124 

 

  123  

 

REFERENCES  
 

Aijazi A K, Checchin P & Trassoudaine L (2013). 
Segmentation Based Classification of 3D Urban Point 
Clouds: A Super-Voxel Based Approach with 
Evaluation. Remote Sensing, 5(4), 1624–1650. 
https://doi.org/10.3390/rs5041624 

Armeni I, Sener O, Zamir A R, Jiang H, Brilakis I, Fischer M 
& Savarese S (2016). 3D semantic parsing of large-
scale indoor spaces. Proceedings of the IEEE 
Computer Society Conference on Computer Vision 
and Pattern Recognition. 
https://doi.org/10.1109/CVPR.2016.170 

Awrangjeb M & Fraser C S (2014). An automatic and 
threshold-free performance evaluation system for 
building extraction techniques from airborne LIDAR 
data. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 7(10), 4184–4198. 
https://doi.org/10.1109/JSTARS.2014.2318694 

Barnea S & Filin S (2013). Segmentation of terrestrial 
laser scanning data using geometry and image 
information. ISPRS Journal of Photogrammetry and 
Remote Sensing, 76, 33–48. 
https://doi.org/10.1016/j.isprsjprs.2012.05.001 

Bassier M, Bonduel M, Van Genechten B & Vergauwen M 
(2017). Segmentation of large unstructured point 
clouds using octree-based region growing and 
conditional random fields. International Archives of 
the Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives XLII-2/W8, 
25–30. https://doi.org/10.5194/isprs-archives-XLII-
2-W8-25-2017 

Chen B, Shi S., Sun J, Gong W, Yang J, Du L, Guo K, Wang, 
B, Chen, B (2019). Hyperspectral lidar point cloud 
segmentation based on geometric and spectral 
information. Optics Express, 27(17). 
https://doi.org/10.1364/oe.27.024043 

Dutta A, Engels J & Hahn M (2014). A distance-weighted 
graph-cut method for the segmentation of laser point 
clouds. International Archives of the 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences - ISPRS Archives 40(3), 81–88. 
https://doi.org/10.5194/isprsarchives-XL-3-81-
2014 

Felzenszwalb P F & Huttenlocher D P (2004). Efficient 
graph-based image segmentation. International 
Journal of Computer Vision, 59(2), 167–181. 
https://doi.org/10.1023/B:VISI.0000022288.19776.
77 

Hackel T, Savinov N, Ladicky L, Wegner J D, Schindler K & 
Pollefeys M (2017). Semantic3D.net: A new Large-
scale Point Cloud Classification Benchmark. ISPRS 
Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences. 
https://doi.org/10.5194/isprs-annals-IV-1-W1-91-
2017 

Lari Z & Habib A (2014). An adaptive approach for the 
segmentation and extraction of planar and 
linear/cylindrical features from laser scanning data. 
ISPRS Journal of Photogrammetry and Remote 
Sensing, 93, 192–212. 
https://doi.org/10.1016/j.isprsjprs.2013.12.001 

Li L, Yang F, Zhu H, Li D, Li Y & Tang L (2017). An 
improved RANSAC for 3D point cloud plane 
segmentation based on normal distribution 
transformation cells. Remote Sensing 9(5). 
https://doi.org/10.3390/rs9050433 

Lohmann G (1998). Volumetric image analysis. Wiley. 
Papon J, Abramov A, Schoeler M & Worgotter F (2013). 

Voxel cloud connectivity segmentation - Supervoxels 
for point clouds. Proceedings of the IEEE Computer 
Society Conference on Computer  Vision and Pattern 
Recognition, 2027–2034. 
https://doi.org/10.1109/CVPR.2013.264 

Polak M, Zhang H & Pi M (2009). An evaluation metric for 
image segmentation of multiple objects. Image and 
Vision Computing, 27(8), 1223-1227. 
https://doi.org/10.1016/j.imavis.2008.09.008 

Rabbani T, van den Heuvel F A & Vosselman G (2006). 
Segmentation of point clouds using smoothness 
constraint. International Archives of 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences - Commission V Symposium 
“Image Engineering and Vision Metrology” 36, 248–
253. https://doi.org/10.1111/1750-3841.12802 

Saglam A & Baykan N A (2019). Evaluating the attributes 
of remote sensing image pixels for fast k-means 
clustering. Turkish Journal of Electrical Engineering & 
Computer Sciences, 27, 4188–4202. 
https://doi.org/10.3906/elk-1901-190 

Stein S C, Schoeler M, Papon J & Worgotter F (2014). 
Object partitioning using local convexity. Proceedings 
of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, 304–311. 
https://doi.org/10.1109/CVPR.2014.46 

Strom J, Richardson A & Olson E (2010). Graph-based 
segmentation for colored 3D laser point clouds. 
IEEE/RSJ 2010 International Conference on 
Intelligent Robots and Systems, 2131–2136. 
https://doi.org/10.1109/IROS.2010.5650459 

Su Y T, Bethel J & Hu S (2016). Octree-based 
segmentation for terrestrial LiDAR point cloud data in 
industrial applications. ISPRS Journal of 
Photogrammetry and Remote Sensing 113, 59–74. 
https://doi.org/10.1016/j.isprsjprs.2016.01.001 

Verdoja F, Thomas D & Sugimoto A (2017). Fast 3D point 
cloud segmentation using supervoxels with geometry 
and color for 3D scene understanding. Proceedings - 
IEEE International Conference on Multimedia and 
Expo, Hong Kong, China, 1285–1290. 
https://doi.org/10.1109/ICME.2017.8019382 

Vo A V, Truong-Hong L, Laefer D F & Bertolotto M (2015). 
Octree-based region growing for point cloud 
segmentation. ISPRS Journal of Photogrammetry and 
Remote Sensing 104, 88–100. 
https://doi.org/10.1016/j.isprsjprs.2015.01.011 

Xu Y, Hoegner L, Tuttas S & Stilla U (2017). Voxel- and 
graph-based point cloud segmentation of 3D scenes 
using perceptual grouping laws. ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences IV-1/W1, 43–50. 
https://doi.org/10.5194/isprs-annals-IV-1-W1-43-
2017 

Xu Y, Yao W, Tuttas S, Hoegner L & Stilla U (2018a). 
Unsupervised Segmentation of Point Clouds From 



International Journal of Engineering and Geosciences– 2021; 6(3); 117-124 

 

  124  

 

Buildings Using Hierarchical Clustering Based on 
Gestalt Principles. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 11, 
4270–4286. 
https://doi.org/10.1109/JSTARS.2018.2817227 

Xu Y, Yao W, Tuttas S, Hoegner L & Stilla U (2018b). 
Building-Segmentation-Reference-Dataset [WWW 
Document]. URL https://github.com/Yusheng-
Xu/Building-Segmentation-Reference-Dataset 

Zhu Q, Li Y, Hu H & Wu B (2017). Robust point cloud 
classification based on multi-level semantic 
relationships for urban scenes. ISPRS Journal of 
Photogrammetry and Remote Sensing, 129, 86–102. 
https://doi.org/10.1016/j.isprsjprs.2017.04.022 

 

 

 
 

 

© Author(s) 2021.  
This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/ 

 
 

https://creativecommons.org/licenses/by-sa/4.0/

