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Abstract- Batch experimental technique was employed to evaluate the effects of adsorption variables such as initial metal ion 
concentration, adsorbent dose, pH, and contact time on the sorption efficiency of Pb(II) and Mn(II) ions onto acid activated shale. 
To select the input variables with the highest significant contributions towards the sorption of Pb(II) and Mn(II) ions onto acid 
activated shale, adaptive neuro-fuzzy (ANFIS) was employed. Thereafter, statistical design of experiment (DOE) using central 
composite design was used to generate the data for modelling and prediction using a modular neural network (MNN). To produce 
accurate network architecture for prediction, the input data were first normalized to avoid the problems of weight variation. 
Thereafter, different training algorithm and hidden neurons were selected and tested to ascertain the optimum number of hidden 
neuron and the best training algorithm that will produce the most accurate network.  The linear coefficient of determination in 
addition to the mean square error for training and cross- validation was employed as the selection criteria. Results obtained shows 
that, Levenberg Marquardt Back Propagation training algorithm with 2 hidden neurons in the input and output layer with tangent 
sigmoid transfer function produced the most accurate prediction network. In addition, the modular neural network gave a strong 
agreement between the experimental and predicted sorption efficiency of Pb(II) and Mn(II) ions with R2 values of 0.977 and 
0.9648 having performance statistics of RMSE (0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041) and R2 
(0.988).  

Keywords: Modular neural network, sensitivity analysis, Response surface methodology, central composite design, Adaptive 
neuro-fuzzy inference system 

Özet- Başlangıç metal iyonu konsantrasyonu, adsorban dozu, pH ve temas süresi gibi adsorpsiyon değişkenlerinin Pb (II) ve Mn 
(II) iyonlarının asitle aktifleştirilmiş şeyl üzerindeki sorpsiyon verimliliği üzerindeki etkilerini değerlendirmek için seri deneysel 
teknik kullanılmıştır. Asit aktive edilmiş şeyl üzerine Pb (II) ve Mn (II) iyonlarının sorpsiyonuna en önemli katkıları olan girdi 
değişkenlerini seçmek için adaptif nöro-bulanık (ANFIS) kullanılmıştır. Daha sonra, modüler bir sinir ağı (MNN) kullanılarak 
modelleme ve tahmin için veri üretmek üzere merkezi kompozit tasarım kullanılarak deney (DOE) istatistiksel tasarımı 
kullanıldı. Tahmin için doğru ağ mimarisi üretmek üzere, giriş verileri önce ağırlık değişimi problemlerinden kaçınmak için 
normalleştirilmiştir. Daha sonra, optimum gizli nöron sayısını ve en doğru ağı üretecek en iyi eğitim algoritmasını belirlemek 
için farklı eğitim algoritması ve gizli nöronlar seçildi ve test edildi. Seçim kriterleri olarak eğitim ve çapraz validasyon için 
ortalama kare hataya ek olarak, doğrusal belirleme katsayısı kullanılmıştır. Elde edilen sonuçlar, teğet sigmoid transfer 
fonksiyonu ile giriş ve çıkış katmanında 2 gizli nöron içeren Levenberg Marquardt Geri Yayılım eğitim algoritmasının en doğru 
tahmin ağını ürettiğini göstermektedir. Ek olarak, modüler sinir ağı, R2 değeri 0.977 ve 0.9648 R2 arasında olan ve RMSE 
(0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041) ve R2 (0.988) performans istatistiğine sahip Pb (II) ve Mn 
(II) iyonlarının deneysel ve tahmin edilen sorpsiyon verimliliği arasında güçlü bir uyum sağlamıştır. 
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Anahtar Kelimeler Modüler sinir ağı, duyarlılık analizi, yanıt yüzeyi metodolojisi, merkezi kompozit tasarım, uyarlanabilir 
nöro-bulanık çıkarım sistemi. 
 

1. Introduction 

Environmental pollution caused by the discharge of untreated 
effluents containing toxic metals such as lead, chromium, and 
manganese has become an issue of concerned and have 
developed into a widely studied area (1).  Unlike organic 
pollutants, the majority of which are susceptible to biological 
degradation, heavy metals will not degrade into harmless end 
products, and their presence in streams and lakes leads to 
bioaccumulation in living organism, causing health problems 
in animals, plants and human beings (2). 
Some conventional processes have been developed over the 
years to remove these heavy metals from water and 
wastewater they include; solvent extraction, chemical 
precipitation, ion exchange process, electrolytic precipitation, 
and reverse osmosis (3).  
However, these physicochemical processes possess 
significant limitations of being highly expensive, 
sophisticated and environmentally disruptive, requiring the 
input of external chemical additives or energy. In addition, 
some of these conventional process especially electrolytic and 
chemical precipitations generate concentrated sludge or 
another kind of waste that must be properly disposed to avoid 
further damage to the environment (4, 5).  
Adsorption is an alternative technology for metal separation 
from aqueous solutions. With the selection of a proper 
adsorbent, the adsorption process can be a promising 
technique for the removal of certain types of contaminants 
including heavy metals (6). However, since the adsorption 
process is influenced by different variables which are not 
linearly related, traditional method of data generation and 
processing are no longer suitable in solving adsorption related 
issues such as determination of optimum values of adsorption 
variables and prediction of sorption efficiency of metal ions 
on porous solid adsorbent. 
In recent years, statistical design of experiment (DOE) and 
artificial neural network (ANN) has been successfully 
employed to optimize and predict the sorption efficiency of 
divalent metals on different adsorbents such as zeolite (7), 
electric arc furnace slag (8), sunflower powder (9), Zea Mays 
(10), Aspergillus terreus biomass (11). In their various studies, 
the authors generated large volume of experimental data using 
statistical design of experiment employing either the 2-level 
factorial design or the full factorial central composite design. 
The experimental data were then used as input data for ANN 
modelling from which 60% was employed for training the 
network, 20% was used for validating the network and the 
remaining 20% was employed for testing the network.  
Although, artificial neural network (ANN) are one of the many 
machine learning tools that are capable of performing the task 
of modeling and prediction of experimental data, the large 
amount of dimensionality both in terms of the number of 
features the data has, as well as the number of rows of data the 
network is to handle tends to increase the required training 
circle and time thereby reducing the accuracy of prediction 
(12). Following this, modular neural network (MNN) was 

employed since they represent a special class of multi- layer 
perceptron neural network (MLP) which process their input 
using several parallel MLPs and then recombine the results 
thus creating some structure within the network topology 
which will foster specialization of function in each sub-
module. This tends to speed up the learning rate, training times 
and reduce the number of required training circle thereby 
producing a more accurate result.  
Shale was used as adsorbent for this study because it is a fine-
grained particle. The size of its particles gives it the needed 
high surface area for metal ion adsorption. 
     
2. Brief description of modelling, optimization and 

prediction techniques 

2.1. Adaptive Neuro-fuzzy Inference Systems  

The complexity of real life problems require modern methods 
for the construction of knowledge systems that can be used in 
the solution to such problems. The search for systems that can 
solve increasingly complex problems has initiated research in 
a number of scientific fields, especially Hybrid Intelligent 
Systems. This area tends to combine different techniques of 
learning and adaptation to overcome their individual 
challenges. One of such hybrid system is Neuro-Fuzzy 
approach that can learn from the environment and then reason 
about its state. Adaptive Neuro-fuzzy systems constitute an 
intelligent hybrid technique that combines fuzzy logic with 
neural networks in order to have better results. While the 
learning capability is an advantage provided by artificial 
neural network, the formation of a linguistic rule base is an 
advantage provided by the fuzzy inference system. 

2.2. Response Surface Methodology 

Response surface methodology (RSM) is an array of statistical 
and mathematical techniques, employed for developing, 
modelling and analyzing processes in which several variables 
influenced a response of interest and the main objective is to 
optimize the response (13). They are used in industries to 

i.  Explore the relationship between a response variable 
and several input variables 

ii.  Determine the optimal settings of the variables, and  

iii. Optimize the process.  

They are mostly applied in situations where there are many 
input variables that may influence one or more response 
variables and are used to develop an empirical model 
commonly called response surface (14, 15). Response Surface 
Methodology (RSM) allows you to specify and fit a 
polynomial model up to second order and provides an option 
to include a block variable when the need arises. 
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2.3. Modular Neural Network 

Modular feed forward networks are a special class of multi-
layer perceptron neural network (MLP). These networks 
process their input using several parallel MLPs, and then 
recombine the results. This tends to create some structure 
within the topology, which will foster specialization of 
function in each sub-module. In contrast to the MLP, modular 
networks do not have full interconnectivity between their 
layers. Therefore, a smaller number of weights are required 
for the same size of network. This tends to speed up training 
times and reduce the number of required training circles. 

3. Research Methodology 

3.1 Collection and Preparation of Adsorbent 

Shale was collected from its deposit at Okada the 
administrative headquarter of Ovia North East Local Govt. 
Area of Edo State, Nigeria. First, it was soaked in a plastic 
containing 5% hydrogen peroxide to remove any 
carbonaceous matter that can interfere with the metal 
adsorption capacity of the shale. Thereafter, it was washed 
with distilled water to remove any water soluble impurities 
before been dried in hot air oven at 50-70°C for 8 hours. The 
dried shale was then reduced to fine and sieved using sieve 
size of 212µm before use (16, 17). 

For acid activation, 500g of the dried sieved shale mineral was 
placed in a furnace at a temperature of 550 OC for 10 hours. 
200 g of the calcinated shale mineral was then mixed with 1 
liter 0.25M sulphuric acid, the mixture was heated at 105°C 
for 30 minutes. After slow cooling, the slurry was filtered and 
washed free of acid using distilled water as indicated by a pH 
meter. The shale was dried at a temperature of 100°C for 30 – 
45 minutes, ground using mortar and pestle, sieved to 212 µm 
and stored in a desiccator to cool before use (1) 

3.2  Characterization of adsorbent 

3.2.1. Analysis of Microstructures 

The microstructure of shale was analyzed using scanning 
electron microscopy (APEX 3020 PSEM 2) to give adequate 
information about its morphology and topological 
presentations. Such presentations provided possible 
explanations of the solid behaviour (18). 

3.2.2.  Chemical composition 

The chemical composition of shale was studied using X-Ray 
Fluorescence (XRF) APEX 3022. Chemical digestion of the 
solid adsorbent was done as follows:  (1:1) mixture of 0.025M 
solution of hydrochloric acid and Nitric acid was prepared. A 
mixture of (1:10) of the solid adsorbent to acid solution was 
obtained and stir for 30 minutes. The solution was filtered and 
the filtrate was used for the analysis (19). 

 

 

3.3 Preparation of aqueous solution 

All the chemicals used in this research were analytical grade. 
Stock solution of lead and manganese were prepared by 
dissolving accurate quantities of lead (II) nitrate [Pb (NO3)2], 
manganese (II) chloride tetrahydrate (MnCl2,4H2O) in one 
liter of distilled water. All working solutions were obtained by 
diluting the stock solution with distilled water and the 
concentration of metal ion present in solution was analyzed by 
Atomic Absorption Spectrophotometer. A duplicate was 
analyzed for each sample to track experimental error and show 
capability of reproducing results. The pH of the solution was 
adjusted to the desired values for each experiment with drop 
wise addition of 1M HNO3 or 1M NaOH. 

3.4 Adsorption studies 

Adsorption study was carried out to determine the effect of 
pH, adsorbent dose, adsorption temperature, contact time and 
initial metal ion concentration using batch adsorption 
technique. The adsorption experiment were performed at 
different variable range as follows; pH (2, 4, 6, 8, and 10), 
adsorbent dose (0.2, 0.4, 0.6, 0.8 and 1.0g), contact time (20, 
40, 60, 80, 100, and 120 minutes), adsorption temperature 
(288, 293, 298, 303 and 308K) and different initial metal ion 
concentration. A 250ml conical flask containing the adsorbent 
and 50ml aqueous solution of the metal was agitated at 
150rpm using a mantle fitted with magnetic stirrer. The pH 
values of the aqueous solutions were kept at the optimum for 
each heavy metal. 

The separation of the adsorbent and aqueous solution of heavy 
metals was carried out by filtration with 150mm whatman 
filter paper and the filtrates were stored in sample cans in a 
refrigerator prior to analysis. The residual metal ion 
concentration were also determined using an Atomic 
Absorption Spectrophotometer (AAS) 

The amount of heavy metal ions removed during the series of 
batch investigation was determined using the mass balance 
equation of the form; (20). 

   
[ ]eCC

m
vq −= 0                                                      (3.1) 

 

Where: q, defines the metal uptake (mg/g); C0 and Ce: are the 
initial and equilibrium metal ion concentrations in the aqueous 
solution [mg/l] respectively; V: is the aqueous sample volume 
(ml) and m: is the mass of adsorbent used (g). The efficiency 
of metal ion removal (%) was calculated using the mass 
balance equation of the form; 

Efficiency (%) = 







×

− 100
0

0

C
CC e                 (3.2) 

 
Where: C0 and Ce are the metal ion concentrations (mg/l) in 
aqueous solution before and after adsorption respectively.  
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3.5  Data generation using design of experiment (DOE) 

The range and levels of the experimental variables used  for 
the design are presented in Table 3.1 and 3.2  
 
3.5.1 Screening of experimental variables using Anfis 
 
Adsorption of Pb(II) and Mn(II) ions onto shale is influenced 
by numerous adsorption variables such as; adsorption 
temperature, pH, adsorbent dose, contact time and initial metal 
ion concentration. To optimize the adsorption process, there 
was need to first screen the variables so as to select those 
variables with the highest significant effects on the overall 
process of adsorption.  

To perform the variable screening, design of experiment 
(DOE) was done to generate the input data while adaptive 
neuro-fuzzy inference systems (ANFIS) was employed to 
train a fuzzy inference systems (FIS) structure which was 
thereafter employed to screen the variables based on there 
error variance. Variables with the least error variance were 
selected as the most significant variables. To train the fuzzy 
inference systems (FIS) structure, 25-level factorial design of 
experiment with two replicates, one block and four center 
points resulting to seventy two (72) experimental runs based  
 
 

 
Table 3.1: Levels of independent variables for Pb(II) ion adsorption 

 

 
 

Table 3.2: Levels of independent variables for Mn(II) ion adsorption 

 
 
 
on Pb(II) ion adsorption onto shale was used to generate the 
input data for which 60% was used for training, 25% for 
validation, and 15% for checking. An error tolerance of 0.5, 
40 epochs and a hybrid method of optimization were selected 
to improve the performance of the FIS structure. The initial 
model parameters required for training a fuzzy inference 
systems (FIS) structure were sub-divided into 
 

1. input_ name (data set generated from 25-level 
factorial design of experiment) 

2. trn_data (60% of input_name) 
3. chk_data (40% of input_name) 

The data were then presented to MATLAB as presented in 
figure 3.1a  
 

 
Figure 3.1a: Anfis input data format 

 
The initial input parameters were then subdivided into training 
and checking data as presented in figure 3.1b 
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Figure 3.1b: Subdivision of training and checking data 
     
 Training of data set allows you to check the 
generalization capability of the resulting fuzzy inference 
systems (FIS). To perform the data training, the program 
presented in figure 3.1c was employed 

 

 
Figure 3.1c: Anfis training program 
 
To find the single and combine adsorption variable(s) with the 
highest significant contributions, the program in figure 3.1d 
was employed 
 

 

Figure 3.1d: Anfis search program 
 
 
For Mn(II) ion adsorption onto shale, 2n-1-level factorial 
design of experiment with one replicates, one block and four 
center points resulting to twenty experimental runs was 
employed to generate the input data which were first validated 
using the trained FIS structure for Pb(II) ion adsorption before 
been modeled for the variable screening process. 
 
 
3.5.2 Adsorption process optimization using RSM 
 
For Pb(II) ion adsorption, different initial metal ion 
concentration of 5 – 25mg/l, varied adsorbent dose of 0.2 – 
1.0g, different pH of 2 – 10 and different contact time of 24 – 
120mins for a constant adsorption temperature of 27±20C was 
used. For Mn(II) ion adsorption, different initial metal ion 
concentration of 4 – 20mg/l, varied adsorbent dose of 0.2 – 
1.0g, different pH of 2 – 10 and different contact time of 24 – 
120mins for a constant adsorption temperature of 27±20C was 
used. These variables were coupled together and varied 
simultaneously to cover the combination of parameters 
proposed by the CCD. The level and ranges of the selected 
variables were randomized using design expert software. A 
full factorial CCD design comprising of sixteen factorial 
points, eight axial points and six replicates at the center point 
resulting in a total of 30 experimental runs as shown in Table 
3.2a and 3.2b was employed to optimize the selected variables

 
Table 3.2a: Central composite design matrix showing coded and real variables with observed and predicted Pb(II) ion 
adsorption onto acid activated shale 
 

Experimental 
Runs 

Coded Values of Variables Real Values of Variables  Pb(II) Sorption Efficiency 
(%) 

X1 
(mg/l) 

X2 
(pH) 

X3 
(g/l) 

X4 
(mins) 

X1 (mg/l) X2 (pH) X3 (g/l) X4 (mins) Observed RSM 
Predicted 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

+2 
-1 
-2 
+2 

0 
0 
0 
0 
0 
0 

+1 
0 

+2 
0 
0 
0 
0 
0 

+2 
+2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
-2 
+2 
0 
0 
0 
-2 
+2 

0 
0 
0 
0 
0 
0 
0 

+2 
0 
0 
0 
-2 
0 
0 

+2 
-2 

 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 15.000 
 25.000 
 10.000 
 5.0000 
 25.000 

 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 8.000 
 6.000 
 10.00 
 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 10.00 
 10.00 

 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.200 
 1.000 
 0.600 
 0.600 
 0.600 
 0.200 
 1.000 

 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 120.00 
 72.000 
 72.000 
 72.000 
 24.000 
 72.000 
 72.000 
 120.00 
 24.000 

   88.6 
 88.8 
 87.9 
 88.7 
 88.7 
 88.7 
 89.6 
 54.6 
 68.7 
 76.3 
 79.1 
 71.5 
 72.6 
 86.7 
 87.5 
 65.7 

89.64 
89.64 
89.64 
89.64 

  85.52  
85.52 
88.39 
56.90 
69.72 
76.37 
76.24 
75.45 
72.52 
87.87 
88.19 
65.76 
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17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

-2 
+2 
+2 
-2 
-2 
+2 
+2 
-2 
-2 
+2 
-2 
+2 
+2 
-2 

+2 
+2 
-2 
-2 
+2 
-2 
+2 
-2 
+2 
+2 
-2 
-2 
-2 
-2 

-2 
+2 
+2 
-2 
+2 
-2 
-2 
+2 
+2 
-2 
-2 
-2 
+2 
+2 

-2 
+2 
+2 
-2 
-2 
-2 
-2 
-2 
+2 
+2 
+2 
+2 
-2 
+2 

 5.0000 
 25.000 
 25.000 
 5.0000 
 5.0000 
 25.000 
 25.000 
 5.0000 
 5.0000 
 25.000 
 5.0000 
 25.000 
 25.000 
 5.0000 

 10.00 
 10.00 
 2.000 
 2.000 
 10.00 
 2.000 
 10.00 
 2.000 
 10.00 
 10.00 
 2.000 
 2.000 
 2.000 
 2.000 

 0.200 
 1.000 
 1.000 
 0.200 
 1.000 
 0.200 
 0.200 
 1.000 
 1.000 
 0.200 
 0.200 
 0.200 
 1.000 
 1.000 

 24.000 
 120.00 
 120.00 
 24.000 
 24.000 
 24.000 
 24.000 
 24.000 
 120.00 
 120.00 
 120.00 
 120.00 
 24.000 
 120.00 

 89.7 
 65.4 
 76.5 
 64.5 
 88.4 
 68.9 
 88.7 
 74.8 
 87.6 
 73.9 
 87.3 
 81.2 
 92.3 
 84.7 

91.28 
66.02 
77.31 
62.01 
86.62 
68.49 
88.98 
75.62 
89.14 
72.96 
85.72 
79.49 
92.11 
83.06 

 
 
Table 3.2b: Central composite design matrix showing coded and real variables with observed and predicted 
Mn(II) ion adsorption onto acid activated shale 
 

Experimental 
Runs 

Coded Values of Variables Real Values of Variables  Mn(II) Sorption 
Efficiency (%) 

X1 
(mg/l) 

X2 
(g/l) 

X3 
(pH) 

X4 
(mins) 

X1 
(mg/l) 

X2 
(g/l) 

X3 
(pH) 

X4 
(mins) 

Observed RSM 
Predicted 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
-1 
-2 
+2 
+2 
-2 
+2 
+2 
-2 
-2 
+2 
-2 
-2 
-2 
+2 
+2 
+2 
-2 
-2 

0 
0 
0 
0 
0 
0 
-2 
+1 
0 
0 
0 
0 
0 
0 

+2 
+2 
-2 
-2 
-2 
+2 
-2 
+2 
+2 
-2 
+2 
+2 
-2 
-2 
-2 
+2 

0 
0 
0 
0 
0 
0 
0 
0 

+1 
-2 
0 
0 
0 
0 
-2 
-2 
+2 
+2 
-2 
-2 
+2 
+2 
+2 
-2 
-2 
+2 
-2 
+2 
-2 
+2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

+1 
-2 
0 
0 

+2 
-2 
-2 
+2 
-2 
+2 
+2 
-2 
-2 
-2 
-2 
+2 
+2 
-2 
+2 
+2 

 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 12.00 
 8.000 
 4.000 
 20.00 
 20.00 
 4.000 
 20.00 
 20.00 
 4.000 
 4.000 
 20.00 
 4.000 
 4.000 
 4.000 
 20.00 
 20.00 
 20.00 
 4.000 
 4.000 

 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.200 
 0.800 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 0.600 
 1.000 
 1.000 
 0.200 
 0.200 
 0.200 
 1.000 
 0.200 
 1.000 
 1.000 
 0.200 
 1.000 
 1.000 
 0.200 
 0.200 
 0.200 
 1.000 

 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 6.000 
 8.000 
 2.000 
 6.000 
 6.000 
 6.000 
 6.000 
 2.000 
 2.000 
 10.00 
 10.00 
 2.000 
 2.000 
 10.00 
 10.00 
 10.00 
 2.000 
 2.000 
 10.00 
 2.000 
 10.00 
 2.000 
 10.00 

 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 72.000 
 96.000 
 24.000 
 72.000 
 72.000 
 120.00 
 24.000 
 24.000 
 120.00 
 24.000 
 120.00 
 120.00 
 24.000 
 24.000 
 24.000 
 24.000 
 120.00 
 120.00 
 24.000 
 120.00 
 120.00 

   76.5 
 76.4 
 76.4 
 76.5 
 76.3 
 76.4 
 75.8 
 64.3 
 74.3 
 75.3 
 65.2 
 66.7 
 67.1 
 83.7 
 65.4 
 63.2 
 67.5 
 64.5 
 71.2 
 65.4 
 67.3 
 64.8 
 76.8 
 76.1 
 79.8 
 84.5 
 85.4 
 74.3 
 88.7 
 77.8 

76.36 
76.36 
76.36 
76.36 
74.93 
74.93 
74.80 
65.71 
73.41 
76.60 
64.48 
67.83 
63.33 
87.88 
66.58 
65.22 
66.31 
66.98 
73.34 
64.71 
69.95 
63.34 
76.89 
74.41 
81.45 
80.99 
83.88 
74.12 
85.31 
77.58 

 
 
The behaviour of the system which was used to evaluate the 
relationship between the response variable (y) and the 
independent variables X1, X2, X3 and X4 was explained using 

the empirical second-order polynomial model depicted by 
equation (3.3) 
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Where X1, X2, X3… Xk are the input variables which affect the 
response, Y, β0, βi, βii, and βij, (i = 1–k, j = 1–k) are the known 
parameters and ε is the random error. 
 
To assess the model significance and justify the potential of 
response surface methodology (rsm) in optimizing the 
adsorption variables, one way analysis of variance was used. 
Reliability of the ANOVA result was judged using the fisher’s 
F value and the probability function (P < 0.05). Large value of 
F corresponding to very low value of P (P<<<0.05) was used 
to determine the level of significance of the model. The 
adequacy of rsm model and the reliability of the resulting 
second order polynomial equation were assessed using the 
goodness of fit statistics, namely; coefficient of determination 
(R2), adjusted (R-squared) value and adequate precision value. 

 

3.5.3  Data analysis and prediction using Modular neural 
network 
 
For modular neural network modelling, each layer of 
parameters usually contains a vector of processing elements 
(PEs) and the parameters selected apply to the entire vector. 
The parameters are dependent on the neural model, but all 
require a nonlinearity function to specify the behaviour of the 
PEs.  In addition, each layer has an associated learning rule 
and learning parameters. Note that the number of PEs for the 
output layer is determined by the number of columns selected 
as your desired response. 
 
3.5.3.1 Input data generation and processing  
 
Input data employed for the training, validation and testing 
were gotten from series of batch experiments based on central 
composite design of experiment under varied initial metal ion 
concentration, pH, adsorbent dose and contact time. A full 
factorial central composite design of experiment with 6 center 
points and 3 replicates resulted in a total of 90 experimental 
runs were used as the input data. The data were randomly 
divided into three subsets to represent the training (60%), 
validation (25%) and testing (15%). The validation data was 
employed to assess the performance and the generalization 
potential of the trained network while the testing data was to 
test the quality of the trained network. 
To avoid the problem of weight variation which can 
subsequently affects the efficiency of the training process, the 
input and output data were first normalized to a give a weight 
between 0.1 and 1.0 using visual developer (7). 
 
3.5.3.2 Data training and design of network architecture  
 
Input data training resulting to design of network architecture 
is of paramount importance in the application of neural 
network to data modeling and prediction. To obtain the 
optimal network architecture that possesses the most accurate 

understanding of the input data, two factors were considered. 
First was the selection of the most accurate training algorithm 
and secondly, the number of hidden neuron. 
Based on this consideration, different training algorithm were 
selected and tested to determine the best training algorithm 
that will produce the most accurate network architecture. 
Thereafter different hidden neurons were selected based on the 
most accurate training algorithm to determine the exact 
number of hidden neurons. 
 
3.5.3.3 Network training and performance of modular neural 
network 
 
To train the network, 3 runs of 1000 epochs each were used. 
In addition, cross validation data representing about 15% of 
the total input data were introduce to monitor the training 
process and prevent the network from memorizing the input 
data instead of leaning which was a common problem 
associated with overtraining. The progress of the training was 
checked using the mean square error of regression (MSEREG) 
graph for training and cross validation 
 
 
3.5.3.4 Network testing and validation 
To test the efficiency of the trained network, 25% of the input 
data representing 22 input parameters were introduced to the 
network. To validate the accuracy of the trained network, a 
linear plot of the predicted value and the observed value of 
Pb(II) ion sorption efficiency onto acid activated shale was 
obtained and the coefficient of determination R2 value was 
employed as a bases for judgement. 
 

3.5.3.5 Sensitivity analysis of modular neural network 
 

Sensitivity analysis of the network was done to allow the 
trained network to assess the overall contributions of each 
input variabless to the sorption efficiency of Pb(II) ion onto 
acid acitivated shale. Sensitivity analysis was employed to 
give insights into the relative importance of individual input 
parameters in other to identify those parameters that can be 
safely ignored in subsequent analysis 
 
3.5.3.6 Network application to new data 
 
To test the ability of the network to predict the sorption 
efficiency of Mn(II) ion onto acid activated shale, 30 input 
data generated from a response surface CCD design of 
experiment were normalized and presentd to the network as 
prediction data. Comparison between the predicted sorption 
efficiency of manganese and the experimental values was 
obtained and the correlation coefficient was employed the 
measure the accuracy of prediction. 
 
4. Resuslts and discussion 

4.1  Microstructural and chemical composition of shale 
fractions 

Result of the microstructural and chemical analysis of the raw 
shale, calcinated and acid activated shale conducted using 
scanning electron microscopy (SEM) and X-Ray 
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Fluorescence (XRF) is presented in Figure 4.1, Figure 4.2, 
Figure 4.3 and Table 4.1 respectively 

 
Figure 4.1: SEM of raw shale 

 
 
 

 
Figure 4.2: SEM of calcinated shale 

 

 
Figure 4.3: SEM of acid activated shale 

 

Scanning electron micrograph (SEM) was taken in order to 
verify the presence of micropores in the structure of the shale. 
It was observed from Figures 4.1, 4.2 and 4.3 that the surface 
characteristics of the shale materials changes drastically with 
calcination and acid treatment with the acid treated shale 
showing a better irregular porous surface structure. The 
implication is that acid treatment tends to open up the pore 
spaces better than calcination thereby increasing the 
adsorption properties of the material. The larger number of 
macroporous structure seen with acid activated shale indicates 
a higher surface area. This claim is based on the fact that as 
biosorbent materials present larger numbers of microporous 

structure, it adsorb higher amount of nitrogen, which resulted 
to a higher BET surface area as reported in (21, 22) 

Scanning electron micrograph (SEM) was taken in order to 
verify the presence of micropores in the structure of the shale. 
It was observed from Figures 4.1, 4.2 and 4.3 that the surface 
characteristics of the shale materials changes drastically with 
calcination and acid treatment with the acid treated shale 
showing a better irregular porous surface structure. The 
implication is that acid treatment tends to open up the pore 
spaces better than calcination thereby increasing the 
adsorption properties of the material. The larger number of 
macroporous structure seen with acid activated shale indicates 
a higher surface area. This claim is based on the fact that as 
biosorbent materials present larger numbers of microporous 
structure, it adsorb higher amount of nitrogen, which resulted 
to a higher BET surface area as reported in (21, 22) 

It was observed from the result of Table 4.1 that aluminium 
oxide and silicon oxide were the dominant oxides present in 
shale minerals. The alumina composition of the raw shale was 
observed to be 21.33wt%, it increases to 24.41wt% for the 
calcinated shale and decreases to 18.13wt% for the acid 
activated shale apparently due to the acid dealumination of the 
shale resulting from the effects of acidification. The high       
value of alumina observed with shale makes shale fraction a 
potential adsorbent.  
 
Table 4.1: Chemical analysis of shale fractions 

 
(RSA: Raw Shale Adsorbent) (CSA: Calcinated 
Shale Adsorbent) (AAS: Acid Activated Shale) 

4.2  Screening of absorption variables using Anfis 

An error tolerance level of 0.5, 40 epochs and a hybrid 
optimization method was used to generate the fis structure as 
shown in Figures 4.4, 4.5 and 4.6 respectively. 
 
The adequacy of the fis structure was established from the 
performance error curve which shows the learning rate against 
the propergated error. Performance error lesser than unity 
implies that the fis structure is adequate. Upon validation, the 
performance of the fis structure was then assessed using the 
checking data sets. A root mean square error (rmse) value of 
0.04028 was good enough to declare that the fis structure can 
navigate the design space and predict accurately the variables 
with the most significant contributions towards the adsorption 
process. To ascertain the variables with the highest significant 
contributions, a graphical variation of each independent factor 
variable and the corresponding root mean square error was 
generated as presented in Figure 4.7a-d 
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Figure 4.4: Adaptive Neuro-Fuzzy Interphase for fis structure generation 

 

 
Figure 4.5: Input parameters for fis structure generation 

 

 
Figure 4.6: Fis structure for testing and validation of experimental data 
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Figure 4.7a: Anfis criteria variable selection for Pb(II) ion adsorption (1 variable from 5) 

 

 
Figure 4.7b: Anfis criteria variable selection for Pb(II) ion adsorption (2 variables from 5) 

 

 
Figure 4.7c: Anfis criteria variable selection for Pb(II) ion adsorption (3 variables from 5) 
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Figure 4.7d: Anfis criteria variable selection for Pb(II) ion adsorption (4 variables from 5) 

From the results of Figure 4.7a-d, it was observed that initial 
metal ion concentration, pH of aqueous solution, adsorbent 
dose and contact time were the most significant variables that 
affect the adsorption of Pb(II) ion onto acid activated shale. 

The same procedure was employed to select the most 
significant variables affecting the sorption of Mn(II) ions onto 
acid activated shale and results obtained are presented in 
Figures 4.8a-b.

 

 
Figure 4.8a: Anfis criteria variable selection for Mn(II) ion adsorption (3 variable from 5) 

 

 
Figure 4.8b: Anfis criteria variable selection for Mn(II) ion adsorption (4 variable from 5) 
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From the results of Figures 4.8a-b, it was observed that initial 
metal ion concentration, pH of aqueous solution, adsorbent 
dose and contact time were the most significant variables that 
affect the adsorption of Mn (II) ion onto acid activated shale. 
Since adaptive neuro fuzzy inference system (Anfis) was able 
to successfully select the variables that most influenced the 
adsorption of each metal ion on acid activated shale, a 
response surface methodology (rsm) employing the central 
composite design (CCD) was thereafter employed to  
 

optimize the overall process of adsorption in other to 
determine the optimal values of each independent variables 
that will bring about the most effective metal ion removal.  
 

4.3 Adsorption process optimization using RSM, Inverse 
Matrix and Genetic Algorithm 

Result of the one way analysis of variance (ANOVA) for the 
sorption of Pb(II) and Mn(II) ion onto acid activated shale are 
presented in Tables 4.2a-b 

Table 4.2a: Analysis of variance table for validating model significance in optimizing the sorption of Pb(II) ion onto acid 
activated shale 

 
Table 4.2b: Analysis of variance table for validating model significance in optimizing the adsorption of Mn(II) ion onto 
acid activated shale 
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The goodness of fit statistics used in validating the 
significance of the model is presented in table 4.3.  
 
Table 4.3: Goodness of fit statistics for verifying model reliability  

S/No Goodness of Fit 
Statistics 

Pb(II) ion 
Adsorption 

Mn(II) ion Adsorption 

1 R2 0.9729 0.9287 
2 Adj. R-Square 0.9459 0.8574 
3 Pred. R-Square 0.8360 0.8122 
4 Adeq. Precision 20.753 12.507 
5 C.V % 2.90 3.66 

It was observed from the result of table 4.3 that; there is a 
reasonable agreement between the predicted R2 and the 
adjusted R2 value. This reasonable agreement shows the 
adequacy of the second order polynomial equation. 

Based on the goodness of fit statistics presented in table 4.3, a 
second order polynomial equation was generated as presented 
in equation 4.1 and 4.2 respectively 

mecontact ti  X    dose,adsorbent   X    pH,  X     conc.,ion  metal initial X where;
(4.1)         00478252.512370.1519499.0032198.0099284.0

00380859.397266.000372656.444531.0
017656.0055599.000521.271094.232271.039333.82

4321

2
4

2
3

2
2

2
143

42324131

214321
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XXEXXXXEXX
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mecontact ti X    pH, X   dose,adsorbent  X  conc.,ion  metal initial X ;
(4.2)                                               00536943.713704.012370.0018245.0

00492969.2062826.048828.000432422.7056836.0
15820.0086589.08078.265104.145286.075667.57

4321

2
4

2
3

2
2

2
1

4342324131

214321

====
−+−+−

−++−−−−
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where
XEXXX

XXEXXXXXXEXX
XXXXXXYmanganese

 

To diagnose the statistical properties of the model, the normal probability plot of residual presented in Figures 4.9a-b were 
employed. 

 
Figure 4.9a: Normal probability plot of studentized residuals for the adsorption of Pb(II) ion onto acid activated shale 
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Figure 4.9b: Normal probability plot of studentized residuals for the adsorption of Mn(II) ion onto acid activated shale 

 
The normal probability plot of studentized residuals was 
employed to assess the normality of the calculated residuals. 
The normal probability plot of residuals which is the number 
of standard deviation of actual values based on the predicted 
values was employed to ascertain if the residuals (observed – 
predicted) follows a normal distribution. It is the most 
significant assumption for checking the sufficiency of a 

 
statistical model. Result of Figures 4.9a and 4.9b revealed that 
the computed residuals are approximately normally 
distributed an indication that the model developed is 
satisfactory. To study the effects of combine variables on the 
sorption efficiency of Pb(II) and Mn(II) onto acid activated 
shale, 3D surface  plots  presented as shown in Figure 4.10a-b 
were employed 

 

 
Figure 4.10a: Response surface plot showing the interaction between selected variables on Pb(II) ion adsorption onto acid 

activated shale 

 
Figure 4.10b: Response surface plot showing the interaction between selected variables on Mn(II) ion adsorption onto acid 

activated shale 
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A closer look at Figure 4.10a-b shows the presence of a 
coloured hole at the middle of the upper surface. That was a 
clue that more points lightly shaded for easier identification 
fell below the surface. From the surface plots of Figures 4.10a 
and 4.10b, it was observed that the colour of the surface get 
darker towards initial metal ion concentration and indication 
that this variable strongly influenced the adsorption of Pb(II) 
and Mn(II) ions. The second order polynomial equations 
showing the relationship between the sorption efficiency (y) 
and the selected variables (x) as presented in equation 4.1 and 
4.2 were thereafter solved to 

determine the optimum values of the process variables in 
enhancing the removal of Pb(II) and Mn(II) ions by acid 
activated shale. To solve the equation, two additional methods 
were employed to verify the numerical solution obtained from 
the experimental design software and they include; Genetic 
Algorithm (GA) and Inverse Matrix Method For the inverse 
matrix method, the second order polynomial equations were 
first written in terms of the coded value of the variables using 
the coefficient statistics of each metal ion studied as presented 
in equation 4.3 and 4.4 respectively. 

(4.3)                                                                33.142.212.322.391.1
73.056.127.278.171.084.320.066.187.758.87

DDCCBBAACD
BDBCADACABDCBAYlead

−−−−+
−+++−+−+−=

 

(4.4)                                           17.019.2020.017.1056.021.1
78.028.082.151.014.684.080.027.264.75

DDCCBBAACDBD
BCADACABDCBAYmanganese

+−+−++

−−−++++−=
 

A (4 by 4) matrix from where the stationary point in terms of 
the selected input variables; initial metal ion concentration, 
pH, adsorbent dose, adsorption temperature and contact time 

were determined was then derived for each of the metal ion 
studied as presented below. 
 



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0.140-    0.910-     0.255       170.1
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                   (Manganese) 

The product of the 4 by 4 matrix was solved using Microsoft 
Excel and the stationary point was determined as follows 

For Pb(II) ion; 
bB 1
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For Mn(II) ion; 
bB 1
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The computed value of the stationary points ( sx ) was 
substituted into equations 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 
respectively to determine the optimum values of the selected 
variables while the efficiency of metal ion adsorbed expressed 
as percentage was calculated using equation 4.11 

xconc (Pb) =
5

151 −X ,                   (4.5)  

xconc (Mn) = 
4

121 −X    (4.6) 

xpH = 
2

62 −X      (4.7) 

xtemp = 
5

2983 −X    (4.8) 

xdose = 
2.0

6.04 −X     (4.9) 

xtime = 
24

725 −X     (4.10) 

bxy s
'

0

.^

2
1

+= β    (4.11)  
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To find the optimal solution using genetic algorithm, equation 
4.3 and 4.4 were written in MATLAB codes using M-File and 
saved as (.m file) so as to generate the fitness function. Genetic 
algorithm tool box was then activated using ‘gatool’ 
command. Performance criteria selected for the algorithm 
include;  

1. Double vector population type was selected since it 
works directly with the default creation mutation and 
crossover functions unlike custom population type 
that demands the writing of a new creation mutation 
and crossover functions. 

2. The population size was set at 20 representing the 
number of individual in each generation. This size 
was chosen to allow the algorithm creates multiple 
subpopulation with each subpopulation working in 
synergy to obtain an optimum result 

3. The creation function was set at uniform to allow the 
algorithm creates random initial population with a 
uniform distribution.  

4. The initial population was left blank to allow the 
algorithm search and fix the best initial population 

5. The initial scores were left blank to allow the 
algorithm use the fitness function to compute the 
most accurate initial population scores. 

6. An initial range of [1 : 1.1] was set for the initial 
population 

7. The default stochastic uniform selection function 
was used 

8. Elite count of 2 and a crossover fraction of 0.8 was 
employed 

 
Using the above performance criteria, the algorithm was 
lunched to perform the optimization in other to calculate the 
optimum values of the variables together with the graphical 
presentation of the current best individual among the variables 
and the average distance between individuals in each 
generation. The matrix form of GA solution is presented as 
follows 
 

Pb(II) =        Mn(II) =   

 
The optimum value of the variables; initial metal ion 
concentration, pH, adsorbent dose, adsorption temperature 
and contact time were also computed using equations 4.5, 4.6, 
4.7, 4.8, 4.9 and 4.10 respectively while the efficiency of metal 
ion adsorbed expressed as percentage was calculated using 
equation 4.11. The graphical presentation of the current best 
individual and the average distance between individuals per 
each generation are presented in Figures 4.11a-b  
 

 

 
Figure 4.11a: Current best individual and the average distance for Pb(II) ion adsorption 

 
Figure 4.11b: Current best individual and the average distance for Mn(II) ion adsorption 
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Based on the results of Figures 4.11a and 4.11b, metal ion 
concentration was marked the best variable affecting the 
adsorption of Pb(II) and Mn(II) ions by acid activated shale. 
To validate the optimal solutions produced by the different 

methods and select the optimum value of the variables, batch 
adsorption experiment was conducted based on the different 
solutions and the sorption efficiency of the metal ions were 
calculated and compared as shown in Table 4.4a. 

 

Table 4.4a: Computed optimum values of adsorption variables based on different methods of optimization 
 

 
Optimization 

Method 

 
Variables 

Optimum Values of Selected 
Variables 

% Sorption Efficiency 

 
Pb(II) ion 

Adsorption 

  
Mn(II) ion 
Adsorption 

 
Predicted 

 
Experiment 

Absolute 
Difference 

 
 
 

Genetic 
Algorithm 

Initial metal ion 
concentration (mg/l) 

5.91 16.20  
Pb(II) =  88.9 
 
Cr(III) = 80.6 
 
Mn(II) = 76.6 

 
Pb(II) =  89.3 
 
Cr(III) = 71.2 
 
Mn(II) = 46.7 

 
Pb(II) =  0.40 
 
Cr(III) = 9.40 
 
Mn(II) = 29.9 

pH 6.74 2.40 
Adsorbent dose (g) 1.03 1.06 
Contact time (min) 77.16 77.99 

Adsorption temp. (K) Nil Nil 
 

 
 
 

Inverse Matrix 
Method 

Initial metal ion 
concentration (mg/l) 

5.50  23.63  
Pb(II) = 84.0 
 
Cr(III) = 78.8 
 
Mn(II) = 80.3 

 
Pb(II) =  83.8 
 
Cr(III) = 76.3 
 
Mn(II) = 74.3 

 
Pb(II) =  0.20 
 
Cr(III) = 2.50 
 
Mn(II) = 6.00 

Adsorbent dose (g) 0.40 0.25 
Adsorption temp. (K) Nil Nil 

Contact time (min) 48 114 
pH 6.69 9.47 

 
 
 
 

Numerical 
Optimization 

Initial metal ion 
concentration (mg/l) 

23.29  4.00  
Pb(II)  = 84.4 
 
Cr(III) = 78.8 
 
Mn(II) = 85.3 

 
Pb(II)  = 88.7 
 
Cr(III) = 77.4 
 
Mn(II) = 88.7 

 
Pb(II)  = 4.30 
 
Cr(III) = 1.40 
 
Mn(II) = 3.40 

Adsorbent dose (g) 0.89 1.00 
pH 6.97 7.74 

Contact time (min) 120 120 
Adsorption temp. (K) Nil Nil 

From the results of Table 4.4, inverse matrix method had the 
least absolute difference between the predicted and 
experimental values and was therefore selected as the best 
solution to the optimal second order polynomial equation. 

Based on the optimal solution generated by inverse matrix 
method of optimization, the calculated optimal values of 
adsorption variables for Pb(II) and Mn(II) ion adsorption onto 
acid activated shale is presented in Table 4.4b 

 
Table 4.4b: Optimal values of adsorption variables 

Optimization 
Method 

Adsorption Variables Calculated Optimal Values 
Pb(II)  Mn(II) 

 
 
 

Inverse Matrix 
Method 

Initial metal ion 
concentration (mg/l) 

5.50  23.63 

Adsorbent dose (g) 0.40 0.25 
Adsorption temp. (K) Nil Nil 

Contact time (min) 48 114 
pH 6.69 9.47 
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4.4 Modeling and prediction using modular neural network 

The descriptive statistics of the input and output 

data used for the neural network training is 
presented in Table 4.5

Table 4.5: Descriptive statistics of modular neural network variables 

 

 
To ascertain the most accurate training algorithm, 
different training algorithm were selected and tested 
to determine the best training algorithm that 

will produce the most accurate network 
architecture. Table 4.6 shows the performance of 
the different algorithm tested. 

Table 4.6: Selection of optimum training algorithm for modular neural network 

 
From the result of Table 4.6, it was observed that 
improved second order method for gradient also 
known as Levenberg Marquardt Back Propagation 
training algorithm was the best learning rule and 
was therefore adopted in designing the network 
architecture. To determine the exact number of 
hidden neuron, different numbers of hidden neurons 
were selected to train a network using the 

Levenberg Marquardt Back Propagation training 
algorithm. The performance of the trained network 
was then assessed using mean square error (MSE) 
and coefficient of determination R2. The number of 
hidden neuron corresponding to the lowest MSE 
and the highest R2 as presented in Table 4.7 was 
selected to design the network architecture

Table 4.7: Optimum number of hidden neurons for modular neural network 
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Based on the results of Table 4.6 and 4.7, Levenberg 
Marquardt Back Propagation training algorithm 
with 2 hidden neuron in the input and output layer 
with tangent sigmoid transfer function, having a 
target goal of 0.001 and epoch of 1000 was used to 

train a network of 4 input processing elements 
(PEs), 1 output processing elements and 54 
exemplars to produce an optimal neural network 
structure as presented in Figures 4.12a and 4.12b. 

 

 
Figure 4.12a: Topology of MNN 

 

 
Figure 4.12b: Optimun network architecture 

 
To assess the progress of the training, the mean square error 
(MSE) graph for training and cross validation presented in 
Figures 4.13a and 4.13b were obtained  

The training and cross validation statistics which was 
employed to evaluate the effectiveness of the trained network 
is presented in figure 4.14 

 
Figure 4.13a: Training progress of MNN 
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Figure 4.13b: Cross validation progress of MNN 

 
 

 
Figure 4.14: Evaluation statistics for MNN 

 

To evaluate the performance of the trained network, 
comparison between the predicted sorption 
efficiency of Pb(II) ion onto acid activated shale 
using modular neural network (MNN) and the 

experimental values of Pb(II) ion sorption 
efficiency by acid activated shale was obtained as 
presented in Figure 4.15 

 

 
Figure 4.15: Comparison of predicted sorption efficiency of Pb(II) ion using MNN against the experimental values 
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Figure 4.17: Performance of MNN on new input data 

 
 

Result of figure 4.15 revealed a strong agreement between the 
experimental sorption efficiency data and modular neural 
network predicted data with a performance statistics of RMSE 
(0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE 
(0.00041) and R2 (0.988).  
 
Sensitivity analysis was employed to give insights into the 
relative importance of individual input parameters in other to 
identify those parameters with the highest significant 
contributions towards the sorption of Pb(II) ion onto acid 
activated shale. Result of the sensitivity analysis is presented 
in Figure 4.16 
 
Coefficient of determination of 0.9648 as observed in Figure 
4.17 was good enough to justify the strength and accuracy of 
modular neural network as a tool for modeling and prediction 
of adsorption processes. 
 
5. Conclusion 
The study has successfully demonstrated the use of adaptive 
neuro-fuzzy inference system (Anfis) in ranking selected 
adsorption variables in terms of their significant contributions 
towards the effective removal of metal ions from aqueous 
solution. In addition, the performance of numerical 
optimization, inverse matrix method, and genetic algorithm in 
obtaining the optimal solution of the second other polynomial 
equation generated from statistical design of experiment has 
been successfully implemented. The approach will not only 
encourage the use of DOE in adsorption process, it will also 
expose researchers in the field of environmental systems 
optimization to new methods of optimal solution 
determination. More also, the suitability of modular neural 
network in modeling and prediction of metal ion adsorption 
onto porous solid adsorbent was investigated and found to be 
highly effective. Modular neural network gave a strong 
agreement between the experimental and predicted sorption 
efficiency of Pb(II) and Mn(II) ions with R2 values of 0.977 
and 0.9648 having performance statistics of RMSE (0.03815), 
NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041) 
and R2 (0.988).  
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