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Abstract

Multivariate models such as the Cox regression model, if developed carefully, are power-
ful tools for making prognostic prediction which are frequently used in studies of clinical
outcomes. Many applications require a large number of variables to be modelled by using
a relatively small patient sample. Determination of the important variables in a model is
critical to understand the behaviour of phenomena as the independent variables contribute
the most to the outcome. From a practical perspective, a small subset of independent vari-
ables are usually selected from a large data set without the loss of any predictive efficiency.
Automatic variable selection algorithms in scientific studies are commonly used for ob-
taining interpretable and practically applicable models. However, the careless use of these
methods may lead to statistical problems. The performance of the generated models may
be poor due to the violation of assumption, omission of the important variables, problems
of overfitting, and the problem of multicollinearity and outliers. In order to enhance the
accuracy of a model, it is essential to explore the data and its main characteristics before
making any statistical inference. This study suggests an approach for acquiring a trustwor-
thy model selection procedure for survival data by performing classical variables selection
methods, accompanied by a graphical visualization method, namely robust coplot. Thus,
it enables us to investigate the discrimination of observations, clusters of the variables and
clusters of the observations that are highly characterized by a particular variable in a one
graph. We present an application of combined method, as an integral part of statistical
modelling, on survival data on multiple myeloma to show how coplot results are used in
automatic variable selection algorithm in Cox regression model-building.
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1. Introduction
Many events of life, whether scientific, environmental or social have multiple and specific

reasons and these reasons are usually connected to one another. A multivariate model,
which is a statistical analysis tool, allows us to determine the relative contributions of
different independent variables to an outcome. The strength of multivariate model is
its ability to determine how multiple independent variables, which are connected to one
another, influence an outcome. Clinical studies, in particular, are in need of a multivariate
model because most researches have been done on a prognosis which is usually determined
by a large number of variables [13, 15]. It is generally an unknown fact that variables are
significantly connected to the outcome and thus, they should be included in the generated
model. Researchers may often collect data from a large scale of candidate demographic
and clinical variables for the purpose of an accurate determination of a subset of variables
that explains the predicted variable best. Identification of the best subset among the
many variables which will be included in a model so-called variable selection procedure is
a critical part of building a model. If the sample size is not sufficiently large, the number
of independent variables should be decreased in the analysis [15]. Even though an increase
in the number of observations is more desirable, it may not be possible in the process of
analysis. Besides, if two variables are highly correlated with each other, the model may
not be reliable to assess the independent impact of each variable on the outcome. This
problem is named as multicollinearity and it requires only one entry of the very highly
related variables to the model [9]. In order to determine the correlation structure between
variables, one may need to evaluate a correlation coefficient matrix with all the proposed
independent variables. The problem with a correlation matrix is that it only evaluates the
relationship between two variables, without the adjustment of the other variables [15]. As
another approach, multiple bivariate comparisons can be performed. However, it requires
too many couple comparisons and bivariate associations of two independent variables and
it cannot reflect the simultaneous contribution of a number of independent variable to the
outcome.

In the literature, several approaches are used for decreasing the number of independent
variables. For example, one may exclude the variables that are uncorrelated with the
outcome variable; one may combine two or more strongly/moderately correlated variables
into a single variable; one may use variable selection algorithms to exclude the variables
that have minimal impact on the outcome variable etc. However, these approaches might
have some drawbacks [9, 15]. In the factor analysis, the number of independent variables
can be reduced without omitting a variable. This method turns the cluster of variables
into a factor and the original variables which are the major interest of medically oriented
data analysis would be lost. Obtained factors may not be useful or interpretable for the
clinician because one can measure the importance of a factor from the outcome but cannot
measure the importance of any other variables from the outcome.

Automatic variable selection procedure is another approach for decreasing the number
of independent variables in the analysis. This procedure helps us decide which indepen-
dent variables will be included in a multivariate model and this model determines the
minimum number of independent variable which are necessary to estimate the outcome
accurately. Most of the statistical software packages present a diverse range of variable
selection techniques such as backward, forward and stepwise selection. Automatic variable
selection algorithms are available in any statistical software package and they are com-
monly used for obtaining interpretable models that are practically applicable in scientific
studies [14]. However, the careless use of these methods may lead to statistical problems
[22]. In these selection techniques, selection or deletion of variables continues to evaluate
each variable for the way it improves the fit of the model. It is natural to think that these
selection procedures eventually produce the same subset of variables. When the selection
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algorithms present the same subset of variables to the researcher, it may be seen as a sign
of a trustworthy model; however, this is not always the case. Moreover, highly correlated
independent variables in the model, might make it impossible to solve the equation with-
out deleting one or more variables from the analysis. Apart from the above mentioned
multicollinearity problem particularly in clinical studies, continuous independent variables
may have nonlinear relations with the outcome. Modelling a nonlinear relation with a lin-
ear model would not be desirable. Determining of such variables is also crucial while using
the automatic variable selection algorithms, because the researcher can keep the variable
in the model by a simple transformation and this variable may provide valuable infor-
mation. Detection of the possible observation(s) that does not follow a similar pattern
with the majority of the data is also another important issue in the modelling process
since a model generated by the selection algorithms may be negatively influenced by the
outliers. Lastly, determining the possible cluster(s) of observations and a variable that
defines this cluster(s) can be also informative in modelling process. Due to the situations
described above, researchers may require a simple pre-examination of the data to prevent
such unexpected statistical problem before the application of variable selection techniques
into the empirical multidimensional data.

The main contribution of the present study is to display the benefits that comes from
combining the two methods that exist in both variable selection and multidimensional
graphical representation fields. In order to build precise models that can explain the
amount of predicted variable with minimum number of predictor variables without the
disadvantages of outlier observations and multicollinearity problem, robust coplot which
is a data visualization technique, is used as an auxiliary technique. Making a visual
investigation of the multidimensional data by robust coplot method before having further
statistical inferences provides the researcher information about the relations among all
independent variables which are all taken from the outcome, the relation between each
independent variable and the outcome variable, the cluster of observations, the cluster of
variables and suspicious observation. Additionally, robust coplot presents the correlation
coefficients of the variables which enables us to measure how strong the linear relations
between variable, and the data are. If the correlation coefficient of an independent variable
is low, this variable has little contribution to the model or has a non-linear correlation.
As a result, it should be expected that the relevant variable should not be included in the
Cox regression model.

Many multivariate statistical methods analyze the observations and the variables sep-
arately. In robust coplot method, clusters of variables, clusters of observations and the
characterization of observations can be seen in one graph [3]. Among a wide spectrum of
graphical techniques which are available for the management of multidimensional dataset,
coplot method has attracted much more attention for various purposes from a wide range
of areas in recent years [3]. Studies that focus on robust coplot - an approach developed
for reducing the impact of outliers - and a more flexible software, called RobCoP, which
can produce coplot and robust coplot graphs are also available in the literature [4]. Robust
coplot method is specifically convenient for visualizing and interpreting clinical data set.
In contrast to many other multivariate methods such as principal component, cluster and
factor analysis which produce the composite of variables, coplot uses original variables,
and representation and interpretation of the original variables and observations and these
are more crucial and meaningful in clinical studies [6].

In life sciences, the data set may consist of many variables and the decision of which
variables should be in the model poses as a difficult and confusing problem. Furthermore,
the outliers or the multicollinearity problems negatively affect the choosing of the correct
model. Conventional variable selection techniques based on information criterion such as
AIC (Akaike [1]), BIC (Schwarz[23]), and Cp (Mallows[19]), are widely used for selecting
an appropriate model. AIC and BIC are also used in survival analysis. The leading
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researchers studying on information criterion are Tibshirani [25], Faraggi and Simon [11],
Volinsky and Raftery [26], Fan and Li [10], Liang [17]. Although these criteria work well
and are efficiently implemented in well-developed statistical softwares such as R and SAS
[17] for existing models, for new-developed models they should be inferred theoretically
and added to the package programs. It is useful for researchers to initially examine the
data which is independent from the model. In this study, robust coplot analysis is used
as a preliminary examination of the data before building one of the most popular survival
models i.e. Cox regression model (CRM). The aim of this study is to compare the results
acquired from using this approach with conventional variable selection methods in CRM.

The rest of the paper is organized as follows: In Section 2, robust coplot method and
CRM are briefly explained. Multiple myeloma data set is described in Section 3. In
addition to the results from robust coplot findings, the findings from conventional variable
selection methods, and the comparison of the obtained results are discussed. The paper
is concluded with discussions in Section 4.

2. Materials and methods
2.1. Cox regression model

The most common approach for modelling the effects of variable on survival is Cox
regression model as it takes into account the effect of censored observations into account
[8]. In survival analysis, regression models for survival data is traditionally based on CRM.
The effect of the variables on survival acts multiplicatively on some unknown baseline
hazard rate which makes it difficult to model variable effects as they change over time.
Although the model is based on the assumption of proportional hazards, no particular
form of probability distribution is assumed for the survival times. The model is therefore
referred as a semi-parametric model [2].

The data based on a sample of size n, consists of (ti, di, xi), i = 1, ..., n where ti is
the time on study for the ith individual, di is the event indicator ( di=1 if the event has
occurred and di=0 if the lifetime is censored) and xi is the vector of variables for the ith

individual. Hazard function for CRM is given by

hi(t) = h0(t) exp(β′xi)
where h0(t) is the baseline hazard function and β is a p×1 vector of unknown parameters

[7]. The ordered death times are denoted by t1 < . . . < tk and the set of individuals who
are at risk at the time tj are denoted by R(tj), so R(tj) is the set of individuals who are
alive and uncensored at a time prior to tj . Then, the likelihood for CRM is given by

L(β) =
k∏

j=1

exp (β′xj)∑
ℓ∈R(tj)

exp (β′xℓ)

where xj is the vector of variables for the individual who dies at the jth ordered death
time, tj [7]. Newton-Raphson iteration is most commonly used algorithm for the estima-
tion of regression coefficients.

Regression coefficients (or transforms thereof such as exp(.)) are easily interpretable and
this makes CRM popular in life sciences. The assumption of the model is linearity, that is
expected outcome value is thought to be modeled by a linear combination of independent
variables, and additivity, that is the effects of the independent variables can be added
[1]. In a setting with several independent variables, the fundamental interpretation of a
regression coefficient βj in a linear predictor model is the expected change in outcome
(or log odds or log hazard) if Xj changes by one unit and all other variables are held
constant. Consequently, βj measures the conditional effect of Xj . A single true model and
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the correct model specification can be rarely assumed. This implies that the interpretation
of βj changes if the set of independent variables in the model changes and Xj is correlated
with the other independent variables [14].

When there is few amount of independent variables in data set, building and developing
a model is much more easier. However, in routine work, which variables should be included
in a model is priorly not known and we often have the candidate variables within the range
of 10-30. This number is often too large to be considered in a statistical model [14]. Also,
the number of possible models that are required to be fitted is computationally time
consuming.

In multivariate Cox regression modelling, the selection of variables and the fit of final
model is very important. Since all comments are made according to the final model and
the assessment of obtained results are crucial in life sciences. There are numerous variable
selection methods based on significance and/or information criteria, penalized likelihood,
the change-in-estimate criterion, background knowledge, or combinations thereof [14].

In practical applications, the first and most common applicable approach is the use of
automatic routines based on forward selection, backward elimination or stepwise proce-
dures for variable selection that are used. Collett [7]recommends using a likelihood ratio
test for all variable inclusion/exclusion decisions. Iterated testing between the models
yields forward selection (FS) or backward elimination (BE) variable selection algorithms,
depending on whether one starts with an empty model or with a model that all inde-
pendent variables are considered upfront. Most statisticians prefer backward elimination
(BE) over forward selection (FS), especially when collinearity is present [20]. However,
when models can become complex, for example in the context of highdimensional data,
then FS is still possible[1]. The second easily applicable approach is the use of significance
criteria which are applied to include or exclude independent variables from a model and
select a model from a set of plausible models.

2.2. Robust coplot method
Typically, clinical studies require the analysis of multidimensional data which include

many clinical, demographic, socioeconomic, and interested outcome variables collected
from patients. Robust coplot graph, based on two superimposed graphs, is a simple picture
of a multidimensional data set. The first graph shows the embedding of n observations
into two- dimensional space. This representation conserves relative distance between the
observations which means two observations that are close to each other in p dimensions are
embedding closely in two dimensions. The second graph consists of p vectors that represent
the variables, and reflects the relations among the variables. This method provides a
simultaneous investigation of the relationship patterns between both observations and
variables in a dataset. When the data contain outliers, obtained results from robust
coplot are unaffected by these outliers. Robust coplot output is mainly generated with
three steps [3].

At the first step, for the purpose of treating the different scale variable equally, the
data matrix Xnxp is normalized into Znxp. The elements of standardized data matrix
are deviations from column median, med(.) which is divided by their median absolute
deviation value, MAD(xj) = 1.4826med (|xj − med (xj)|) as follows:

zij = xij − med (xj)
MAD (xj)

where zij is the ith row and jth column element of the standardized matrix Znxp, xj

is the jth column of the data matrix Xnxp. After the data matrix is standardized in
a robust way, multidimensional scaling embeddings of p-dimensional n observations into
two-dimensional space are determined at the second step.
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At the second step, multidimensional embedding of the data set are formed. Robust
multidimensional scaling (RMDS) is used for visualing dispersion of n observations into
two-dimensional space [12]. RMDS uses the outlier aware cost function given in the
following equation;

f (O, Y ) =
∑
i<j

[δij − dij (Y ) − oij ]2 + λ
∑
i<j

|oij |

where, δij is the dissimilarity metric among ith and jth row of the Znxp, Ynx2 is the
coordinate matrix for two-dimensional space, ith row, jth column element of the outlier
matrix, O, is oij = sgn (dij − dij (Y )) max (0, |dij − dij (Y )| − 1/2) which defines the out-
lier variable, and λ > 0 is the parameter that controls the number of presumed outliers
in the dissimilarity matrix[3]. Kruskall stress value,(σ), is used as a measure for deciding
how good the fit of the configuration of n observations obtained by RMDS is.

At the last step, p vectors are drawn on the graph which is obtained in the second
step. Each variable is denoted by a vector acquired from the center of gravity of the
n observations. The direction and the magnitude of the vector are determined by the
median absolute deviation correlation coefficient (MADCC) robust against the outliers
[24]. Direction of the each vector is chosen in a way that the correlation between the
original values of the corresponding variable and their projections on the chosen vector at
maximum value. The degree that shows how good a vectors fit is assessed by correlation
value. A decision should be made to keep or delete the variables that do not fit the
graphical representation, in other words, variables that have low correlation values before
further statistical analysis. The magnitude of the vector is proportional to the evaluated
correlation value. Additionally, observations with high value in this vector are located in
the graph where the vector points to. MADCC is defined as follows:

ρj,MADCC = MAD2 (uj) − MAD2 (kj)
MAD2 (uj) + MAD2 (kj)

where, uj and kj are the robust principal variables which are defined as follows:
where, zj is the jth column of Znxp, and vj represents the projection values of all points

in the MDS graph on the jth variable vector for a specific direction.
In the robust coplot representation, observations are colorized according to the selected

categorical variable in order to understand the available observations discrimination better.
The outcome of the robust coplot analysis gives the following inferences about multidimen-
sional data. Two highly correlated variables are represented by two vectors that are close
in the same direction, and if the correlation of the variables is negative, the corresponding
vectors will lie in opposite directions. Two uncorrelated variables are represented by two
vectors which are perpendicular to each other. Observations which are highly character-
ized by a specific variable are embedded close to each other and this mass is placed in
the same direction as the variables vector. Possible outlier observation(s) is embedded far
from the mass of observations [24].

3. Results and discussion
3.1. A descriptive look at the dataset

In this study, multiple myeloma data set of Krall et al. [16] is used for illustration.
Krall, et. al. [16] analyzed the data from a study on multiple myeloma and the study
researches 65 patients which are treated with alkylating agents. Out of 65 patients 48
patients died in the study and 17 of them survived. The variable time represents the
survival time (survtime) in months, started from the time of diagnosis. The censoring
variable consists of two values 0 and 1, that indicate whether the patient is alive or dead,
respectively. Therefore, the censoring rate is 26% and the type of censoring is right.
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Table 1. Descriptive statistics .

X01 X02 X05 X07 X09 X10 X11 X12 X14 X15 X16
Mean 1.39 10.2 60.15 3.76 1.55 6.74 30.35 3.62 8.6 5.22 10.12
Std. Error of
Mean

0.039 0.317 1.282 0.03 0.045 0.781 2.485 0.746 0.279 0.272 0.225

Std.
Deviation

0.313 2.558 10.334 0.242 0.364 6.3 20.032 6.012 2.249 2.19 1.816

Skewness 0.872 -0.304 0.062 2.156 -0.792 0.925 -0.332 2.337 0.834 0.913 1.928
Std. Error of
Skewness

0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297

Kurtosis 0.436 -0.501 -0.642 9.115 0.202 0.239 -1.218 5.114 1.778 0.524 5.486
Std. Error of
Kurtosis

0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586 0.586

Minimum 1 5 38 3 0.477 0 0 0 4 2 7
Maximum 2 15 82 5 2 24 68 27 17 12 18
Q1 1.15 8.8 51 3.63 1.35 1 10.5 0 7 3 9
Q2 1.32 10.2 60 3.73 1.62 6 35 1 9 5 10
Q3 1.58 12.05 67.5 3.87 1.85 10 49.5 4 10 7 10.5

The data about myeloma consists of 16 demographic and clinical variables which are
as follows: X01: Log BUN at diagnosis, X02: Hemoglobin at diagnosis, X03: Platelets at
diagnosis (0: abnormal, 1: normal), X04: Infections at diagnosis (0: none, 1: present),
X05: Age at diagnosis (complete years), X06: Sex (1: male, 2: female), X07: Log WBC at
diagnosis, X08: Fractures at diagnosis (0: none, 1: present), X09: Log ZBII at diagnosis
(log % of plasma cells in bone marrow), X10: % Lyiaphocytes in peripieral blood at
diagnosis, X11: % Myeloid cells in peripheral blood at diagnosis, X12: Proteinuria at
diagnosis, X13: Bence Jone protein in urine at diagnosis(1: present, 2: none), X14: Total
serum protein at diagnosis, X15: Serum globin (gm%) at diagnosis, X16: Serum calcium
(mgm%) at diagnosis.

We use 11 variables which are continuous, survival time and censoring variable. Robust
coplot representation of categorical variables are not meaningful. When working with
categorical variables, standardization of data matrix with the median and MAD estimators
may result in an undefined Z matrix. Additionally, PCC and MADCC are the correlation
coefficients that measures the relation between two continuous variables. Thus, categorical
variables are used as color coded variables and the results are presented in Figure 3 (a) and
(b). The use of categorical variables by means of color coding is quite helpful in identifying
clusters of observations and possible outliers. Since categorical variables are quite common
in clinical studies, one may want to include these variables in the Cox regression model as
independent variables. In such cases, the researcher may use the classical coplot method
instead of robust coplot [6].

Descriptive statistics for the variables used in this application are given in Table 1.

3.2. Robust coplot findings
Robust coplot method is used for revealing the relations among a set of variables in

order to have an idea about the variables which are the backbone of CRM. Before start-
ing the classical variable selection procedures, robust coplot graph is used for deciding
possible variables to be eliminated. Robust coplot software, RobCop, which is publicly
available (see Atilgan [24] for details about software), is used for visualing myeloma data
and exploring potential associations.
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Figure 1. Initial robust coplot map of myeloma data

Figure 1 is the robust coplot graph of myeloma data and it includes all variables in
the data set. Each vector in Figure 1 corresponds to a variable. Observations, since an
extreme outlier, censoring value, in order to display the spread of observations on the
reduced two-dimensional space. Failed observations are colored as the black cross, while
censored observations as the red square.

The Kruskall stress value of MDS fit is found as 0.128 which is close to fair fit, and
Figure 1 is available for interpretation. MADCC correlation values of each variables are
seen in parenthetical in Figure 1.

X01, X02, X05, X12, and X16 are found to be low correlated variables (evaluated cor-
relation coefficient values are lower than 0.50). Removal of a variable from the data set
requires a redraw of robust coplot graph because this procedure affects the previous steps.
Different variable combinations produce different graphs. Therefore, one-by-one subtrac-
tion is performed instead of subtracting all of the variables at once. All combinations of
eliminated variable(s) are tried. This enables us to decide the redundant variables, before
starting the model building process for myeloma data.

Figure 1 helps us to find the variables that have high positive or negative correlations
with the other variables. For example, X10 and X11 are highly positively variables, and
X02 is also moderately positively correlated with these variables whereas X09 and X11
are highly negatively correlated variables. Survtime and X01, X05, and X15 are in high
negative correlation. Survtime and X12 are in high positive correlation. The angles
between the survtime and X10, X11 and X16 are close to 90 degree, it is implicated that



Visual research on the trustability of classical variable selection methods in Cox regression 877

Table 2. Angles between the 12 variables in myeloma data.

X01 X02 X05 X07 X09 X10 X11 X12 X14 X15 X16 Survtime
X01 0
X02 127 0
X05 11 116 0
X07 107 126 118 0
X09 62 171 73 45 0
X10 109 18 98 144 171 0
X11 113 14 102 140 175 4 0
X12 130 103 141 23 68 121 117 0
X14 37 90 26 144 99 72 76 167 0
X15 6 121 5 113 68 103 107 136 31 0
X16 72 161 83 35 10 179 175 58 109 78 0
Survtime 164 69 175 57 102 87 83 34 159 170 92 0

survtime and these variables to be uncorrelated. The angles of the variable vectors which
are relative to the other variable vectors are given in Table 2. It is obvious that the angle
between the two vectors is an indicator of the correlations between their corresponding
variables.

After all variables are used for generating the robust coplot graph, we run the robust
coplot method for myeloma data set in several times. Low correlation variables are removed
from the analysis one at a time, and we run the method on different combinations on the
remaining data to see which variables are stable. It is found out that some of the low
correlation variables consistently have low correlations. Instead of giving all of the steps,
we present the removed variables in this paper.

Four variables had correlations below 0.50, X12, X16, X07, and X05, have been removed
from the analysis one at a time, respectively. Removing these variables had no major effect
on previous robust coplot findings, namely, the association patterns among the remaining
variables which have high MADCC values, but the correlation values of remaining variables
have increased. Figure 2 presents the robust coplot graph of reduced data set.

The Kruskall stress value of this graph is 0.117, and the correlations of remaining
variables are higher than 0.60. These are usually considered as acceptable goodness-of-fit
values [3].

Figure 2 demonstrates that the correlations between X01, X14 and X15 variables are
positive and high. This variable cluster is highly negatively correlated with survtime. It
may be assumed that the variables that grow together are nearly duplicated to provide
information for making inference about survtime. The variables X10 and X11 are posi-
tively highly correlated variables, and these variables are nearly ortogonal to the variable
survtime. Additionally, variable X09 is also nearly ortogonal to the variable survtime.
The contents of information in the uncorrelated variables with survtime explain the vari-
ation in the amount of survtime which is aspected as low. Since robust coplot analyzes
observations and variables simultaneously, clusters of observations and their nature are
able to be seen. Extreme outlier(s) does not appear in myeloma data set, and survived
and non-survived patients are not clustered. The projection of a point on a vector should
be proportional to its distance from the corresponding variable’s average, where higher
than the average is in the direction of the vector and vice versa. For instance, observation
50 have higher values in X01, X14, and X15, but small value in survtime.

Two models are inferred from myeloma data with the help of robust coplot findings.
First, all variables are considered for constituting a CRM. Afterwards, reduced data set are
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Figure 2. Robust coplot map of reduced myeloma data

considered for building a CRM. These two processes are compared and we have achieved
the following findings; Variables which have low MADCC values are eliminated from the
CRM. Variables which are orthogonal with the survtime are eliminated from the CRM.
One of the variables that are highly correlated with each other is eliminated from the CRM
during the variable selection procedures. Furthermore, the final models inferred from the
full data set and the reduced data set are the same.

3.3. Cox regression model findings
First of all, univariate CRM is applied to the data set for the purpose of seeing the

univariate effects of the variables on survival. The obtained results are given in Table 3
The results show that the Log BUN (X01) and Hemoglobin (X02) at diagnosis are

important variables as they affect the risk of death whereas the others are not significiant
at a 95% confidence level. The estimated hazard of Log BUN is 5.912 that means, the risk
of death increases a 5.912 unit for 1-unit increase in log BUN. There is a 0.117% decrease
in risk of death for one unit increase in Hemoglobin at diagnosis (HR=0.883).

Then the two scenarios are set up according to the results of robust coplot analysis.
First scenario examines CRM with variables X01, X02, X05, X07, X09, X10, X11, X12,
X14, X15, and X16. Second scenario builds the full model with variables X01, X02, X09,
X10, X11, X12, X14, and X15.
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Table 3. The results of univariate Cox regression model

Hazard Ratio Std. Error
95% Confidence

Interval
z P>|z|

X01 5.912 3.583 1.803 19.391 2.93 0.003
X02 0.883 0.049 0.791 0.985 -2.22 0.026
X05 0.998 0.016 0.967 1.03 -0.11 0.912
X07 2.415 1.756 0.581 10.04 1.21 0.225
X09 1.39 0.602 0.594 3.25 0.76 0.448
X10 0.983 0.023 0.939 1.029 -0.74 0.462
X11 0.997 0.008 0.982 1.013 -0.34 0.736
X12 1.008 0.021 0.968 1.05 0.38 0.705
X14 1.093 0.074 0.957 1.248 1.32 0.188
X15 1.067 0.076 0.927 1.227 0.9 0.368
X16 1.11 0.112 0.912 1.352 1.04 0.298

Table 4. The summary of multivariate Cox regression model

Cox regresion model Variables in the model AIC BIC

Sc
en

ar
io

1 Full model
X01 X02 X05 X07 X09

X10 X11 X12 X14 X15 X16
310.3952 334.3134

Stepwise selection X01 X02 301.3336 305.6824
Forward selection X01 X02 301.3336 305.6824
Backward selection X01 X02 301.3336 305.6824

Sc
en

ar
io

2 Full model
X01 X02 X09 X10 X11

X14 X15
305.5589 305.5589

Stepwise selection X01 X02 301.3336 305.6824
Forward selection X01 X02 301.3336 305.6824
Backward selection X01 X02 301.3336 305.6824

We have run the full model and the models with variable selection procedures. The
model selection criteria are given in Table 4. The results of multivariate CRM without
the variable selection are given in Table 5 and the results of multivariate CRM with the
variable selection are given in Table 6.

For Scenario 1, the model selection criteria lead us to use the variables X01 and X02
for the final model, and these results are concordant with the univariate CRMs. For this
scenario, the variable selection for the data set is consistent with robust coplot findings.

For Scenario 2, X01 and X02 are statistically significant in univariate and multivariate
CRM without variable selection. Additionally the variable selection procedures lead us
to use the variables X01 and X02 in the final model. In summary, the results of second
scenario are same with the first scenario and robust coplot findings in terms of variable
selection.

Consequently, regarding the myeloma data set, Log BUN (X01) and Hemoglobin (X02)
at diagnosis are determined as important variables which affect the risk of death. The
estimated hazard of Log BUN is 5.474 that means the risk of death increases a 5.912 unit
(HR=exp(1.7)=5.474) for a 1-unit increase in log BUN. There is a 0.11% decrease in risk
of death for a one unit increase in Hemoglobin at diagnosis (HR=exp(-0.118)=0.89).
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Table 5. The results of multivariate Cox regression model without variable selection

Coef.
Std.

Error
95% Conf.

Interval
Hazard
Ratio

Std.
95% Conf.

Interval
z P>|z|

Sc
en

ar
io

1

X01 1.741 0.676 0.415 3.067 5.703 3.857 1.515 21.467 2.57 0.01
X02 -0.181 0.068 -0.314 -0.048 0.835 0.057 0.731 0.953 -2.66 0.008
X05 -0.008 0.021 -0.049 0.034 0.992 0.021 0.952 1.034 -0.37 0.715
X07 0.773 0.713 -0.624 2.17 2.167 1.545 0.536 8.761 1.09 0.278
X09 0.293 0.875 -1.422 2.009 1.341 1.174 0.241 7.456 0.34 0.737
X10 -0.042 0.035 -0.111 0.027 0.959 0.034 0.895 1.027 -1.2 0.23
X11 0.005 0.017 -0.027 0.038 1.005 0.017 0.973 1.039 0.32 0.748
X12 0.032 0.029 -0.024 0.089 1.033 0.03 0.976 1.093 1.12 0.262
X14 0.288 0.168 -0.041 0.616 1.333 0.223 0.96 1.852 1.72 0.086
X15 -0.18 0.154 -0.481 0.121 0.835 0.128 0.618 1.129 -1.17 0.242
X16 0.027 0.13 -0.228 0.281 1.027 0.133 0.796 1.325 0.2 0.838

Sc
en

ar
io

2

X01 1.819 0.658 0.529 3.109 6.166 4.058 1.697 22.397 2.76 0.006
X02 -0.158 0.065 -0.285 -0.031 0.854 0.055 0.752 0.969 -2.45 0.014
X09 0.116 0.818 -1.487 1.718 1.123 0.918 0.226 5.575 0.14 0.887
X10 -0.025 0.031 -0.087 0.037 0.975 0.031 0.917 1.037 -0.79 0.428
X11 -0.005 0.014 -0.033 0.024 0.995 0.014 0.967 1.024 -0.33 0.743
X14 0.287 0.142 0.01 0.565 1.333 0.189 1.01 1.759 2.03 0.042
X15 -0.209 0.143 -0.49 0.072 0.811 0.116 0.613 1.074 -1.46 0.144

Table 6. The results of multivariate Cox regression model with variable selection

Coef. Std. Error
95% Conf.

Interval
z P>|z|

Scenario 1
X01 1.7 0.613 0.498 2.901 2.77 0.006
X02 -0.118 0.058 -0.231 -0.005 -2.05 0.041

Scenario 2
X01 1.7 0.613 0.498 2.901 2.77 0.006
X02 -0.118 0.058 -0.231 -0.005 -2.05 0.041

3.4. Findings from color coding variables
Robust coplot graphs of obtained model (categorical variables; Censoring variable, X03,

X04, X06, X13) are drawn according to different color coded variables. The purpose of
this is in doing so was to reveal possible clusters of observations that share common
characteristics in groups.

Colorization of observations based on variable, censoring variable, sex and Bence Jone
protein in urine at diagnosis do not form cluster patterns, obtained graphs are given in
Supplementary Figure 3(c-d-e).

However, it can be easily seen from Figure 3(a) that patients whose Platelets at di-
agnosis are abnormal have lower Hemoglobin values. For example, hemoglobin values of
observations 22 and 14 are 5.5 and 5.1 respectively. Log BUN values of observations 10
and 4 are high and these two observations are embedded in the same direction as the X01
vector. Observation 40 has the highest survtime value among the patients whose Platelets
at diagnosis are abnormal.
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(a) Platelets at diagnos is color coded
variable red square:0, blue plus:1

 

(b) Infections at diagnosis is color coded
variable red square:0, blue plus:1

Figure 3. Colorization of observations

 

(a) Robust Coplot Map

 

(b) Classical Coplot Map

Figure 4. Coplot analysis of contaminated (47) data set

A visual inspection of Figure 3(b) displays that patients who have infections at diagnosis
have lower survival time. However, observation 47 does not follow this manner. A separate
examination of this patients conditions might be beneficial.

It is mentioned before that when fitting a CRM, one single outlier is enough to make
the estimator take values arbitrarily far from their true value, and lack of robustness of
CRM is widely discussed in the literature [5, 18, 21]. Identifying and removing outlying
observations is crucial for providing more accurate relations between variables and survival
time. An emphasis on even one single strong outlier, in classical parameter estimates,
might poorly effect the classical variables selection algorithms. For instance, the Log
BUN value of observation 47 is incorrectly typed as 4.3222 instead of 1.3222 and thus,
obtained data set is called as contaminated data set. Graphs of robust coplot and classical
coplot are given in Figure 4(a) and (b) respectively.

The classical coplot produces a degenerated graphical representation of the multidi-
mensional data set when the underlying dataset contains one strong outlier. A single
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observation poorly affects the associations between the variables, and it may lead to ob-
tain slightly different coefficient estimates. On the other hand, robust coplot graph pre-
serves the correct relations between variables and survival time, and indicated suspicious
observation for further examinations.

CRMs are applied for contaminated data set. The renewed results are given in Sup-
plementary Table (7-8-9). The size of hazard for Log BUN (X01) severely decreases for
the both scenarios, and it also becomes insignificant. The selection methods suggest a
final model that contains only Hemoglobin (X02). There is a 0.12% decrease in the risk
of death for one unit increase in Hemoglobin at diagnosis (HR=exp(-0.124)=0.88). The
variable selection methods propose the same model that robust coplot findings suggest.

4. Conclusion
In model building studies, the researcher encounters with a large number of variables

and deals with the question of which of these variables should be included in a model.
The answer cannot be known immediately because the observed variables are often highly
correlated with the interested outcome variable. Thus, another question of whether there
is any need to put all these variables in the model building process comes up. A common
approach for reducing the number of candidate variables is to apply firstly data reduction
techniques such as principal component analysis for the purpose of defining smaller set of
uncorrelated variables and then, automatic applying automatic selection procedures for
the purpose of reducing the risk of overfitting and multicollinearity. However, in medical
studies, interpretation of component variables may be unreasonable. Consequently, a more
preferable approach is to rely on classical variable selection methods, expert knowledge
and clinical judgment during the process of deciding on primarily important variables
that must be included in the model. In the case of absent or limited of expert knowledge,
visual representation tools of multivariate data are very useful for better understanding
the underlying structure of the data in an unsupervised way.

This manuscript presents the results of application of two statistical methods to analyze
survival data and shows the usefulness of the adapted approach in the context of Cox
regression model. Robust coplot outcome gives pragmatic recommendations on duplicated
variables for the researchers, low correlated variables, and the variables which have no
relations with the predicted variable. Due to the multidimensional and complex nature
of the survival data, identifying outlier(s) is not an easy task. However, considering the
contaminated dataset example, it is illustrated that preliminary examination of the data
set by robust coplot leads to the identification of suspicious observations. Although the
methods are standard methods; their combination is new and has potential advantages
over the classical ways of analyzing such data. However, as a future work, to explicitly
show the usefulness of the approach a simulation experiment should be conducted for
different censoring types and also censoring rates.
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SUPPLEMENTARY MATERIAL

Table 7. The summary of multivariate Cox regression model for the contaminated
data set

Cox regresion model Variables in the model AIC BIC

Sc
en

ar
io

1 Full model
X01 X02 X05 X07
X09 X10 X11 X12

X14 X15 X16
316.1785 340.0968

Stepwise selection X02 306.5977 308.7721
Forward selection X02 306.5977 308.7721
Backward selection X02 306.5977 308.7721

Sc
en

ar
io

2 Full model
X01 X02 X09 X10

X11 X14 X15
312.857 328.0777

Stepwise selection X02 306.5977 308.7721
Forward selection X02 306.5977 308.7721
Backward selection X02 306.5977 308.7721

Table 8. The results of multivariate Cox regression model without a variable
selection for the contaminated data set

Coef.
Std.

Error
95% Conf.

Interval
Hazard
Ratio

Std.
Error

95% Conf.
Interval

z P>|z|

Sc
en

ar
io

1

X01 0.242 0.278 -0.302 0.787 1.274 0.354 0.739 2.196 0.87 0.383
X02 -0.209 0.07 -0.347 -0.071 0.811 0.057 0.707 0.931 -2.97 0.003
X05 0 0.021 -0.041 0.04 1 0.021 0.96 1.041 -0.02 0.987
X07 1.28 0.757 -0.204 2.763 3.595 2.721 0.816 15.85 1.69 0.091
X09 0.431 0.857 -1.249 2.111 1.539 1.319 0.287 8.254 0.5 0.615
X10 -0.042 0.036 -0.112 0.028 0.959 0.034 0.894 1.028 -1.18 0.238
X11 0.014 0.017 -0.019 0.047 1.014 0.017 0.981 1.048 0.83 0.408
X12 0.037 0.029 -0.019 0.093 1.038 0.03 0.981 1.097 1.29 0.196
X14 0.288 0.172 -0.049 0.625 1.334 0.229 0.952 1.869 1.67 0.094
X15 -0.201 0.166 -0.527 0.125 0.818 0.136 0.591 1.133 -1.21 0.226
X16 0.08 0.131 -0.177 0.336 1.083 0.142 0.838 1.4 0.61 0.542

Sc
en

ar
io

2

X01 0.138 0.273 -0.396 0.673 1.148 0.313 0.673 1.959 0.51 0.612
X02 -0.178 0.067 -0.309 -0.046 0.837 0.056 0.734 0.955 -2.65 0.008
X09 0.187 0.833 -1.446 1.82 1.206 1.004 0.236 6.17 0.22 0.822
X10 -0.035 0.032 -0.097 0.028 0.966 0.031 0.907 1.028 -1.08 0.279
X11 0.003 0.015 -0.026 0.033 1.003 0.015 0.974 1.034 0.22 0.822
X14 0.307 0.158 -0.002 0.615 1.359 0.214 0.998 1.851 1.95 0.052
X15 -0.227 0.166 -0.552 0.098 0.797 0.132 0.576 1.103 -1.37 0.172
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Figure 5. Color coded variable for censoring; red square:0, blue plus:1

 

Figure 6. Color coded variable for sex; red square:0, blue plus:1
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Table 9. TThe results of multivariate Cox regression model with a variable se-
lection for the contaminated data set

Coef.
Std.

Error
95% Conf.

Interval
z P>|z|

Scenario 1 X02 -0.124 0.056 -2.22 0.026 -0.234 -0.015
Scenario 2 X02 -0.124 0.056 -2.22 0.026 -0.234 -0.015

 

Figure 7. Color coded variable for Bence Jone protein in urine at diagnosis; red
square:1, blue plus:2


