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Abstract
We adapt a confidence interval method based on a generalized Chi-Square test for fixed ef-
fect parameters of linear mixed models. Under different correlation structure of a response
variable of a linear mixed model, the performances of the adaptation method pseudo-score
and some of the existing confidence interval methods are investigated by carrying out a
Monte Carlo simulation study. The simulation study suggests that pseudo-score method
provides better results for small to moderate sample size cases with dependent observa-
tions in terms of coverage probability rates and average expected lengths. A depression
study is analyzed for demonstrating the adaptation method.
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1. Introduction
Linear mixed models (LMMs) including a very broad class of models are frequently

utilized to fit and analyze longitudinal, clustered, or repeated measures datasets which
are arisen from many areas of application such as agriculture, medical sciences, economics
and engineering. An important issue in the analysis of longitudinal or repeated measures
data is that the observations usually show dependency structure within-subject. In order
to obtain valid inferences of model parameters of LMMs, the correlation structure of ob-
servations within-subject should be identified accurately in the first step of an analysis.
An efficient way is to use extended LMMs which allow modelling within-subject corre-
lation and variation [18]. In biopharmaceutical clinical trials, LMM is quiet pervasive
method. For instance, placebo-controlled schizophrenia study was carried out by fitting
three-level linear mixed model to the data in order to determine sample size for future
studies in psychiatric research area [6]. In order to compare anti-depressant effects in an
elderly depressed group of patients a linear mixed model including random intercept and
slope was fitted to the dataset containing repeated measures of depression severity over
time [12]. By allowing both fixed effects and random effects, LMMs provide very usable
tools for modeling within-subject and between subject variations. A covariance structure
of repeated measures can be explained as a function of time by including random effects
to a linear model. In this study, main attention is the LMMs related to longitudinal
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studies and repeated measures designs which include correlated measurements. Statistical
inferences in LMMs usually focus on fixed effect parameters and they are implemented by
using hypothesis tests or confidence intervals methods. In both cases, researchers need to
find a good fixed effect estimator which has small mean square error (MSE). Constructing
confidence intervals for fixed effects require estimators of fixed effect, variance estimations
of random effects and error terms in LMMs. Most common variance estimations meth-
ods are ANOVA, maximum likelihood (ML), restricted (or residual) maximum likelihood
(REML). ML based methods for model parameters in LMMs can be carried out by using
numerical optimization algorithms such as Newton-Raphson, EM, Fisher-Scoring due to
the model likelihood complexity. MSE estimator for REML of fixed effect in LMMs was
suggested by expanding [13] approximation to reduce bias in small samples [14]. It has
been recently pointed out that variance-covariance structures of LMMs affect power of
approximate F test, Kenward-Roger or Satterthwaite approximation of degrees of free-
dom for hypothesis testing of fixed effect parameters based on simulation-based sample
size study in LMMs [3]. Most widely used methods for constructing confidence intervals
are Wald, t-naive [8], profile likelihood and Bayesian methods. Recent studies have pro-
vided that parametric bootstrap approach can be better alternative for making inference
about fixed effect parameter of LMMs. Parametric bootstrap confidence interval meth-
ods (PBCI) have been investigated and reported that bootstrap-t is the best alternative
among bootstrap methods [21,22]. Also, some of existing confidence interval methods has
been recently investigated for nested error regression model and it is reported that PBCI
can be a good alternative for weak correlation under small samples [2]. Computational
time and coverage rate accuracy of some confidence interval methods including paramet-
ric bootstrap (PB) were examined in repeated measures degradation model [16]. Even
though PB method seems a good alternative, its computational time is quiet unbearable
for a model with too many parameters. Furthermore, other drawback of PB method is
that rely on distributional assumptions which may not be held. Many contributions to the
statistics literature provide estimation theory of LMMs parameters and applications for
LMMs. However, very few of these studies addresses the issue of performances of confi-
dence interval (CI) methods under different correlation structures of the response variable
of LMMs. Balancing the coverage accuracy and the narrowness of average length of a CI
method is desired against the relative computational cost. Since the existing CI meth-
ods have their own drawbacks, our aim is to search for a new confidence interval method
in LMMs. In this study, we have adapted pseudo-score confidence interval method for
fixed effect parameters of LMMs under different correlation settings for small to moderate
sample sizes by using Kenward-Roger method for obtaining standard errors of fixed effect
estimators. Pseudo-score confidence interval was firstly introduced for discrete model pa-
rameters [1]. The generalized form of Pearson-Chi square statistic provided by [17] was
used for constructing confidence interval for fixed effect parameters of LMMs in this study.
In the simulation study, well-known covariance structures for longitudinal studies and re-
peated measures data-sets were exploited to model covariance structures of error terms
within-subjects in order to investigate effect of covariance structures on the performances
of the confidence interval methods.

In Section 2, general form of LMMs and the assumptions are provided briefly. In
Section 3, some of existing confidence interval methods are summarized and pseudo-score
confidence interval method for fixed effects of LMM are introduced. Section 4 includes a
simulation study for scenarios of variance-covariance matrix for the response of a random
slope model which is special case of LMMs. In Section 5, previously analyzed longitudinal
study is used with a random slope model and the confidence intervals of fixed effects are
obtained for each method.
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2. Extended Gaussian linear mixed models
Extended Gaussian linear mixed model gives flexibility to basic LMM with indepen-

dent errors within-subject by allowing heteroscedastic correlated errors within-subject.
Extended Gaussian linear mixed model was given by [18] as follow,

Yi = Xiβ + Zibi + εi i = 1, . . . , n
bi ∼ N (0, G) , εi ∼ N (0, Ri) , cov (bi, εi) = 0

V (Yi) = ZiGZ
′
i + Ri.

(2.1)

Equation 2.1 represents the marginal formulation of linear mixed model and n represents
the number of independent experimental units (subjects or clusters). Yi denotes a (mx1)
vector of observations within unit (for balanced sample size within each unit) i ; Xi is a
(mxp) known covariates design matrix for unit i ; β is a (px1) unknown vector of fixed
effects parameters. Zi is a (mxq) known design matrix for unit i associated with a (qx1)
unknown vector of random effects bi. bi is a (qx1) unknown random effect vector for
unit i and it is distributed normally with zero mean and covariance matrix G. εi is an
unobserved vector of random errors distributed normally with zero mean and covariance
matrix Ri. The columns of Zi can be subset of columns of Xi. This usage allows population
parameters β vary randomly among independent experimental units. In this study, we
focus on performances of confidence interval methods described in Section 3 when the
covariance matrix of V (Yi) differs based on the covariance matrix Ri of random errors in
the LMMs setting of complete and balanced sample size within-subject.

The likelihood function for the linear mixed model in Equation 2.1 is

L (α, β) =
n∏

i=1
(2π)−m/2|Vi (α)|−1/2 exp

(−1
2

(Yi − Xiβ)
′
V −1

i (α) (Yi − Xiβ)
)

(2.2)

where α denote the vector of all variance and covariance parameters found in V (Yi) =
ZiGZ

′
i + Ri.

3. The confidence interval methods
This section describes some of the existing methods of confidence interval and the pro-

posed method, namely pseudo-score confidence interval method, for fixed effect parameters
of Gaussian linear mixed models.

3.1. Approximate Wald confidence interval method
In parameter space of fixed effect parameters β, k = 1, . . . , p , an approximate Wald

test (z-test) and related confidence interval is obtained based on asymptotic normality of
maximum likelihood estimators of fixed effect parameters. The Wald statistic is written
for k = 1, . . . , p

β̂k − βk

SE(β̂k)
(3.1)

where β̂k is a maximum likelihood estimator or a restricted maximum likelihood estima-
tor of (βk) and SE(β̂k) is a standard error of β̂k. The standard error of β̂k is obtained
by using negative expectation of Hessian matrix (Fisher information matrix) or observed
information matrix. The Wald statistic in Equation 3.1 can be seen as a pivot in con-
fidence interval framework. The pivot distribution is assumed to have standard normal
distribution for sufficient sample sizes. Hence z-distribution percentiles are used for con-
structing approximate Wald confidence interval. β̂k ± z1− α

2
SE(β̂k) denotes asymptotic
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100 (1 − α) % Wald confidence interval for βk where z1− α
2

is the 1− α
2 quantile of standard

normal distribution.

3.2. Approximate t-naive confidence interval method
Under small samples when the variance of the fixed effect estimator is unknown, max-

imum likelihood estimator of a fixed effect may not be distributed normally. The pivot
distribution in Equation 2.2 may not have standard normal. Also the estimated standard
errors which underestimate the true variability in fixed effect estimators. Because they do
not take into account the variability arisen from estimating random effects [23]. Student-
t distribution cut-off is suggested [8] to use instead of z-distribution cut-off. Given the
degrees of freedom n∗m−p for the pivot statistic, asymptotic 100 (1 − α) % t-naive confi-
dence interval for βk is β̂k±tn∗m−p;1− α

2
SE

(
β̂k

)
where tn∗m−p;1− α

2
is the 1− α

2 with n∗m−p

(for balanced sample size cases) degress of freedom quantile of student-t distribution [8].

3.3. Approximate profile likelihood confidence interval method
Due to skewed shape of the log-likelihood function or excessive number of nuisance

parameter in the model, Wald-type methods may fail to provide accurate interval estima-
tion. Profile likelihood (PL) method is more preferable in this situation because it does not
require asymptotic normality of maximum likelihood estimators. Assume that unknown
parameter vector θ is partitioned as θ = (βk, δ) where βk is the parameter of interest, fixed
effect parameters of LMMs in this paper, and δ is the additional parameters of the model.
Let L (βk, δ) represents the likelihood function of the model. For βk, profile likelihood
function is L1 (βk) = maxL (βk, δ). L1 (βk) is the maximum likelihood function over the
remaining parameters for each fixed value of βk = βk(0). In order to obtain PL confidence
interval for parameter of interest, the likelihood ratio test of a two-sided hypothesis should
be inverted. Therefore, profile likelihood method still depends on asymptotic property of
likelihood ratio test which is assumed to be distributed with chi-square distribution with
one degree of freedom. Likelihood ratio test is used for comparing nested models with
different mean structures. For a two-sided test of null hypothesis H0 : βk = βk(0), the like-
lihood ratio test statistic is the difference between log-likelihood of full model and reduced
model:

2
[
logL

(
β̂k, δ̂

)
− logL

(
βk(0), δ̂0

)]
(3.2)

where β̂k and δ̂ are the MLEs for the full model and δ̂0 is the MLE of δ for the reduced
model with βk = βk(0). Hence, a 100 (1 − α) % CI for βk includes the values of βk(0) where
the test is non-significant at the α level as shown below in the inequality:

2
[
logL

(
β̂k, δ̂

)
− logL

(
βk(0), δ̂0

)]
< χ2

1,α. (3.3)

SAS Proc Mixed, Proc Glimmix procedures and R lme4 package provide a general frame-
work for profile confidence interval for linear mixed model and generalized linear mixed
model [4, 24]. However, in this paper, we used a simpler algorithm which in many situa-
tions, such as random slope model which is used in the simulation study, could be relatively
easy to implement. Consider lower bound of confidence interval and assume that profile
likelihood function is an increasing function. Firstly, ML estimates of (βk, δ) should be
obtained for full model. And then implemented by the following steps:

(1) For computing a lower confidence limit, a lower bound can be obtained by β
′
k =

β̂k − 5xSE(β̂k).
(2) From β

′
k to β̂k define a grid of values in the range (300 points ).

(3) For each point βk(i) in the range, profile likelihood value is computed by maximizing
logL

(
βk(i), δ̂ (i)

)
over δ values.
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(4) Lower bound of 95% confidence interval is taken as the smallest βk(i) value for which
its profile likelihood value, logL1(βk(i)), satisfies this inequality, logL1(βk(i)) >

logL
(
β̂k, δ̂

)
− 1.92.

The upper confidence limit is similarly estimated using the algorithm. When necessary,
the grid of values around lower bound or similarly for upper bound can be expanded for
a greater accuracy. Step 4 and Step 5 are implemented using uniroot function of R which
utilizes bi-section algorithm over the interval. More points may be required when the
number of random effects and fixed effect parameters in the model are increased.

3.4. Approximate Pseudo-score confidence interval method
Assume that Ŷi is maximum likelihood fitted values of Yi for a particular linear mixed

model. Let Ŷi0 be maximum likelihood fitted values of a reduced model or null model in
which fixed effect parameter, βk, takes a fixed value, βk0, in a reasonable interval of its
parameter space. This study implements generalized form of Pearson statistics suggested
by [17] to construct a new confidence interval for a fixed effect for a LMM. The generalized
form of Pearson statistic is given below:

X2 =
∑

i

(
Ŷi − Ŷi0

)2

var
(
Ŷi0

) =
(
Ŷ − Ŷ0

)T
V̂ −1

0

(
Ŷ − Ŷ0

)
(3.4)

where var
(
Ŷi0

)
is the estimated variance of Yi under the reduced/null model and V̂0

is the variance-covariance matrix of these values [17]. Although the Pearson statistic is
used for constructing confidence interval for discrete model parameter, we adapted this
generalized form for continuous response model by using (adjusted) estimated covariance
matrix of linear mixed model [14] to construct an asymptotic confidence interval for a fixed
effect parameter. Because Kenward and Roger stated that Wald-type test procedures and
corresponding confidence intervals that are based on a conventional estimate of asymptotic
covariance matrix ignore the variability in the estimate of V (Yi) and finally block-diagonal
matrix of LMM, V . Ŷi0 is obtained by fitting the reduced model under the constraint,
β = βk0. χ2

1,α is the 1 − α of chi-squared distribution with one degree of freedom. An
asymptotic 100 (1 − α) % CI for any fixed effect parameter, βk, is obtained by inverting
the generalized Pearson statistic. The asymptotic CI for βk includes such values of βk0,
that satisfies the following inequality,

X2(βk0) =
∑

i

(
Ŷi − Ŷi0

)2

var
(
Ŷi0

) < χ2
1,α. (3.5)

4. Simulation study
In order to investigate performances of four confidence interval methods presented in

Section 3 in terms of coverage probability rate and average expected length, a broad simula-
tion study is carried out with different simulation settings. In the context of longitudinal
study and repeated measures design, our simulation study is formed by differentiating
within-subject covariance matrix, Ri. For all simulation settings, the following LMM
with random intercept and random slope that vary randomly among subjects for the ith

experimental unit at the jth measurement time point is taken into the simulation study,
Yij = β0 + β1xij + β2tij + b1i + b2itij + εij i = 1, . . . , n; j = 1, . . . , m. (4.1)

In the random slope model in the equation 4.1, the fixed effect parameters are β0, β1,
β2 and random effect parameters are b1i, b2i for i = 1, ..., n. The continuous covariates
were generated from the normal distribution, xij ∼ Uniform (0, 4). It is known that two
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sample size concepts are involved in LMMs. One of them represents number of experi-
mental unit/ cluster, n, and the other represents number of observations/ measurements
within each experimental unit/ subject, m. In the simulation study, β0=0, β1=3, β2=0.87
are taken as values of fixed effect parameters. The variance-covariance matrix for random

effects in the model is taken as unstructured matrix, G = V ar (bi) =
[

σ2
b1

σb1,b2
σb2,b1

σ2
b2

]
=[

5.55 0.8183
0.8183 8.0238

]
for all simulation cases. We were inspired by real applications when

choosing G and Ri matrices for random slope model in the simulation cases [10]. Mul-
tivariate normal distribution was used to generate random effects with zero mean and
covariance matrix, G, using mvtnorm R package [10]. Alternatively, Gaussian copula with
copula package can be also used to jointly generate b1i and b2i with a given correlation co-
efficient using the normal distribution margins instead of multivariate normal distribution
because Gaussian copula describes dependence in the same way that multivariate normal
distribution does. [7,26]. Using the same mean model and random effect covariance struc-
ture, different covariance structures for random error terms, V ar (εi) = Ri , and σ2

εi
= 4.41

were taken into account in the simulation study. MLE-based estimations of fixed effect
parameters, Wald CIs for β1, and conventional variance-covariance matrices were obtained
by performing lme4 R package (version 1.1-15) [4]. The covariance estimations based on
Kenward-Roger approximation for pseudo-score method were obtained by using pbkrtest
R package [11]. Two-sided 95% confidence intervals were constructed for each case. The
simulation cases were summarized below:

Case 1. Ri is chosen as AR(1), auto-regressive correlation is assumed between error
terms within each unit. AR(1) structure provides that the correlations decline over time
as the time interval between observations of repeated measures increases. Repeated mea-
surements should be measured at equal points of time in order to use this correlation
structure.

tij = (8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46); m = 20.
tij = (8, 10, 12, 14, 16, 18, 20, 22, 24, 26); m = 10.
tij = (8, 10, 12, 14, 16); m = 5.
Case 2. Ri is chosen as compound symmetry structure, same correlation is assumed

between error terms within each unit. Same vectors with AR(1) covariance model for time
covariates tij are used for this covariance model.

Case 3. Ri is chosen as an exponential structure, it is suitable for the situation that the
measurements are not made equally spaced over time. {ti1, . . . , tim} represents the time
points for the ith experimental unit under the constant variance assumption for random
error terms within each experimental unit,

corr (eij , eik) = ρ|tij−tik|,

cov (eij , eik) = σ2ρ|tij−tik| = σ2exp (−θ |tij − tik|) , (4.2)

where θ = −log (ρ) for θ > 0. The structure allows the correlation between error terms
or any pair of measurements within each experimental unit decreases exponentially as the
time intervals increase between any pair of measurements [9].

tij = (2, 3, 5, 8, 9, 10, 13, 15, 19, 20, 24, 26, 29, 30, 33, 35, 38, 40, 41, 44); m = 20.

tij = (2, 3, 5, 8, 9, 10, 13, 15, 19, 20); m = 10.
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tij = (2, 3, 5, 8, 9); m = 5.

Case 4. Ri is chosen as a banded unstructured. The banded covariance structure
assumes that correlation is zero after some specified time point. A banded pattern can be
applied to any covariance structure. Same vectors with AR(1) covariance model for time
covariate tij is used for this covariance model. For the time points m = 5 and banding
parameter c = 1, unstructured banded covariance matrix example which is used in the
simulation study is given below:

Ri =


2.8 0.1 0 0 0
0.1 0.3 0.2 0 0
0 0.2 0.4 0.1 0
0 0 0.1 0.5 0.23
0 0 0 0.23 0.6

 (4.3)

The simulation results of the confidence interval methods were summarized in Table 1 to
Table 4 for all cases.

Table 1. Coverage probability rates and average expected lengths of the confidence
interval methods for the Case 1 for ρ = 0.25, 0.5, 0.75 at the 95% confidence level.

Sample Sizes Estimated Coverage Probability Rates Estimated Average Lengths

ρ n m Wald Naive Pseudo-Score Profile Wald Naive Pseudo-Score Profile

0.25

5 5 0.8897 0.9083 0.9205 0.9936 3.1325 3.3145 3.5581 5.9136
5 10 0.9318 0.9380 0.9626 0.9944 2.1795 2.2370 2.5840 3.4851
5 20 0.946 0.9482 0.9538 0.9924 1.5281 1.5474 1.5932 2.2557
10 5 0.9237 0.9309 0.9360 0.9911 2.2827 2.3430 2.4472 3.6309
10 10 0.9404 0.9428 0.9474 0.9918 1.5685 1.5883 1.6418 2.2568
10 20 0.9454 0.9464 0.9528 0.9911 1.0883 1.0950 1.1230 1.4784

0.5

5 5 0.9032 0.9182 0.9370 0.9921 3.0426 3.2193 3.7994 5.7295
5 10 0.9296 0.9366 0.9398 0.9944 2.1428 2.1994 2.2912 3.4321
5 20 0.9386 0.9414 0.9482 0.9924 1.5100 1.5291 1.5706 2.22394
10 5 0.9272 0.9328 0.9394 0.9950 2.2279 2.2867 2.3996 3.5443
10 10 0.9416 0.9456 0.9516 0.9926 1.5373 1.5569 1.6081 2.2141
10 20 0.9466 0.9488 0.9534 0.9901 1.073 1.0802 1.1070 1.4650

0.75

5 5 0.8837 0.9007 0.9371 0.9931 2.9496 3.1210 3.7253 5.5352
5 10 0.9313 0.9397 0.9459 0.9935 2.0723 2.1270 2.2128 3.3158
5 20 0.9492 0.9518 0.9554 0.9954 1.4659 1.4843 1.5240 2.1820
10 5 0.9256 0.9330 0.9438 0.9916 2.1742 2.2316 2.3553 3.4567
10 10 0.9406 0.9442 0.9504 0.9915 1.4912 1.5101 1.5602 2.1558
10 20 0.9496 0.9514 0.9544 0.9894 1.0461 1.0525 1.0779 1.4400
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Table 2. Coverage probability rates and average expected lengths of the confidence
interval methods for the Case 2 for ρ = 0.25, 0.5, 0.75 at the 95% confidence level.

Sample Sizes Estimated Coverage Probability Rates Estimated Average Lengths

ρ n m Wald Naive Pseudo-Score Profile Wald Naive Pseudo-Score Profile

0.25

5 5 0.8869 0.9040 0.9632 0.9887 1.3844 1.4648 1.8342 2.3499
5 10 0.9240 0.9310 0.9672 0.9876 0.9352 0.9599 1.1236 1.3820
5 20 0.9372 0.9400 0.9488 0.9888 0.6432 0.6513 0.6665 0.9041
10 5 0.9212 0.9280 0.9424 0.9884 1.0221 1.0491 1.1166 1.4826
10 10 0.9430 0.9464 0.9534 0.9894 0.6730 0.6815 0.6997 0.9073
10 20 0.9456 0.9464 0.9520 0.9874 0.4570 0.4598 0.4690 0.6003

0.5

5 5 0.8896 0.9116 0.9344 0.9858 1.1531 1.2201 1.3434 1.9381
5 10 0.9353 0.9413 0.9705 0.9858 0.7750 0.7955 0.9238 1.1414
5 20 0.9428 0.9450 0.9501 0.9928 0.5275 0.5342 0.5446 0.7451
10 5 0.9252 0.9326 0.9470 0.9868 0.8564 0.8790 0.9255 1.2329
10 10 0.9430 0.9468 0.9522 0.9904 0.5545 0.5615 0.5740 0.7509
10 20 0.9406 0.9430 0.9478 0.9880 0.3742 0.3765 0.3836 0.4966

0.75

5 5 0.9012 0.9172 0.9644 0.9882 0.8506 0.9000 1.0810 1.4078
5 10 0.9390 0.9442 0.9496 0.9908 0.5524 0.5669 0.5793 0.8121
5 20 0.9472 0.9504 0.9540 0.9936 0.3729 0.3776 0.3837 0.5293
10 5 0.9282 0.9346 0.9424 0.9862 0.6221 0.6385 0.6614 0.8886
10 10 0.9482 0.9514 0.9554 0.9906 0.3953 0.4003 0.4075 0.5356
10 20 0.9482 0.9514 0.9560 0.9914 0.2648 0.2664 0.2712 0.3533

Table 3. Coverage probability rates and average expected lengths of the confidence
interval methods for the Case 3 for ρ = 0.25, 0.5, 0.75 at the 95% confidence level.

Sample Sizes Estimated Coverage Probability Rates Estimated Average Lengths

ρ n m Wald Naive Pseudo-Score Profile Wald Naive Pseudo-Score Profile

0.25

5 5 0.8889 0.9050 0.9560 0.9860 1.4478 1.5637 1.9592 2.5233
5 10 0.9312 0.9364 0.9688 0.9894 1.0454 1.0730 1.2596 1.5450
5 20 0.9432 0.9452 0.9504 0.9878 0.7330 0.7423 0.7611 1.0240
10 5 0.9288 0.9364 0.9496 0.9900 1.0944 1.1233 1.1908 1.5919
10 10 0.9450 0.9468 0.9530 0.9902 0.7530 0.7625 0.7836 1.0130
10 20 0.9458 0.9469 0.9580 0.9859 0.5215 0.5247 0.5356 0.6792

0.5

5 5 0.8958 0.9126 0.9655 0.9895 1.3210 1.3978 1.7132 2.2502
5 10 0.9352 0.9418 0.9720 0.9908 0.9930 1.0192 1.1912 1.4707
5 20 0.9420 0.9452 0.9510 0.9896 0.7129 0.7218 0.7391 1.0014
10 5 0.9238 0.9306 0.9488 0.9880 1.0909 1.1197 1.1874 1.5863
10 10 0.9419 0.9452 0.9524 0.9896 0.7125 0.7214 0.7400 0.9629
10 20 0.9496 0.9504 0.9544 0.9874 0.5208 0.5240 0.5348 0.6789

0.75

5 5 0.9012 0.9159 0.9588 0.9866 1.0028 1.0611 1.2701 1.6921
5 10 0.9374 0.9442 0.9742 0.9910 0.8527 0.8752 1.0142 1.2701
5 20 0.9516 0.9538 0.9590 0.9942 0.6547 0.6629 0.6774 0.9265
10 5 0.9360 0.9436 0.9506 0.9896 0.7333 0.7526 0.7781 1.0675
10 10 0.9400 0.9426 0.9490 0.9880 0.6123 0.6200 0.6334 0.8362
10 20 0.9510 0.9520 0.9578 0.9876 0.4668 0.4697 0.4788 0.6182

As shown in Table 1, the coverage rates of Wald and t-naive methods often approxi-
mately were around 0.90 for small sample size cases for n = 5 and m = 5, 10 for AR(1),
compound symmetry and exponential covariance structures. Approximate pseudo-score
method provided higher coverage probability rates than Wald and t-naive methods. Pro-
file likelihood method provided the highest coverage probability rates due to the widest
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average expected lengths. As the correlation terms of AR(1), compound symmetry and ex-
ponential structures got stronger, coverage probability rates of Wald and t-naive methods
are generally slightly increased.

The performances of confidence interval methods for the compound symmetry covari-
ance structure of random error terms showed similar behavior to the autoregressive case
above. Coverage probability rates of pseudo-score method in compound symmetry struc-
ture slightly were better than those in AR(1) covariance structure for especially in small
samples.

Table 4. Coverage probability rates and average expected lengths of the confidence
interval methods for the Case 4 at the 95% confidence level.

Sample Sizes Estimated Coverage Probability Rates Estimated Average Lengths

n m Wald Naive Pseudo-Score Profile Wald Naive Pseudo-Score Profile

5 5 0.8909 0.9084 0.9647 0.9899 1.2590 1.3331 1.6539 2.1068
5 10 0.9300 0.9376 0.9488 0.9886 1.1920 1.2235 1.2838 1.7707
5 20 0.9444 0.9466 0.9496 0.9911 1.1355 1.1499 1.1893 1.6170
10 5 0.9280 0.9356 0.9478 0.9854 0.9839 1.0099 1.0722 1.4037
10 10 0.9410 0.9440 0.9510 0.9876 0.8587 0.8695 0.8967 1.1499
10 20 0.9377 0.9403 0.9470 0.9887 0.8112 0.8162 0.8366 1.069

For banded covariance structure of random errors, approximate pseudo-score method
produced the closest coverage probability rates to the nominal confidence level even for
small sample sizes.

5. Application
A psychological longitudinal study is used as an example dataset and a sketch of it is

given in Table 5 to demonstrate the confidence interval methods [15]. Since we consider
small-sample cases in our simulation study, we only include a subset of the dataset which
contains observations of ten subjects for our analysis. This longitudinal study focuses on
new treatment on the depression patients aged 18 to 75 who are not treated with any
treatment method [20]. The patients are randomly allocated to two treatment groups:
computer based treatment (Beating the Blues) and usual treatment group (Tau). The
response variable, depression score of the patients is measured by Beck Depression Inven-
tory [5] on five time points: prior to treatment (baseline), 2 months later, and at 1, 3, and
6 months follow-up. The effect of duration of depression is also included in the study by
categorizing the duration time: if a patient had been ill for longer than six months coded
duration=1 or for less than six months coded duration=0. In this paper, the patients
with missing values are excluded from the dataset only the patients with complete mea-
surements in all time points are included to the analysis. The random slope and random
intercept model is fitted to the dataset. In the model, depression scores as a response
variable, baseline as a continuous covariate, treatment coded 1 and 0, respectively shows
Beating the Blues and Tau, as categorical covariate and duration as an another categorical
covariate are taken . Here the following linear mixed model for the response is given on
the patient i at time tj for i = 1, . . . , 10; j = 1, . . . , 4, ,

Yij = β0 + β1Treatmenti + β2Durationi + β3Baselinei + β4tj + b1i + b2itj + εij . (5.1)

In order to choose an appropriate covariance structure, compound symmetry, exponen-
tial, unstructured and AR(1) covariance models were considered and fitted to the dataset
by using nlme R package [19]. Since time intervals are not equal in the application as given
in the sketch of the dataset, exponential covariance structure would be more preferable
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Table 5. A subset of a dataset of a psycological longitudinal study

Subject Duration Treatment Baseline Month Depr-Score

2 1 1 32 2 16
2 1 1 32 3 24
2 1 1 32 5 17
2 1 1 32 8 20
4 1 1 21 2 17
4 1 1 21 3 16
4 1 1 21 5 10
4 1 1 21 8 9
7 0 0 17 2 7
7 0 0 17 3 7
7 0 0 17 5 3
7 0 0 17 8 7
8 1 0 20 2 20
8 1 0 20 3 21
8 1 0 20 5 19
8 1 0 20 8 13

for this dataset according to Table 6. Parameter estimations, standard errors, t-values
and confidence interval estimations of fixed effects under this covariance structure are
summarized in Table 7.

Table 6. Likelihood-based values of Several Covariance Models

Covariance Model AIC BIC log-likelihood
AR(1) 254.71 270.26 -117.35
Unstructured 259.87 283.20 -114.93
Compound Symmetry 256.57 272.12 -118.28
Exponential 254.71 270.27 -117.35

Table 7. Parameter estimations, standard errors, t-values and confidence interval esti-
mations of fixed effects at the 95% confidence level

Parameter β0 β1 β2 β3 β4
Estimation(REML) -1.704 -0.800 -2.405 2.342 0.846

Standard Error 8.123 0.581 3.424 5.033 0.404
K-R Stn. Error 9.230 0.581 3.954 5.812 0.466

Wald CI (-17.626; 14.218) (-1.938; 0.338) (-9.118; 4.307) (-7.522; 12.208) (0.054; 1.639)
Profile CI (-15.496; 12.338) (-1.992; 0.392) (-9.757; 4.946) (-6.105; 10.790) (0.131; 1.561)
t-naive CI (-18.196; 14.788) (-1.979; 0.379) (-9.358; 4.547) (-7.876; 12.561) (0.026; 1.667)

Pseudo-score CI (-16.476; 13.318) (-1.962; 0.362) (-9.314; 4.504) (-7.105; 11.790) (0.031; 1.661)

Based on the simulation study results, it was concluded that pseudo-score method
was more preferable than the other methods. Therefore, pseudo-score method confidence
interval results for the fixed effect parameters would be more appropriate for making
inference in this dataset.

6. Discussion
This paper contributed the idea of using pseudo-score confidence interval method with

Kenward-Roger variance estimation method for obtaining confidence intervals for fixed
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effect parameters in linear mixed models. In this study, the covariance structure of re-
sponse of a LMM was composed from two sources of variation: first variation was derived
from random effects and its covariance structure was called G (unstructured) and second
variation was derived from random error terms and covariance structure was modeled by
Ri. Hence a hybrid covariance structure of Vi was produced for each covariance case in
the simulation study. Approximate pseudo-score method was adapted for random slope
model when the dependent observations within-subject was existed.

The simulation study suggested that pseudo-score confidence interval method usually
provided close covarege rates to nominal 95% confidence level for small to moderate sam-
ple sizes. Wald method provides liberal results whereas profile likelihood method provides
very conservative results. Pseudo-Score method generally produces better coverage rates
than Wald and t-naive methods for especially small sample size cases. In cases where the
covariance structure of random error terms within subject are autoregressive, compound
symmetry, exponential and banded it can be said that more preferable confidence inter-
val method is approximate pseudo-score method in terms of coverage probability rates.
Pseudo-score method not only regulates the disadvantage of wider lengths of confidence
intervals provided by profile likelihood but it also regulates poor coverage rates of Wald
and t-naive methods. Therefore, pseudo-score confidence interval method usually balances
these two disadvantages of the existing methods. There can be limitation of the simulation
in this study. The proposed approach can be investigated with other covariance structures
of linear mixed models such as ARMA or MA as a future study. Recently, Wu and de
Leon (2014) have proposed Gaussian copula mixed models for correlated mixed response
[25]. Gaussian copula mixed models are flexible in terms of modeling multiple correlated
discrete or continuous responses together in a joint analysis. The proposed confidence
interval method can be extended for fixed effect model parameters of Gaussian copula
mixed models as an another future study.
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