
31

Bilge International Journal of Science and Technology Research

© 2016 Kutbilge Akademisyenler Derneği 2020, Volume: 4, Issue: 1, 31-42

ISSN: 2651-401X

e-ISSN: 2651-4028

Received: 07.09.2019; Accepted: 20.03.2020

DOI: 10.30516/bilgesci.616818

A Tool Development for Test Case Based Code Optimization in Java

Turgay Taymaz 1* , Kökten Ulaş Birant 2

Abstract: Java has been a popular programming language since its first stable release in

1996 because of its platform independence. Along with its popularity Java has been a focus

of performance studies since its debut. Developments in hardware has unbelievably

advanced the performance of the devices that run Java and thus software performance has

lost its popularity until the release of Android OS and rapid increase in mobile device

ownership Java language usage has increased once again. Mobile devices having far less

system resources compared to personal computers had re-brought software performance

studies into the spotlight. However mobile devices have gone into a fast-paced

development like all other information technologies and this brought down the need for

software performance studies, again. Also, worth mentioning that development of new Java

Virtual Machine (JVM) versions has made the specialized compiler studies, which may

threaten the platform independency, obsolete except for specific situations. Today it is not

enough to consider code optimization solely in terms of performance improvement. Much

broader vision is needed like software development processes such as Maintainability, code

readability, improving cooperation in multi-programmer projects, software quality

assurance.

In this study, white box testing approach is adopted as the software testing technique and

static code analysis method is selected to ensure line coverage. A new software (JPA) has

been developed based on a currently used testing tool (PMD) to improve the user

experience.

Keywords: Java, code optimization, PMD, static code analysis.

1Address: Department of Computer Engineering, The Graduate School of Natural and

Applied Science, Dokuz Eylül University, İzmir, Turkey
2Address: Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül

University, İzmir, Turkey.

*Corresponding author: ttaymaz@yandex.com

Citation: Taymaz, T., Birant, K. U. (2020). A Tool Development for Test Case Based

Code Optimization in Java. Bilge International Journal of Science and

Technology Research, 4 (1): 31-42.

1. INTRODUCTION

Rose flower is seen as a symbol of purity, beauty, love and

Java programming language is a general-purpose,

concurrent, class based, object-oriented language which

allows application developers to write programs that can

run on any platform; either online or on different types of

devices (Gosling et al., 2018). Java compiler converts the

source code to bytecode, which then can be executed on

any operating system using JVM (Java Virtual Machine).

Independence from operating systems provides flexibility

and simplicity, which has considerably increased the

popularity to this programming language since the release

of version 1.0 in 1996. However, being flexible can also

lead the developers to a non-focused implementation and in

turn might make some applications to be less efficient than

other platform dependent programming languages, which

brings out a need for performance improvement

applications for Java.

While performance studies have been conducted, starting

with the first version of Java programming language with

projects such as High Performance Java (HPJAVA) and

The Ninja Project, these studies have discontinued due to

Java Development Kit (JDK) updates and due to the fact

that developments in computer hardware have rendered

these studies redundant. (Carpenter et al.,1997; Moreira et

al., 2001). Nevertheless, performance studies for Java came

back into focus again with the announcement of the

Android operating system in 2008.

Android operating system is based on an open-source

distribution of Linux operating system. Programmers can

https://orcid.org/0000-0002-1718-4315
https://orcid.org/0000-0002-5107-6406

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

32

develop Java-based applications and deploy them on

Android devices (Hall & Anderson 2009). There has been a

steady growth from the start in the numbers of the

applications that were developed for Android OS because

Java was already a popular and well-known programming

language when Android OS was commercially released in

2008. Today, Android OS is the most popular operating

system for all devices surpassing even Microsoft Windows,

given in Figure 1.

Figure 1. Operating system market share worldwide (Statcounter, n.d.)

2. Material and Method

2.1 What is code optimization

A definition that most programmers will agree is that the

main purpose of code optimization is to increase the quality

of the code in terms of time and space without affecting the

output result of the code (Bajwa et al., 2016).

The terms time and space lead to a common perception of

code optimization as only the performance increase; in a

wider perspective, optimization may also mean an

improvement in other aspects as defined below.

Code optimization is the process of modifying source code

to improve code quality and efficiency. For instance, a

program can be optimized so that it runs faster, or works

with less memory storage or other resources, or consumes

less power, or can be more readable to facilitate

maintenance and updating (Bajwa et al., 2016; Johnson

2008; Lins, 2017; Palaniappan, 2016).

Code optimization can be performed at levels such as

design level, algorithms and data structures, source code

level, build level, compile level, assembly level and run

time (Lins, 2017). In general, higher optimization levels

have a greater impact and are more difficult to change later

in a project, so they require a complete rewrite if they need

to be changed. For this reason, optimization generally

proceeds from higher to lower levels. Larger gains can be

achieved at higher levels with less effort, then gains get

smaller and require more effort as levels go lower.

However, this is not always the case, in some cases the

performance of the program may show tremendous

increases in performance with small changes made at lower

levels. Therefore, it is not possible to foresee whether the

time and effort required are worth the performance

increase, not to mention the unforeseen errors that may

occur. Because of this unpredictability, the changes made

for optimization can be abandoned, partially abandoned or

postponed to a later date, depending on the size and

complexity of the project.

Assuming the code optimization only as performance

enhancements would compromise the stability of the

program. Because such an approach would be ignoring the

concept of code quality as in debugging, maintenance

efforts and design process of later versions.

2.2 When to optimize?

Choosing the right programming language and platform in

the design phase will be the most basic start for

optimization. The right architecture selection is also made

at this beginning stage since it can be very challenging to

change later. In general, it will be even more difficult to

change the data structure than the algorithm because the

data structure assumption and its performance assumption

will be used throughout the entire program. For the sake of

improving performance, adding new codes and changing

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

33

source code may reduce readability. This can result in

serious complications in maintaining and debugging the

program. Therefore, optimization for performance

improvement is better to be left to the end of the

development phase.

Premature optimization is the (so-called) improvement

effort in an immature system. The following quote is about

premature optimization from Donald Knuth: "The real

problem is that programmers have spent far too much time

worrying about efficiency in the wrong places and at the

wrong times; premature optimization is the root of all evil

(or at least most of it) in programming."(Knuth, 1974).

Indisputably that was a different time when mainframes and

punch cards were common and CPU processing cycles

were also scarce. With advancing technology, innovations

such as much higher CPU processing cycles have emerged,

still premature optimization has become a controversial

issue.

Nowadays, programs can be quickly distributed over the

Internet and the codes are updated if necessary, afterwards.

A classic example of this would be a start-up that spends a

lot of time trying to figure out how to scale their software to

handle millions of users. This may seem like a valid

concern to be considered. But it makes more sense to worry

about processing millions of users, after making sure that at

least 100 users like this product and want to use it. If the

product is coded in an easy to maintain, the necessary

optimizations are easily taken care of (Watson, 2017).

Developments in compilers made some optimizing

operations unnecessary, such as bitwise shift and mask used

to divide or multiply a positive integer expression by two,

because the compiler performs these operations

automatically when compiling the code. As a result, ease of

maintenance by writing readable code has come to the fore

once again.

Before starting optimization, it would be more useful to

prepare a report of the program code including suggestions

in source code level and then apply the selected suggestions

and re-report including a comparison between the multiple

versions previously tested by the user.

2.3 Optimizing Java source code

In order to understand Java code optimization, it is

necessary to explain the technology behind the Java

programming language and the development of this

technology. In other programming languages the compiler

generates machine code for a particular system. But in the

Java programming language, the compiler generates its own

alternative format, which is called bytecode, for Java

Virtual Machine (JVM) instead of the machine language.

JVM is an abstract computing machine and provides Java

programming language hardware and platform

independence.

Just-In-Time (JIT) compiler improves the performance of

Java applications at run time and it is a component of JVM.

JVM loads the class files at program runs time. The class

files determine the meaning of each bytecode and make the

appropriate calculation. For comparing to a native

application, additional processor and memory usage during

interpretation may cost Java application extra time.

However, as JIT completes the compilation, the application

reaches its peak performance approaches the performance

of a native application.

In Java programming language, to make performance

improvements, codes can be refactored, or settings can be

adjusted on the compiler, and even a new compiler can be

designed to generate bytecode for JVM. However, in this

study, instead of these options, it was aimed to create a

report by examining the source code with static code

analysis and to increase the optimization by increasing the

code quality depending on this report. The main reasons for

this are listed below.

Java is a language licensed by General Public License

developed by Oracle and is regularly updated. With these

updates, there is also an increase in performance.

The execution speed of Java code is highly dynamic and

fundamentally depends on the underlying Java Virtual

Machine. An old piece of Java code may well execute faster

on a more recent JVM, even without recompiling Java

source code (Evans et al., 2018). Combining this fact with

the possibility that refactoring may not sufficiently improve

the software performance, refactoring approach was not

pursued in this research. Although there may be

optimizations that can still be applied for special

circumstances and unforeseen cases in the future, they

cannot be generalized and may not be expected for the

same performance increase in the upcoming Java versions.

JDK compilers can be customized to create a more efficient

bytecode for JVM. Additionally, new programming

languages such as Scala and Kotlin have been developed

and are available as alternatives, which can also work with

JVM. Scala combines object-oriented and functional

programming in one concise, high-level language. Scala's

static types help avoid bugs in complex applications, and its

JVM and JavaScript runtimes let you build high-

performance systems with easy access to huge ecosystems

of libraries (Scala n.d.). Kotlin is a statically typed

programming language that runs on Java Virtual Machine

and can also be compiled to JavaScript source code or use

LLVM compiler infrastructure (Kotlin n.d.).

Considering the above-mentioned information, working to

optimize the software at the source code level appears much

more promising than just increasing the performance for

current runtime version. Additionally, leaving the final

decision to the programmer by producing reports provides

flexibility for the programmer who may have specific needs

or specific requirements. For this purpose, statement

coverage, a White-Box Test technique, is implemented in

this study.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

34

2.4 Software testing

Software testing is used to expose defects and errors in the

software. Principal benefits that can be gained by testing

are software quality assurance, reliability estimation of

software, validation and verification. Software testing is a

key component of software quality assurance and represents

a refinement of specification, design and coding (Khan &

Khan, 2012).

The primary purpose of the software test is to verify the

quality of the software system, another purpose is to

determine the integrity and accuracy of the software and

ultimately reveal undiscovered errors. Software testing

ensures an effective performance of the application (Singh

& Kazi, 2016).

Software can be tested with box approach. There are

essentially two types of the "box" approach: black box

testing and white box testing. The combination of said

approaches is called grey box testing. Figure 2. shows the

“box” approaches in software testing.

Figure 2. Software testing “Box” approaches (Invensis,

n.d.)

White box testing deals entirely with the code structure.

Both the source code and the compiled code of the project

are tested. Unlike white box testing, black box approach,

allows testing to be performed without any requirement of

inside knowledge of the code structure or design of the

project. The comparison of the input and output can

obviously only test if the functional requirements of the

system are met or not. Grey box testing, as previously

stated, is a combination of white-box testing and black-box

testing approaches. Although Grey box testing depend on

some inside knowledge of the code structure, it is actually

platform and language independent. The reason behind this

is; it is essentially a black box test modified according to

the main data structures and algorithm of the application

but not the details of the code. (Sawant et al., 2012;

Jovanović, 2009).

Black box testing doesn't need any knowledge of the

internal structure or coding in the program, and more

importantly doesn’t give any conclusions or suggestions

about it either. Similarly, grey box testing doesn’t require

that the tester have access to the entire source code and

again limited to boundary values and interfaces between

program modules. White box testing is preferred in this

study because it is focused on the code and would give

more meaningful results pertaining to the code structures

(Jovanović, 2009).

2.4.1 White box testing

White box testing is sometimes referred to as clear box

testing, glass box testing, transparent box testing due to its

access to the codes and algorithms or structural testing

because of its focus on internal structure or working of a

software, rather than its functionality (Karnavel &

Santhoshkumar, 2013).

Performing white box testing technique follows a step by

step approach and tries to verify each program statement

even the comments. White box testing enables performance

of data processing and calculations correctness tests,

software qualification tests, maintainability tests and

reusability tests. The implementation of white box testing is

based on controlling the data processing for each test case

which in turn raises the issue of coverage of a huge number

of possible processing paths and the numerous lines of

code. This adversity has given rise to two approaches called

“Path coverage” and “Statement coverage”. Path coverage

is to check whether all possible routes are applied along a

certain part of the code. Statement coverage, also known as

line coverage, is verifying whether each statement in the

program is executed or not (Galin, 2004).

In a software structure, different paths are created by

conditional expressions such as IF - ELSE, DO - WHILE.

Path testing attempts to provide the full scope analysis of a

program by testing all possible paths. Therefore, “path

test’s completeness” is defined as the percentage of

program paths carried out during the test. The concept of

path testing is not practical in most cases because of the

vast resources needed for its performance. Because of this

predicament, statement coverage has been developed as an

alternative. In statement coverage, test cases leave most of

the possible paths untested however requires far fewer test

cases to cover all paths compared to path coverage. As an

alternative to creating multiple test cases to cover all paths,

static code analysis is a viable solution, or even better,

using a tool to automate static code analysis (Galin, 2004).

2.5 Static code analysis

Static code analysis, also called static analysis, is the

method of examining the program codes without the actual

execution. Static analysis can be considered a code review

process. Code reviewing is one of the oldest and safest

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

35

methods for detecting errors in the source. It suggests

reading the source code carefully and make suggestions on

how to improve it. This process is used to locate existing

errors and pieces of code that may cause future errors. Code

review process is useful, because programmers are more

easily to notice others' mistakes than their own. The most

important problem in this process is the need for periodical

meetings of programmers to review each new code, or re-

review a code after the proposed changes are applied. When

programmers review large pieces of code at a time, they

lose their attention quickly, so they need to rest regularly.

Otherwise, code review will not help. This is a serious

problem because of its immense cost in man hours.

Automation of static analysis, i.e. static code analysis tools

would be a good solution to reduce this cost (Ayewah et al.,

2008).

2.5.1 Static code analysis tools

Static code analysis tools examine the source code of

programs and give suggestions to the programmer as to

which parts of the code to reconsider. These tools may not

replace a code review by a team of programmers, but the

benefit/cost ratio makes the use of static analysis a very

good option. Static code analysis tools are very successful

in detecting errors in programs and providing code

formatting suggestions. One of the main advantages of

static analysis is that it allows the cost of eliminating errors

in the software to be greatly reduced. This is mainly

because this analysis can be performed at the coding stage.

Fixing an error at the testing stage costs about ten times

more compared to development stages, as shown in Table

1. Static analysis can be performed in construction, system

test and post-release phases.

Table 1. Average cost of fixing defects based on when they’re introduced and detected (McConnell, 2014)

 Time Detected

Time Introduced Requirements Architecture Construction System Test Post-Release

Requirements 1 3 5 – 10 10 10 – 100

Architecture - 1 10 15 25 – 100

Construction - - 1 10 10 – 25

Static analysis does not depend on the compiler used and

the platform in which the compiled program is executed,

thus making it possible to find hidden errors, such as

undefined behavioral errors, that may occur even a few

years after it was created or errors that may occur in

different compilers and platforms. In addition, typos and

other errors caused by Copy-Paste usage can be easily and

quickly detected.

Static code analysis tools perform these operations

according to the rules and standards of the programming

language. There are a lot of commercial and free static code

analysers. In a research, PMD was deemed to be the best

static analysis tool for Java programming language

(Abdallah & Al-Rifaee, 2017).

While most static analysis tools for Java programming

langue, use SUN or Google standards, some tools such as

PMD use developers approved rules in addition to SUN and

Google standards. This makes PMD a multi-standard based

tool to implement. In addition, PMD enables the

development of tools through the APIs it provides.

Therefore, PMD is used in this study.

2.6 How PMD works?

PMD is an open source, static code analysis tool with

comprehensive configurable rule sets (Thomas et al., 2003).

PMD supports Java, JavaScript, Salesforce.com Apex and

Visualforce, PLSQL, Apache Velocity, XML, XSL

languages (Nembhard et al., 2017).

In PMD, multiple rules or rulesets can be used together, or

a custom ruleset can be created. For Java Programming

Language, there are more than 280 rules which are defined

in eight rulesets: Best Practices, Code Style, Design,

Documentation, Error Prone, Multithreading, Performance

and Security (PMD n.d.). Additionally, PMD users can

execute custom analyses by developing new evaluative

rules.

Instead of the source code itself, PMD uses abstract syntax

trees (ASTs) created by a JavaCC parser from Java sources.

The main loop of PMD then examines AST, visiting all

registered rules related to specific AST structures. The rule

scan then checks AST and report violations (Aderhold &

Kochtchi, 2013). The following example, given in Figure

3., illustrates rule creating process for PMD and also

illustrates inner workings of PMD.

Figure 3. Sample Java code

In PMD, rules are written as Java classes or XPath

expression. It actually gets quite difficult to follow source

code especially as it gets longer. This is mainly because it is

difficult to tell where the curly braces belong. To be able to

do this, it is necessary to determine the changes that happen

in AST if “buz.doSomething()” clause had braces inserted

as shown in Figure 4.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

36

Figure 4. Different AST for sample code with-without

curly braces

When the curly braces are added, AST nodes are formed

with the names “Block” and “BlockStatement”. A rule

violation can be detected by writing a rule that detects a

"WhileStatement" declaration that is not followed by

“Block”. This can be done with one of Java class or

XPATH experission rule writing methods. To write a

custom rule, a new java class needs to be created that is

inherited from

net.sourceforge.pmd.lang.java.rule.AbstractJavaRule. PMD

works by creating AST and then traverses it recursively. By

doing this, a rule can get a call back for any type it’s

interested in. The rule that gets called whenever AST

traversal finds a “WhileStatement” can be seen in Figure 5.

Figure 5. WhileLoopsMustUseBracesRule java code

Once the rule class is written, PMD must be told of this.

PMD needs a ruleset XML file to recognize the rule.

“sampleCustomRule.xml” file can be seen in Figure 6. The

elements and attributes of the file are explained below.

●name - The rule’s name.

●message - Message for report.

●class - Location of the rule class.

●description - A description of what this rule looks for.

●priority - There are five levels of priority in the PMD for

the rules:

1. High priority. Code revision absolutely required.

2. Medium high priority. Code revision highly

recommended.

3. Medium priority. Code revision recommended.

4. Medium low priority. Code revision optional.

5. Low priority. Code revision highly optional.

●example - A code fragment between CDATA tags to

explain the rule violation.

Figure 6. SampleCustomRule.xml

To test the rule run PMD in command line by giving

command:

pmd.bat -d “Path to Sample Code” -R “Path to

sampleCustomRule.xml”

All findings obtained should be explained with figures and /

or charts and avoided from unnecessary repetitions.

After running the command PMD prints “Avoid using

‘while’ statements without using curly braces”, as shown

Figure7.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

37

Figure 7. Output of running PMD with sample custom rule

After testing the rule, it is necessary to make changes to the

rule class in order to include the rule in the reports to be

prepared by PMD. However, since the aim is to explain

how PMD works instead of preparing a custom rule for

PMD, the continuation of the subject and/or preparing the

rule with XPATH expressions will not be included here.

2.7 Operating PMD

PMD is distributed as a zip archive. The latest binary

distribution can be downloaded from the releases page. In

Windows operating system, to run PMD, unzip it in any

directory and run the file "pmd.bat" under the "bin" folder

with the required parameters from the command line. PMD

does not have a graphical user interface. pmd.bat requires

two arguments:

●-d <path>: Path to files of source code to analyse.

●-R <path>: The ruleset file. PMD uses xml configuration

files.

Other arguments of PMD are optional. For instance, PMD

displays the report on command line by default. But user

can change this by giving “-r” argument with a path to a file

in which the report output will be recorded. Full list of

arguments can be found on PMD's documentation page.

3. RESULTS

3.1. Shortcomings of PMD and Java Project Analyser

(JPA)

Although the generated report will be displayed on the

command screen or stored in the name and type specified at

each run, PMD will not operate if the parameters are

missing or incorrect. Moreover, it will overwrite a previous

existing report if the same name is given as a parameter

again without warning. Another major difficulty with PMD

is keeping track of the names of the rulesets. Most

importantly it will not be able to compare the report files.

Java Project Analyser (JPA) was developed to prevent these

hurdles and improve the user experience in this study.

Using JPA is considerably easier because it can be used via

the graphical user interface after running the file named

JPA.jar.

3.2. How JPA works

The following describes how JPA works with sample test

codes. JPA is developed for this study and its main window

can be seen in Figure 8.

Figure 8. JPA main window

As shown in Figure 8, when JPA is first run, a window with

two buttons is displayed. The first button can be used to

create a new project for analysis, or the second button can

be used to re-analyze an existing project or compare old

analyses. To test with JPA, two source code files named

“CodingHorror.java” and “StringHorror.java” are prepared

in the “TestCodeFolder” folder and the codes are given in

Figure9.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

38

Figure 9. CodingHorror.java and StringHorror.java

These codes run successfully and are sent to the command

screen. However, there are three violations in these codes,

one high priority (1), one medium high priority (2) and one

medium priority (3) in the performance ruleset of PMD.

Explanations for these three violations are given in Figure

10.

Figure 10. PMD violations in sample codes

To analyze the test code with JPA, select the folder with the

"Create Project" button as in Figure 11.

Figure 11. Selecting source code folder

After selecting the folder, ruleset(s) need to be selected to

run analysis otherwise program will give error as shown

Figure 12.

Figure 12. Error because ruleset(s) is not selected

"SELECT RULE SET(S)" button is used to select the

ruleset(s). From the window that opens, the rulesets can be

selected. For the test code "Performance" rule set was used,

as in Figure 13.

Figure 13. Ruleset(s) selection

Considering that this was just a demonstration and not a

complete test, it was not necessary to use the entire

performance ruleset for the test codes here. Since the

example codes are known to contain three violations,

"Custom Ruleset" file could be prepared in "xml" format as

shown in Figure 14. and used at the rule selection shown in

Figure 13.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

39

Figure 14. Custom ruleset xml file

After returning with "OK" button, selected rule sets are

listed and with "RUN" button analysis starts. JPA uses

PMD APIs to analyze the project and stores the generated

report in SQLite database with the name ".AOP.db" in the

same folder as test codes. To open the report, press the

"OPEN REPORT" button as shown in Figure 15. The

schema of the database is given in Figure 16.

As can be seen in Figure 17., the report can be reviewed

together for all source code files or separately for each

source code file.

Figure 15. Post analysis confirmation screen

Figure 17. Generated report

“ALL REPORTS” button opens the window listing all the

reports. In this window, the old reports can be viewed, the

reports can be deleted or compared. At least two reports are

needed for comparing or program gives error as expected

shown in Figure 18.

Figure 18. Error when try to compare reports

Figure 16. Database scheme for “.AOP.db”

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

40

Before creating new report, change the codes like in Figure

19. to eliminate violations. In order to ignore a violation

and keep the code by PMD, just type "//NOPMD" at the

end of that line if the violation consists of a single line. For

multi-line violations there are several ways to ignore can be

found on PMD documentation under “Suppressing

Warnings” title.

In this example a single line suppression was typed in line 8

of the "StringHorror.java" source file, "short" variable type

in lines 8 and 9 has been replaced with "int" in the source

file "CodingHorror.java". Only the violation in line 16

remains.

Figure 19. Updated CodingHorror.java and StringHorror.java source code files

Figure 20 shows that only the “BooleanInstantiation”

violation is reported when the analysis is performed again.

Figure 20. Generated report for updated codes

When comparing the two reports, as in Figure 21., only this

violation is common.

Figure 21. Comparison of reports

As in a single report view, the comparison of two reports

can be exported as “html”. Figure 22. shows the

comparison of reports exported as “html”.

Figure 22. Comparison of reports exported as html

When reviewing reports in JPA, documentation page of a

violation can be accessed from the column named "External

Info". The same applies to the "Error Description" column

when exporting the report as "html". The image of a sample

documentation page for “BooleanInstantiation” violation

that can be accessed through the link in the report in Figure

22. can be seen in Figure 23.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

41

Figure 23. Documentation page for “BooleanInstantiation” violation

If a previously analyzed folder is selected as destination

while creating a new project, it will notify user of the issue

and ask whether to load the existing project or not, as

shown in Figure 24. Similarly selecting an un-analyzed

folder while loading a project will bring an appropriate

notification, asking the user to create a new project or not

as in Figure 25.

Figure 24. Warning for an already existing project where

the new project is wanted to be created

Figure 25. Warning for no existing project where the

project is wanted to be loaded

4. DISCUSSION AND CONCLUSIONS

In this study, a platform independent tool is designed to

perform static code analysis. The speed of execution of

Java code is highly dynamic and fundamentally depends on

Java Virtual Machine. An old piece of Java code may well

run faster on a more recent JVM, even without recompiling

Java source code. Combining this fact with the possibility

that refactoring may not sufficiently improve the software

performance, software testing approach was preferred. It

was decided to implement white box approach at source

code level with statement coverage to optimize code. In

order to cover all code lines, a tool has been developed

based on PMD source code analyzer to perform static code

analysis automatically and compare the analysis outputs.

Although PMD itself was a good starting point for static

analysis there were obvious shortcomings to be improved.

Plugins have been developed to integrate PMD source code

analyzer into IDEs, Ant and Maven build tools by third

parties. JPA, the tool built in this study, on the other hand

has its own graphical interface and also can store and

compare reports in its own database of projects. It has

fundamentally been developed to improve the user

experience in automating static code analysis. As a

standalone program, JPA only needs source code for code

analysis and does not require any IDEs or compilers. Since

JPA keeps the reports methodically in a database form it

can also be a useful tool in software testing development

process.

This study provides detailed information about PMD source

code analyzer and the tool built on PMD through its API’s.

Future studies may be done on automatic estimation for

deciding which rulesets to use in code analysis using

machine learning. Additionally, custom rule creation

process may also be studied for improvement in the future.

Furthermore, forthcoming updates and developments in

PMD may inspire similar studies, or new ideas under new

conditions that prevail at the time.

Bilge International Journal of Science and Technology Research, 2020, 4 (1), 31-42.

42

REFERENCES

Abdallah, M. M., & Al-Rifaee, M. M. (2017). Java

Standards: A Comparative Study. International

Journal of Computer Science and Software

Engineering, 6 (6), 146-151.

Aderhold, M., & Kochtchi, A. (2013). Tailoring pmd to

secure coding. Tech. Rep.

Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.

D., & Penix, J. (2008). Using static analysis to find

bugs. IEEE Software, 25 (5), 22-29.

Bajwa, M. S., Agarwal, A. P., Gupta, N. (2016) Code

optimization as a tool for testing software. 3rd

International Conference on Computing for

Sustainable Global Development, 961–967.

Carpenter, B., Chang, Y. J., Fox, G., Leskiw, D., & Li, X.

(1997). Experiments with ‘HP Java’. Concurrency:

Practice and Experience, 9(6), 633-648.

Galin, D. (2004). Software quality assurance: from theory

to implementation. India: Pearson Education.

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.,

Smith, D. (2018) The Java(TM) Language

Specification Java SE 11 Edition, Retrieved

November 14, 2018, from

https://docs.oracle.com/javase/specs/

Hall, S. P. & Anderson, E. (2009) Operating systems for

mobile computing. Journal of Computing Sciences

in Colleges, 25 (2), 64-71.

Jovanović, I. (2009) Software testing methods and

techniques. The IPSI BgD Transactions on Internet

Research, 5 (1), 30-41.

Johnson M. (2008) Code Optimization. Handout 20.

Karnavel, K., & Santhoshkumar, J. (2013, February).

Automated software testing for application

maintenance by using bee colony optimization

algorithms (BCO). In 2013 International Conference

on Information Communication and Embedded

Systems (ICICES), 327-330

Khan, M. E., & Khan, F. (2012). A comparative study of

white box, black box and grey box testing

techniques. International Journal of Advanced

Computer Science and Applications, 3 (6), 12-15.

Knuth, D. E. (1974). Computer programming as an art.

Communications of the ACM, 17(12), 667-673.

Kotlin (n.d.). Retrieved January 5, 2019, from

https://kotlinlang.org

Lins, F. M. (2017) The effects of the compiler

optimizations in embedded processors reliability.

MSc Thesis, Universidade Federal Do Rio Grande

Do Sul, Porto Alegre

Moreira, J. E., Midkiff, S. P., Gupta, M., Artigas, P., Wu,

P., & Almasi, G. (2001). The ninja project: Making

java work for high performance numerical

computing. Commun. ACM, 44(10), 102-109.

McConnell, S. (2004). Code complete (2nd ed.). Redmond,

Washington: Microsoft Press.

Merriam-Webster (n.d.). Retrieved November 15, 2018,

from https://www.merriam-

webster.com/dictionary/optimization

Nembhard, F., Carvalho, M., & Eskridge, T. (2017). A

hybrid approach to improving program security. In

2017 IEEE Symposium Series on Computational

Intelligence (SSCI) 1-8.

Palaniappan S. (2016) Recent trends and challenges in

source code optimization. International Journal of

Trend in Research and Development, 3(6), 603-607.

PMD (n.d.). Retrieved April 3, 2019, from

https://pmd.github.io/pmd-

6.5.0/pmd_rules_java.html

Sawant, A. A., Bari, P. H., Chawan, P. M. (2012). Software

testing techniques and strategies. International

Journal of Engineering Research and Applications

(IJERA), 2 (3), 980-986.

Scala (n.d.). Retrieved January 5, 2019, from

https://www.scala-lang.org

Singh, A. H., & Kazi, N. N. (2016) Software Testing

Mumbai: Himalaya Publishing House Pvt. Ltd.

Statcounter (n.d.). Retrieved November 15, 2018, from

http://gs.statcounter.com/os-market-share

Watson, M. (2017). Why Premature Optimization Is the

Root of All Evil. Retrieved January 3, 2019, from

https://stackify.com/premature-optimization-evil/

