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Abstract 

Critical thickness for one-group energy neutrons are determined for the triplet anisotropic-

scattering in plane geometry by using Legendre polynomials of PN method, and  Chebyshev 

polynomials of first type, TN method. Triplet anisotropic scattering is the fourth term of the 

scattering function. The neutron flux moments in the neutron transport equation comprises the 

Eigen function of the neutron flux. By solving the Eigen functions, the eigenvalues are obtained 

from Chebyshev polynomial solution. The resultant neutron flux equation composes of the Eigen 

function, Chebyshev polynomial term and the number of secondary neutrons “c”. The critical 

size of the system is found by the Mark boundary condition for different scattering types. The 

resultant critical thickness values are presented in the following tables. It is seen that our results 

are compatible with the existing literature. 
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1.Introduction 
The neutron transport equation is used for 

describing the behavior of the neutrons in a 

reactor core. The equation includes three 

variables for position vector, three variables 

for the velocity of neutrons and time 

variable. In totally the seven parameters 

constituted the general line of the neutron 

transport equation. Many solutions based on 

approximations about the geometry of the 

system, energy of the neutrons in the 

medium and time dependent or independent 

case have been suggested. [1-8].  

The critical thickness problem is an 

remarkable problem in the neutron transport 

theory. The problem can be taken into 

account for many views. The scattering 

function types are analyzed in this study.  
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The scattering function is related with the 

cosine angle of the scattering and the 

Legendre polynomials of first type. So the 

changing with the expansion of the 

Legendre is directly related with the 

scattering function and also the critical 

thickness. In this study the scattering 

function is expanded up to third term that is 

called as triplet anisotropic scattering (n=3). 

We aimed to represent the solubility of the 

neutron transport equation for triplet 

anisotropic scattering with the TN and PN  

methods. The calculations are done for a 

wide range of the number of secondary 

neutrons c. So the effect of the scattering 

function with different type of scatterings on 

the criticality problem can be examined by 

making this calculations. 

If one deals with the steady-state, one-speed, 

plane geometrical approximation, the 

equation takes the form of only two 

variables, one of them is the position which 

is represented by x, the other variable   is 

the cosine direction. Thus, the steady-state 

neutron transport equation for one-group 

energetic neutrons in plane geometry can be 

written as [8], 

 
     

1

1

,
, , ,

2

x c
x f x d

x

 
       




   

                (1) 

 

where  ,f   is the scattering function 

and defines the scattering probability of 

neutrons,   is the scattering direction, , 

 ,x   is the neutron flux at position x and 

direction  , the parameter c defined by the 

material cross sections as t f sc    , is 

the number of secondary neutrons per 

collision in which f  is the fission cross 

section and s  is the scattering cross 

section,   is the number of neutrons per 

fission. The scattering function in Eq. (1) 

can be written in terms of the Legendre 

polynomials [9] as 

 
 

 
0

, (2 1) ( ) ( )
N

n n n

n

f n f P P   


  
          

(2) 

 

where nf  is the scattering coefficient, and
 

( )nP   and ( )nP   are Legendre 

polynomials. Since the scattering function is 

defined as the probability of scattering, the 

summation of all these scatterings is equal to 

unity. That means the individual values of 

nf  is evaluated for every scattering 

situation.  

The first term (n=0) of Eq. (2) is defined as 

isotropic, the second term (n=1) is called as 

linear anisotropic scattering, the third term 

(n=2) is quadratic anisotropic scattering and 

the fourth term (n=3) is named as triplet 

anisotropic scattering. The probability of 

scattering coefficient is proportional to the 

multiplication of the  and which are 

( )nP  and ( )nP   

The Chebyshev polynomials first type is an 

attractive method to solve the neutron 

transport theory. Mika’s anisotropic 

scattering function can be easily applied to 

TN method. The effect of the high order 

anisotropic scattering on the critical 

thickness problem of the neutron transport 

theory is examined. 
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2. Solution Methods for Triplet 

Anisotropic Scattering in Neutron 

Transport Equation 

2.a. PN Method 

The angular flux in terms of the Legendre 

polynomials [10] are given by 

 
0

2 1
, ( ) ( )

2
n n

n

n
x x P   








 

(3) 

Legendre moments of the flux [3] are 

defined by
 

1

1

( ) ( ) ( , )n nx P x d    


                         (4) 

The scattering function in Eq. (2) for triplet 

anisotropic scattering is given as, 

 

 

 

  0 0 0 1 1 1 2 2 2 3 3 3, ( ) ( ) 3 ( ) ( ) 5 ( ) ( ) 7 ( ) ( )f f P P f P P f P P f P P                

          
(5) 

 

If one replaces Eq. (3) into Eq. (1) with the definition of the Legendre moments, then one gets  

 

 0 0 0 1 1 1 2 2 2 3 3 3

( , )
( , ) ( ) ( ) 3 ( ) ( ) 5 ( ) ( ) 7 ( ) ( )

2

x c
x P f x P f x P f x P f x

x

 
          


    
        

(6) 

 

Using the Eq. (6) with the orthogonality and recurrence relation of the Legendre polynomials of 

first kind, respectively [11].

 

1

1

0
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m n

m n

P P d
m n

n

  




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    1 1

1
1 ( ) ( )

2 1
n n nP n P nP

n
          

           
(8) 

 

One obtains the  nP  moments ( )n x in general form as  

 

  1 1
0 1 2

3

( ) ( )
1 (2 1)(1

) ( ) 0, 0,1,2,....,

n n
n n n n n n

n n n

d x d x
n n n cf cf cf

dx dx

cf x n N

 
  

 

       

  

          (9) 

 

Here, the Kronecker delta is 

1,

0,
nm

n m

n m



 


. In order to obtain the 

eigenvalue spectrum, a well-known solution 

for the homogeneous Eq. (9), is employed, 

of the form  [12]   

/( ) ( ) x v

n nx A v e 
                                 

 (10) 

in which nA  are the Eigen functions 

corresponding to eigenvalues, v . The Eigen 

functions of the flux function are taken into 

account in the equation of criticality depend 

on the discrete eigenvalues v , c and fn. After 

replacing Eq. (10) in Eq. (9), one finds the 

eigenvalues in the triplet anisotropic 

scattering. Then, one can write the system of 

equations for ( )nA v  as follows
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       1 0 0( ) ( )(1 )A v vA v cf 
                              (11)
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3
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7 ( )(1 ) 3 ( )
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4
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A v
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An equality corresponding to the forms of ( )nA v  through Eq. (11-14) can be written as  

1 1 0 1 2

3

( 1) ( ) ( ) (2 1)(1

) ( ) 0, 0,1,2,...,

n n n n n n n n

n n n

n A v nA v n cf cf cf

cf vA v n N

  



       

  
 (15) 

 

As seen in Eq. (15), the solution of 

1( ) 0A v  and 0 ( ) 1A v   One can obtain the 

discrete and continuum v eigenvalues by 

setting 1( ) 0,nA v  for various values of c 

and  fn . The roots of the eigenvalue is found 

from the solving of Eq. (15) for any iteration 

of PN+1 (v)=0 for Legendre polynomials and 

TN+1 (v)=0 for the first type of the 

Chebyshev polynomials solution. If c=1, 

then one pair of roots is imaginary (±∞i), 

other pairs are in the range [-1, +1]. If 

0<c<1, then all roots are imaginary but one 

pair of them is greater than 1. If c>1, then 

one pair of roots are pure imaginary, and the 

other pairs are in the range [-1, +1]. After 

obtaining the discrete eigenvalues, the 

general solution of the flux moments in Eq. 

(15) can be written by  

1

2
/ /

1

( ) ( ) ( 1) ( 1) / 2 ( 1)k k

N

x v x vn

n k n k

k

x A v e e N k N 







                    (16) 

 

for odd numbers of N. Here, k   are the 

coefficients as results of linear combinations 

of the solutions corresponding to each kv , 

and they are determined by the boundary 

conditions of the system where parity 

relation is used as ( ) ( 1) ( )n

n nA v A v   . 

Thus, the general solution to Eq. (1) is 

obtained by replacing Eq. (16) into Eq. (6). 

Finally, one writes  

   
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 

 
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 
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2.b.TN Method 

The angular flux defined in terms of first type Chebyshev polynomials [13] is given as  

0
0

2 2
1

( ) 2
( , ) ( ) ( ) ( )

1 1

N

n n

n

x
x T x T


    
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 
 

                                   (18) 

where ( )nT   is the first type Chebyshev polynomial and ( )n x  is called as the flux moment. Eq. 

(18) is replaced in Eq.(1) and one gets  
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In Eq. (19), we consider the triplet anisotropic scattering case in scattering function as shown in 

Eq. (3). When the scattering function is substituted into Eq. (19), 
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 
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 
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For the first type Chebyshev polynomial, the recursion relation is given as  

(21)      

and the orthogonally relation is defined as  

1

2 1/2

1

0,

( ) ( )(1 ) / 2, 0
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


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
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 (22) 

Using Eq. (21) and Eq. (22) in Eq. (20), one can obtains the TN moments of the angular flux 

( )n x  as followings: 

1
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dx dx

d x d x
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dx dx


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
 

 
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 
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   
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                                    (23) 

Since the solution of recursion equations gives the flux moments, then a general expression can 

be given in the solution of the recursion equations  

( ) ( )exp( / )n nx G v x v        (24) 

Using Eq. (24 ) in Eq. (23) to obtain the values of ( )nG v , the eigenfunctions of the flux moments 

and then the eigenvalues v can be found:  

1 1( ) 2 ( ) ( ) 0n n nT T T      
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The eigenvalues can be found by 1( ) 0nG v 

. In the T1 approximation, the eigenvalues 

are determined by solving 2 ( ) 0G v  . The 

coefficients of the eigenfunctions generate a 

(N+1)×(N+1) square matrices, and produces 

a column vector of  0 1 2, , , , ,
T

NG G G GG . 

In TN approximation, there are N+1/2 

eigenvalues of kv , where 1,..., 1k N   

roots are used to find the flux moments. One 

obtains the equation of general solution for 

odd N values as 

 
1

2

1

( ) ( ) exp( / ) ( 1) exp( / ) 1,...,
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                      (26) 

where the parity rule is used as ( ) ( 1) ( )n

n k n kG v G v   , and k  values are determined by using 

the boundary condition. Finally, one writes the flux function as  
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2.c. Criticality Condition 

The purpose in the solution of the neutron 

transport equation is to get a relation 

between the criticality problem and the 

number of secondary neutrons “c”. This 

paper focuses on the cases where c>1. Eq. 

(17) is the result of PN method. By using the 

Mark boundary condition, half-slab 

thickness is obtained. Mark used the concept 

of the continuity of the angular flux, which 

implies the continuity of all the angular 

moments of the neutron flux across the 

boundaries surrounded by the vacuum, and 

showed that is condition is equivalent to 

zero incoming angular flux at the boundaries 

for the specific values of μ. Here, we use the 

Mark type boundary condition [14]  is 

                       

( , ) 0, ( 1) / 2 ( 1)ka N k N                                           (28) 

 

where k  are the roots of the Legendre 

polynomials found from 1( ) 0N kP   . The 

criticality equation can now be obtained for  

 

PN method by using Eq. (17) in the Eq. (28) 

as following:  
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The critical thickness equation for the first type Chebyshev polynomials TN method in Eq. (27) 

can be written by using the Mark boundary condition into Eq. (28) as 

 

 

   

1/2
0

0
2

1

1/2

2
1 1

( )
( , ) ( ) 2 cosh( )

1

2
( ) 1 ( 1) cosh( ) 1 ( 1) sinh( ) ( )

1

N
k

k k k

k kk

N N
n n

k n k n k

n k k kk

T a
a G v

v

a a
G v T

v v


  

 

 
 







 

 
  

  

 
      

  



 

          (30) 

 

One can also write the Eq. (29) and Eq. (30) 

in a matrix form given by 
 k( ) B 0k

mM a     

where Bk is a vector with elements k  and 

( )k

mM a    is a square matrix with elements 

of 
 

2
( 1) / 2N 

. The matrix 
( )k

mM a    has a 

determinant which must be equal to zero for 

the criticality condition for a nontrivial 

solution of Eq. (29) and Eq. (30). So the 

critical thickness can be found by solving 

the  Eq. (29) for PN method and Eq. (30) for 

TN method. 

 

 

3. Results and Discussion 

The neutron transport equation is solved to 

obtain the critical thickness of a slab reactor 

for the TN and PN method with the triplet 

anisotropic scattering by using the Mark 

boundary condition. The resultant criticality 

equations are showed in Eq. (29) for PN 

method and in Eq. (30) for TN method. It is 

known that the scattering function is 

between zero to one and related with the 

cosine angle  0 1,1   . For this reason, the 

scattering coefficients are determined 

according to the rule. When we analyzed the 

scattering function for triplet anisotropic 

scattering the scattering coefficients are 

obtained as f1=0.3 for linear anisotropic; 

f2=0.2 for quadratic anisotropic and f3=0.142 

for triplet anisotropic scatterings, 

respectively, [15], [16].  

As seen in Table 1, the critical thickness is 

calculated with PN method for triplet 

anisotropic scattering. It is seen that the 

critical thickness values decrease as the c 

value increases. In Tables 2,3, 4 and 5 the 

secondary neutron number is fixed for 1.01, 

1.1, 1.5, and 2.0 respectively. The critical 

thickness is calculated for different 

scattering types. As it can be noted that the 

critical thickness decreases gradually as the 

c value changes from 1.01 to 2.0 in each 

scattering, for the 13
th

 order (See the last 

column in each Table): Legendre 

polynomial have solutions up to thirteenth 

order and the convergence is up to three 

digits in our results.  
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Table 1. Critical half-thickness for triplet anisotropic scattering in PN method 

c P1 P3 P5 P7 P9 P11 P13 

1.01 10.0384 9.82526 9.81031 9.80604 9.80423 9.80329 9.80222 

1.05 4.07718 3.83286 3.81531 3.81064 3.80868 3.80767 3.80709 

1.10 2.68134 2.43080 2.40904 2.40381 2.40166 2.40057 2.39994 

1.20 1.71227 1.47377 1.44256 1.43586 1.43331 1.43203 1.43130 

1.40 1.05213 0.85271 0.80956 0.79860 0.79482 0.79310 0.79216 

1.60 0.77486 0.60774 0.56201 0.54761 0.54214 0.53972 0.53847 

1.80 0.61747 0.47453 0.43025 0.41419 0.40734 0.40410 0.40242 

2.00 0.51481 0.39021 0.34864 0.33215 0.32447 0.32055 0.31843 

 

Table 2. Critical half-thickness for different scattering types for c=1.01 

Scattering types P1     P3 P5 P7 P9 P11 P13 

Isotropic 8.49356 8.34635 8.33616 8.33309 8.33175 8.33104 8.33064 

Lin.ans. 10.0384 9.83575 9.82133 9.81695 9.81505 9.81404 9.81297 

Pure quadratic 8.49356 8.34750 8.32548 8.32258 8.32133 8.32068 8.32032 

Quadratic 10.0384 9.82195 9.80846 9.80378 9.80201 9.80109 9.80012 

Pure triplet 8.49356 8.34868 8.33784 8.33466 8.33329 8.33257 8.33214 

Triplet 10.0384 9.82526 9.81031 9.80604 9.80423 9.80329 9.80222 

 

Table 3. Critical half-thickness for different scattering types for c=1.1 

Scattering types P1     P3 P5      P7 P9 P11 P13 

Isotropic 2.30869 2.13534 2.12100 2.11734 2.11580 2.11501 2.11454 

Lin.ans. 2.68134 2.44941 2.43108 2.42613 2.42402 2.42292 2.42227 

Pure quadratic 2.30869 2.11492 2.09910 2.09586 2.09383 2.09305 2.09260 

Quadratic 2.68134 2.42299 2.40329 2.39831 2.39624 2.39517 2.39455 

Pure triplet 2.30869 2.14065 2.12481 2.12097 2.11938 2.11857 2.11809 

Triplet 2.68134 2.43080 2.40904 2.40381 2.40166 2.40057 2.39994 

 

Table 4. Critical half-thickness for different scattering types for c=1.5 

Scattering types P1 P3 P5     P7 P9 P11 P13 

Isotropic 0.78001 0.64949 0.62089 0.61223 0.60904 0.60762 0.60686 

Lin.ans. 0.89092 0.71651 0.68261 0.67284 0.66925 0.66759 0.66689 

Pure quadratic 0.78001 0.63423 0.59956 0.58880 0.58483 0.58311 0.58222 

Quadratic 0.89092 0.69594 0.65485 0.64278 0.63840 0.63646 0.63544 

Pure triplet 0.78001 0.65802 0.62654 0.61727 0.61389 0.61240 0.61161 

Triplet 0.89092 0.70879 0.66356 0.65065 0.64603 0.64399 0.64292 

 

 

In literature, the critical thickness of slab is 

determined for strongly anisotropic 

scattering by C. Yildiz [16]: There, the 

solutions are found up to fifteenth order by 

PN method, and the convergence is obtained 

up to three digits. 
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Table 5. Critical half-thickness for different scattering types for c=2.0 

Scattering types P1 P3 P5 P7 P9 P11 P13 

Isotropic 0.45343 0.36197 0.33477 0.32350 0.31817 0.31545 0.31396 

Lin.ans. 0.51481 0.39320 0.36065 0.34775 0.34184 0.33887 0.33728 

Pure quadratic  0.45345 0.35219 0.32014 0.30656 0.29993 0.29647 0.29455 

Quadratic 0.51481 0.38020 0.34204 0.32651 0.31919 0.31543 0.31338 

Pure triplet 0.45345 0.36889 0.33939 0.32745 0.32186 0.31902 0.31748 

Triplet 0.51481 0.39021 0.34864 0.33215 0.32447 0.32055 0.31843 

 

In Table 6, the critical thickness values are 

tabulated for TN method. As the iteration 

order is increased, the critical thickness 

converges to a certain value (See the last 

coloumn.)  

 

 

Table 6. Critical thickness for triplet anisotropic in TN method 

c T1 T3 T5 T7 T9 T11 T13 

1.01 12.2945 9.82545 9.81274 9.80669 9.80455 9.80344 9.80074 

1.05 4.99350 3.83626 3.81813 3.81133 3.80902 3.80783 3.80682 

1.1 3.28396 2.43973 2.41233 2.40456 2.40202 2.40073 2.39960 

1.2 2.09710 1.49057 1.44695 1.43674 1.43371 1.43220 1.43088 

1.4 1.28859 0.87401 0.81617 0.80005 0.79539 0.79331 0.79151 

1.6 0.94900 0.62832 0.56968 0.54973 0.54300 0.54003 0.53764 

1.8 0.75624 0.49340 0.43808 0.41676 0.40849 0.40457 0.40166 

2.0 0.63051 0.40733 0.35623 0.33494 0.32584 0.32119 0.31799 

 

Table 7 Critical thickness for different scattering types in TN method 

c Scattering types T1 T3     T5 T7 T9 T11 T13 

1.0

1 

Isotropic 10.4024 8.34422 8.33808 8.33356 8.33203 8.33118 8.33046 

Lin.ans. 12.2945 9.83830 9.82369 9.81770 9.81542 9.81425 9.81213 

Quadratic 12.2945 9.82396 9.81017 9.80448 9.80236 9.80128 9.79875 

Triplet 12.2945 9.82545 9.81274 9.80669 9.80455 9.80344 9.80074 

1.1 

Isotropic 2.82755 2.13832 2.12361 2.11786 2.11613 2.11516 2.11441 

Lin.ans. 3.28396 2.45749 2.43397 2.42694 2.42443 2.42314 2.42205 

Quadratic 3.28396 2.43288 2.40625 2.39912 2.39664 2.39539 2.39429 

Triplet 3.28396 2.43973 2.41233 2.40456 2.40202 2.40073 2.39960 

1.5 

Isotropic 0.95531 0.66222 0.62600 0.61348 0.60968 0.60787 0.60653 

Lin.ans. 1.09115 0.73503 0.68794 0.67439 0.66991 0.66792 0.66623 

Quadratic 1.09115 0.71887 0.66123 0.64473 0.63919 0.63684 0.63484 

Triplet 1.09115 0.72998 0.670849 0.65246 0.64674 0.64425 0.64216 

2.0 

Isotropic 0.55536 0.37316 0.34007 0.32546 0.31926 0.31596 0.31391 

Lin.ans. 0.63051 0.40888 0.36644 0.35011 0.34297 0.33946 0.33697 

Quadratic 0.63051 0.39892 0.34877 0.32944 0.32060 0.31619 0.31310 

Triplet 0.63051 0.40733 0.35623 0.33494 0.32584 0.32120 0.31799 
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In Table 7, four different scattering types are 

shown for different values of c changing 

from 1.01 to 2.0 in TN method. As seen, the 

critical thickness converges to a certain 

value as the coefficient term in the series is 

increased from f0 (for isotropic scattering) to 

f3 (for triplet scattering). 

In literature, there are solutions of the 

critical thickness in the plane geometry for 

the triplet anisotropic scattering by FN 

method, obtained by R. G. Türeci [17] (as 

shown in Table 8). 

Our results of pure triplet anisotropic 

scattering are compared with the reference 

R. G. Türeci [17]. It is found that both 

methods of our pure triplet anisotropic 

scattering are consistent with the R. G. 

Türeci [17]. The number of secondary 

neutrons c is increased from 1.1 to 2.0 by 

~0.2 steps. Corresponding critical thickness 

values for each c value is compared with the 

reference. Table 8 shows that values are 

similar with the results of the reference. 

 

Table 8. Critical thickness (2a) results for pure triplet anisotropic scattering with Ref. [17]. 

c PN Method TN Method R. G. Türeci [17] 

1.1 4.23866 4.23925 4.24309 

1.3 1.89152 1.89230 1.89248 

1.5 1.22764 1.22880 1.22529 

1.7 0.90406 0.90567 0.89865 

2.0 0.64361 0.64574 0.63220 

 

4.Conclusions 

In this study, PN and TN methods are 

compared for different scattering types to 

calculate the critical (half)-thickness of the 

slab reactor. As a different approach, we 

present our results for different scattering 

types changing from isotropic to triplet 

anisotropic in a single paper: All 

calculations have been done simultaneously 

and presented in independent Tables for 

different values of c parameter. The neutron 

scattering function has been enlarged up to 

f3 which is called as triplet anisotropic 

scattering. It is shown that the TN and PN 

methods can be used to solve criticality 

problem for the triplet anisotropic scattering 

case. The critical thickness values obtained 

from the solution of present methods are 

close to the FN results given in Table 8. 

It is well known that the analytical solution 

for this type of scattering needs great 

importance: The equation to be solved 

becomes more complicated because the 

scattering function now has more numbers 

of terms. First, the eigenvalues of the 

neutron transport equation are found for 

both methods with the triplet anisotropic 

scattering. Then the results are placed in the 

neutron flux equation for finding out the 

critical thickness of the system. Because the 

Legendre polynomials provide suitable and 

rapid results to find the critical half-

thickness of the system, we first present the 

results of the PN method for the triplet 

anisotropic scattering. Then, the procedure 

is repeated for the TN method. In these 

calculations for critical half-thickness, many 

types of scattering are used in the methods 

separately. 

It is clear that the critical half-thickness 

decreases as the c value increases. The 

deviation among each scattering coefficient 

is considerably decreasing by increasing the 

order of anisotropic scattering. As the 

number of order is increased, the critical 

thickness results are converging as expected.  

It is seen in the Table 1-7 that both methods 

are found to be consistent. Finally, results 

for the pure triplet anisotropic scattering are 

compared with the reference R. G. Türeci 

[17] and found to be in good agreement. It is 

thought that the comprehensive and 

comparative results of all scattering types 

provided in this study may offer a good 
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source for future studies and/or other 

researchers. 
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