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Abstract- Batch experimental technique was employed to evaluate the effects of adsorption variables such as initial metal ion
concentration, adsorbent dose, pH, and contact time on the sorption efficiency of Pb(11) and Mn(I1) ions onto acid activated shale.
To select the input variables with the highest significant contributions towards the sorption of Pb(Il) and Mn(Il) ions onto acid
activated shale, adaptive neuro-fuzzy (ANFIS) was employed. Thereafter, statistical design of experiment (DOE) using central
composite design was used to generate the data for modelling and prediction using a modular neural network (MNN). To produce
accurate network architecture for prediction, the input data were first normalized to avoid the problems of weight variation.
Thereafter, different training algorithm and hidden neurons were selected and tested to ascertain the optimum number of hidden
neuron and the best training algorithm that will produce the most accurate network. The linear coefficient of determination in
addition to the mean square error for training and cross- validation was employed as the selection criteria. Results obtained shows
that, Levenberg Marquardt Back Propagation training algorithm with 2 hidden neurons in the input and output layer with tangent
sigmoid transfer function produced the most accurate prediction network. In addition, the modular neural network gave a strong
agreement between the experimental and predicted sorption efficiency of Pb(Il) and Mn(Il) ions with R2 values of 0.977 and
0.9648 having performance statistics of RMSE (0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041) and R2
(0.988).

Keywords: Modular neural network, sensitivity analysis, Response surface methodology, central composite design, Adaptive
neuro-fuzzy inference system

Ozet- Baslangi¢ metal iyonu konsantrasyonu, adsorban dozu, pH ve temas siiresi gibi adsorpsiyon degiskenlerinin Pb (II) ve Mn
(IT) iyonlarinin asitle aktiflestirilmis seyl tizerindeki sorpsiyon verimliligi lizerindeki etkilerini degerlendirmek i¢in seri deneysel
teknik kullamlmustir. Asit aktive edilmis seyl {izerine Pb (II) ve Mn (II) iyonlarinin sorpsiyonuna en 6nemli katkilari olan girdi
degiskenlerini segmek i¢in adaptif noro-bulanik (ANFIS) kullanilmistir. Daha sonra, modiiler bir sinir agi (MNN) kullanilarak
modelleme ve tahmin igin veri iretmek iizere merkezi kompozit tasarim kullanilarak deney (DOE) istatistiksel tasarimi
kullanildi. Tahmin i¢in dogru ag mimarisi tretmek tizere, giris verileri 6nce agirlik degisimi problemlerinden kaginmak igin
normallestirilmistir. Daha sonra, optimum gizli néron sayisini ve en dogru ag1 iiretecek en iyi egitim algoritmasini belirlemek
icin farkli egitim algoritmasi ve gizli noronlar se¢ildi ve test edildi. Se¢im kriterleri olarak egitim ve ¢apraz validasyon igin
ortalama kare hataya ek olarak, dogrusal belirleme katsayisi kullanilmistir. Elde edilen sonuglar, teget sigmoid transfer
fonksiyonu ile giris ve ¢ikis katmaninda 2 gizli ndron iceren Levenberg Marquardt Geri Yayilim egitim algoritmasinin en dogru
tahmin agini Urettigini gostermektedir. Ek olarak, modiiler sinir agi, R2 degeri 0.977 ve 0.9648 R2 arasinda olan ve RMSE
(0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041) ve R2 (0.988) performans istatistigine sahip Pb (II) ve Mn
(IT) iyonlarmin deneysel ve tahmin edilen sorpsiyon verimliligi arasinda gii¢lii bir uyum saglamistir.
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Anahtar Kelimeler Modiiler sinir agi, duyarlilik analizi, yanit yiizeyi metodolojisi, merkezi kompozit tasarim, uyarlanabilir

néro-bulanik ¢ikarim sistemi.

1. Introduction

Environmental pollution caused by the discharge of untreated
effluents containing toxic metals such as lead, chromium, and
manganese has become an issue of concerned and have
developed into a widely studied area (1). Unlike organic
pollutants, the majority of which are susceptible to biological
degradation, heavy metals will not degrade into harmless end
products, and their presence in streams and lakes leads to
bioaccumulation in living organism, causing health problems
in animals, plants and human beings (2).

Some conventional processes have been developed over the
years to remove these heavy metals from water and
wastewater they include; solvent extraction, chemical
precipitation, ion exchange process, electrolytic precipitation,
and reverse osmosis (3).

However, these physicochemical processes possess
significant  limitations of being highly expensive,
sophisticated and environmentally disruptive, requiring the
input of external chemical additives or energy. In addition,
some of these conventional process especially electrolytic and
chemical precipitations generate concentrated sludge or
another kind of waste that must be properly disposed to avoid
further damage to the environment (4, 5).

Adsorption is an alternative technology for metal separation
from aqueous solutions. With the selection of a proper
adsorbent, the adsorption process can be a promising
technique for the removal of certain types of contaminants
including heavy metals (6). However, since the adsorption
process is influenced by different variables which are not
linearly related, traditional method of data generation and
processing are no longer suitable in solving adsorption related
issues such as determination of optimum values of adsorption
variables and prediction of sorption efficiency of metal ions
on porous solid adsorbent.

In recent years, statistical design of experiment (DOE) and
artificial neural network (ANN) has been successfully
employed to optimize and predict the sorption efficiency of
divalent metals on different adsorbents such as zeolite (7),
electric arc furnace slag (8), sunflower powder (9), Zea Mays
(10), Aspergillus terreus biomass (11). In their various studies,
the authors generated large volume of experimental data using
statistical design of experiment employing either the 2-level
factorial design or the full factorial central composite design.
The experimental data were then used as input data for ANN
modelling from which 60% was employed for training the
network, 20% was used for validating the network and the
remaining 20% was employed for testing the network.
Although, artificial neural network (ANN) are one of the many
machine learning tools that are capable of performing the task
of modeling and prediction of experimental data, the large
amount of dimensionality both in terms of the number of
features the data has, as well as the number of rows of data the
network is to handle tends to increase the required training
circle and time thereby reducing the accuracy of prediction
(12). Following this, modular neural network (MNN) was

employed since they represent a special class of multi- layer
perceptron neural network (MLP) which process their input
using several parallel MLPs and then recombine the results
thus creating some structure within the network topology
which will foster specialization of function in each sub-
module. This tends to speed up the learning rate, training times
and reduce the number of required training circle thereby
producing a more accurate result.

Shale was used as adsorbent for this study because it is a fine-
grained particle. The size of its particles gives it the needed
high surface area for metal ion adsorption.

2. Brief description of modelling, optimization and
prediction techniques

2.1. Adaptive Neuro-fuzzy Inference Systems

The complexity of real life problems require modern methods
for the construction of knowledge systems that can be used in
the solution to such problems. The search for systems that can
solve increasingly complex problems has initiated research in
a number of scientific fields, especially Hybrid Intelligent
Systems. This area tends to combine different techniques of
learning and adaptation to overcome their individual
challenges. One of such hybrid system is Neuro-Fuzzy
approach that can learn from the environment and then reason
about its state. Adaptive Neuro-fuzzy systems constitute an
intelligent hybrid technique that combines fuzzy logic with
neural networks in order to have better results. While the
learning capability is an advantage provided by artificial
neural network, the formation of a linguistic rule base is an
advantage provided by the fuzzy inference system.

2.2. Response Surface Methodology

Response surface methodology (RSM) is an array of statistical
and mathematical techniques, employed for developing,
modelling and analyzing processes in which several variables
influenced a response of interest and the main objective is to
optimize the response (13). They are used in industries to

i Explore the relationship between a response variable
and several input variables

ii. Determine the optimal settings of the variables, and
iii. Optimize the process.

They are mostly applied in situations where there are many
input variables that may influence one or more response
variables and are used to develop an empirical model
commonly called response surface (14, 15). Response Surface
Methodology (RSM) allows you to specify and fit a
polynomial model up to second order and provides an option
to include a block variable when the need arises.
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2.3. Modular Neural Network

Modular feed forward networks are a special class of multi-
layer perceptron neural network (MLP). These networks
process their input using several parallel MLPs, and then
recombine the results. This tends to create some structure
within the topology, which will foster specialization of
function in each sub-module. In contrast to the MLP, modular
networks do not have full interconnectivity between their
layers. Therefore, a smaller number of weights are required
for the same size of network. This tends to speed up training
times and reduce the number of required training circles.

3. Research Methodology
3.1 Collection and Preparation of Adsorbent

Shale was collected from its deposit at Okada the
administrative headquarter of Ovia North East Local Govt.
Area of Edo State, Nigeria. First, it was soaked in a plastic
containing 5% hydrogen peroxide to remove any
carbonaceous matter that can interfere with the metal
adsorption capacity of the shale. Thereafter, it was washed
with distilled water to remove any water soluble impurities
before been dried in hot air oven at 50-70°C for 8 hours. The
dried shale was then reduced to fine and sieved using sieve
size of 212pm before use (16, 17).

For acid activation, 500g of the dried sieved shale mineral was
placed in a furnace at a temperature of 550 OC for 10 hours.
200 g of the calcinated shale mineral was then mixed with 1
liter 0.25M sulphuric acid, the mixture was heated at 105°C
for 30 minutes. After slow cooling, the slurry was filtered and
washed free of acid using distilled water as indicated by a pH
meter. The shale was dried at a temperature of 100°C for 30 —
45 minutes, ground using mortar and pestle, sieved to 212 pym
and stored in a desiccator to cool before use (1)

3.2 Characterization of adsorbent

3.2.1.  Analysis of Microstructures

The microstructure of shale was analyzed using scanning
electron microscopy (APEX 3020 PSEM 2) to give adequate
information about its morphology and topological
presentations. Such presentations provided possible
explanations of the solid behaviour (18).

3.2.2.  Chemical composition

The chemical composition of shale was studied using X-Ray
Fluorescence (XRF) APEX 3022. Chemical digestion of the
solid adsorbent was done as follows: (1:1) mixture of 0.025M
solution of hydrochloric acid and Nitric acid was prepared. A
mixture of (1:10) of the solid adsorbent to acid solution was
obtained and stir for 30 minutes. The solution was filtered and
the filtrate was used for the analysis (19).

3.3 Preparation of aqueous solution

All the chemicals used in this research were analytical grade.
Stock solution of lead and manganese were prepared by
dissolving accurate quantities of lead (1) nitrate [Pb (NO3)2],
manganese (I1) chloride tetrahydrate (MnClz,4H,Q) in one
liter of distilled water. All working solutions were obtained by
diluting the stock solution with distilled water and the
concentration of metal ion present in solution was analyzed by
Atomic Absorption Spectrophotometer. A duplicate was
analyzed for each sample to track experimental error and show
capability of reproducing results. The pH of the solution was
adjusted to the desired values for each experiment with drop
wise addition of 1M HNO;3 or 1M NaOH.

3.4 Adsorption studies

Adsorption study was carried out to determine the effect of
pH, adsorbent dose, adsorption temperature, contact time and
initial metal ion concentration using batch adsorption
technique. The adsorption experiment were performed at
different variable range as follows; pH (2, 4, 6, 8, and 10),
adsorbent dose (0.2, 0.4, 0.6, 0.8 and 1.0g), contact time (20,
40, 60, 80, 100, and 120 minutes), adsorption temperature
(288, 293, 298, 303 and 308K) and different initial metal ion
concentration. A 250ml conical flask containing the adsorbent
and 50ml aqueous solution of the metal was agitated at
150rpm using a mantle fitted with magnetic stirrer. The pH
values of the aqueous solutions were kept at the optimum for
each heavy metal.

The separation of the adsorbent and aqueous solution of heavy
metals was carried out by filtration with 150mm whatman
filter paper and the filtrates were stored in sample cans in a
refrigerator prior to analysis. The residual metal ion
concentration were also determined using an Atomic
Absorption Spectrophotometer (AAS)

The amount of heavy metal ions removed during the series of
batch investigation was determined using the mass balance
equation of the form; (20).

Vv
-—[c,-C
q m[O e]

(3.1)

Where: g, defines the metal uptake (mg/g); CO and Ce: are the
initial and equilibrium metal ion concentrations in the aqueous
solution [mg/1] respectively; V: is the aqueous sample volume
(ml) and m: is the mass of adsorbent used (g). The efficiency
of metal ion removal (%) was calculated using the mass
balance equation of the form;

C,-C

Efficiency (%) = ( & xlOOJ (3.2)

0

Where: Co and C. are the metal ion concentrations (mg/l) in
aqueous solution before and after adsorption respectively.
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3.5 Data generation using design of experiment (DOE)

The range and levels of the experimental variables used for
the design are presented in Table 3.1 and 3.2

3.5.1  Screening of experimental variables using Anfis
Adsorption of Pb(I1) and Mn(ll) ions onto shale is influenced
by numerous adsorption variables such as; adsorption
temperature, pH, adsorbent dose, contact time and initial metal
ion concentration. To optimize the adsorption process, there
was need to first screen the variables so as to select those
variables with the highest significant effects on the overall
process of adsorption.

To perform the variable screening, design of experiment
(DOE) was done to generate the input data while adaptive
neuro-fuzzy inference systems (ANFIS) was employed to
train a fuzzy inference systems (FIS) structure which was
thereafter employed to screen the variables based on there
error variance. Variables with the least error variance were
selected as the most significant variables. To train the fuzzy
inference systems (FIS) structure, 2°-level factorial design of
experiment with two replicates, one block and four center
points resulting to seventy two (72) experimental runs based

Table 3.1: Levels of independent variables for Pb(lIl) ion adsorption

Independent Variable Range and Level

2 -1 0 +1 +2
Initial Metal Ion Cone. (Mg/1): X3 5 10 15 20 25
pH: X 2 4 6 8 10
Adsorption Temperature (K): X3 288 293 208 303 308
Adsorbent Loading (g): X 0.2 0.4 0.6 0.8 1.0
Contact Time (min) Xz 24 48 72 96 120

Table 3.2: Levels of independent variables for Mn(l1) ion adsorption

Independent Variable

Range and Level

2 1 0 +1 +2
Initial Metal Ion Cone. (Mg/1): X3 4 g 12 16 20
pH: X 2 4 6 8 10
Adsorption Temperature (K): X3 288 203 298 303 308
Adsorbent Loading (g): Xa 0.2 0.4 0.6 0.8 1.0
Contact Time (min) Xs 24 43 72 96 120
on Pb(I1) ion adsorption onto shale was used to generate the S e TG N B E R
input data for which 60% was used for training, 25% for > b = “pH";
validation, and 15% for checking. An error tolerance of 0.5, >>> ¢ = ‘adsorption temperature”;

40 epochs and a hybrid method of optimization were selected
to improve the performance of the FIS structure. The initial
model parameters required for training a fuzzy inference
systems (FIS) structure were sub-divided into

1. input_ name (data set generated from 25-level
factorial design of experiment)
2. trn_data (60% of input_name)
3. chk_data (40% of input_name)
The data were then presented to MATLAB as presented in
figure 3.1a

‘adsorbent loading”;

=i g = ‘comtact time™;

=z f = “percent removal of heavy metal’;
> input name = char (a. b, ¢, d. ¢. D:
== g = [XKi1; X2 X3: Xal Xs5];

=i b = [x1: X2
== ¢ = [®1: X2
= d = [x1: x2; Xs:
> g = [Xa; X2 K32 Xa: Xs5;

== = [x1; x2; X3 Xa; X5];

=z input data =[abcde f]:

Figure 3.1a: Anfis input data format

The initial input parameters were then subdivided into training
and checking data as presented in figure 3.1b
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>>tm dafa n=k
>>1m data = input data (1:tm data n, : );
>>chk data =1input data (tm data n+l: tm data n+p, 2);

Figure 3.1b: Subdivision of training and checking data

Training of data set allows you to check the
generalization capability of the resulting fuzzy inference
systems (FIS). To perform the data training, the program
presented in figure 3.1¢c was employed

>> load trn_data
>> load trn_data

>> anfiselit

Figure 3.1c: Anfis training program

To find the single and combine adsorption variable(s) with the
highest significant contributions, the program in figure 3.1d
was employed

>> exhstch (1, tm_data, chk data, input data);
>> exbsteh (2, tm._data, chk data, input data);
>> exhstch (3, tm data, chk data, input data);

Figure 3.1d: Anfis search program

For Mn(ll) ion adsorption onto shale, 2"!-level factorial
design of experiment with one replicates, one block and four
center points resulting to twenty experimental runs was
employed to generate the input data which were first validated
using the trained FIS structure for Pb(Il) ion adsorption before
been modeled for the variable screening process.

3.5.2  Adsorption process optimization using RSM

For Pb(ll) ion adsorption, different initial metal ion
concentration of 5 — 25mg/l, varied adsorbent dose of 0.2 —
1.0g, different pH of 2 — 10 and different contact time of 24 —
120mins for a constant adsorption temperature of 27+2°C was
used. For Mn(Il) ion adsorption, different initial metal ion
concentration of 4 — 20mg/l, varied adsorbent dose of 0.2 —
1.0g, different pH of 2 — 10 and different contact time of 24 —
120mins for a constant adsorption temperature of 27+2°C was
used. These variables were coupled together and varied
simultaneously to cover the combination of parameters
proposed by the CCD. The level and ranges of the selected
variables were randomized using design expert software. A
full factorial CCD design comprising of sixteen factorial
points, eight axial points and six replicates at the center point
resulting in a total of 30 experimental runs as shown in Table
3.2a and 3.2b was employed to optimize the selected variables

Table 3.2a: Central composite design matrix showing coded and real variables with observed and predicted Ph(ll) ion

adsorption onto acid activated shale

Experimental Coded Values of Variables Real Values of Variables Pb(11) Sorption Efficiency
Runs (%)
X1 X2 X3 X4 X (mg/l) | Xz (pH) | Xs(g/l) | X4 (mins) Observed RSM
(mg/l) (pH) (a/l) (mins) Predicted

1 0 0 0 0 15.000 6.000 0.600 72.000 88.6 89.64
2 0 0 0 0 15.000 6.000 0.600 72.000 88.8 89.64
3 0 0 0 0 15.000 6.000 0.600 72.000 87.9 89.64
4 0 0 0 0 15.000 6.000 0.600 72.000 88.7 89.64
5 0 0 0 0 15.000 6.000 0.600 72.000 88.7 85.52
6 0 0 0 0 15.000 6.000 0.600 72.000 88.7 85.52
7 0 +1 0 0 15.000 8.000 0.600 72.000 89.6 88.39
8 0 0 0 +2 15.000 6.000 0.600 120.00 54.6 56.90
9 0 +2 0 0 15.000 10.00 0.600 72.000 68.7 69.72
10 0 0 -2 0 15.000 6.000 0.200 72.000 76.3 76.37
11 0 0 +2 0 15.000 6.000 1.000 72.000 79.1 76.24
12 0 0 0 -2 15.000 6.000 0.600 24.000 71.5 75.45
13 +2 0 0 0 25.000 6.000 0.600 72.000 72.6 72.52
14 -1 0 0 0 10.000 6.000 0.600 72.000 86.7 87.87
15 -2 +2 -2 +2 5.0000 10.00 0.200 120.00 87.5 88.19
16 +2 +2 +2 -2 25.000 10.00 1.000 24.000 65.7 65.76
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17
18
19
20
21
22
23
24
25
26
27
28
29
30

-2
+2
+2
-2
-2
+2
+2
-2
-2
+2
-2
+2
+2
-2

+2
+2
-2
-2
+2
-2
+2
-2
+2
+2
-2
-2
-2
-2

-2
+2
+2
-2
+2
-2
-2
+2
+2
-2
-2
-2
+2
+2

-2
+2
+2
-2
-2
-2
-2
-2
+2
+2
+2
+2
-2
+2

5.0000
25.000
25.000
5.0000
5.0000
25.000
25.000
5.0000
5.0000
25.000
5.0000
25.000
25.000
5.0000

10.00
10.00
2.000
2.000
10.00
2.000
10.00
2.000
10.00
10.00
2.000
2.000
2.000
2.000

0.200
1.000
1.000
0.200
1.000
0.200
0.200
1.000
1.000
0.200
0.200
0.200
1.000
1.000

24.000
120.00
120.00
24.000
24.000
24.000
24.000
24.000
120.00
120.00
120.00
120.00
24.000
120.00

89.7
65.4
76.5
64.5
88.4
68.9
88.7
74.8
87.6
73.9
87.3
81.2
92.3
84.7

91.28
66.02
77.31
62.01
86.62
68.49
88.98
75.62
89.14
72.96
85.72
79.49
92.11
83.06

Table 3.2b: Central composite design matrix showing coded and real variables with observed and predicted

Mn(I1) ion adsorption onto acid activated shale

Experimental

Coded Values of Variables

Real Values of Variables

Mn(11) Sorption

Runs Efficiency (%)
X1 X2 | X3 X4 X1 X2 X3 X4 Observed RSM
(mg/D) | (@) | (pH) | (mins) | (mg/D) | (@/1) | (pH) | (mins) Predicted

1 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 765 76.36
2 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 76.4 76.36
3 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 76.4 76.36
4 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 76.5 76.36
5 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 76.3 74.93
6 0 0 0 0 12.00 | 0.600 | 6.000 | 72.000 76.4 74.93
7 0 -2 0 0 12.00 | 0.200 | 6.000 | 72.000 75.8 74.80
8 0 +1 0 0 1200 | 0.800 | 6.000 | 72.000 64.3 65.71
9 0 0 +1 0 12.00 | 0.600 | 8.000 | 72.000 74.3 73.41
10 0 0 -2 0 1200 | 0.600 | 2.000 | 72.000 75.3 76.60
11 0 0 0 +1 12.00 | 0.600 | 6.000 | 96.000 65.2 64.48
12 0 0 0 -2 1200 | 0.600 | 6.000 | 24.000 66.7 67.83
13 -1 0 0 0 8.000 | 0.600 | 6.000 | 72.000 67.1 63.33
14 -2 0 0 0 4.000 | 0.600 | 6.000 | 72.000 83.7 87.88
15 +2 +2 -2 +2 20.00 | 1.000 | 2.000 | 120.00 65.4 66.58
16 +2 +2 -2 -2 20.00 | 1.000 | 2.000 | 24.000 63.2 65.22
17 -2 -2 +2 -2 4.000 | 0.200 | 10.00 | 24.000 67.5 66.31
18 +2 -2 +2 +2 20.00 | 0.200 | 10.00 | 120.00 64.5 66.98
19 +2 -2 -2 -2 20.00 | 0.200 | 2.000 | 24.000 71.2 73.34
20 -2 +2 -2 +2 4000 | 1.000 | 2.000 | 120.00 65.4 64.71
21 -2 -2 +2 +2 4000 | 0.200 | 10.00 | 120.00 67.3 69.95
22 +2 +2 +2 -2 20.00 | 1.000 | 10.00 | 24.000 64.8 63.34
23 -2 +2 +2 -2 4000 | 1.000 | 10.00 | 24.000 76.8 76.89
24 -2 -2 -2 -2 4000 | 0.200 | 2.000 | 24.000 76.1 74.41
25 -2 +2 -2 -2 4.000 | 1.000 | 2.000 | 24.000 79.8 81.45
26 +2 +2 +2 +2 20.00 | 1.000 | 10.00 | 120.00 84.5 80.99
27 +2 -2 -2 +2 20.00 | 0.200 | 2.000 | 120.00 85.4 83.88
28 +2 -2 +2 -2 20.00 | 0.200 | 10.00 | 24.000 74.3 74.12
29 -2 -2 -2 +2 4.000 | 0.200 | 2.000 | 120.00 88.7 85.31
30 -2 +2 +2 +2 4.000 | 1.000 | 10.00 | 120.00 77.8 77.58

The behaviour of the system which was used to evaluate the
relationship between the response variable (y) and the
independent variables X1, Xz Xz and X4 was explained using

6

the empirical second-order polynomial model depicted by
equation (3.3)
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Y =4 +Zq:ﬁixi "‘Zq:ﬂiixiz + qi Zq:ﬂijxixj té

i=Li<] j=2

(3.3)

Where X1, X2, X3... Xk are the input variables which affect the
response, Y, fo, Bi, Bii, and Bij, (i = 1-k, j = 1-k) are the known
parameters and ¢ is the random error.

To assess the model significance and justify the potential of
response surface methodology (rsm) in optimizing the
adsorption variables, one way analysis of variance was used.
Reliability of the ANOVA result was judged using the fisher’s
F value and the probability function (P < 0.05). Large value of
F corresponding to very low value of P (P<<<0.05) was used
to determine the level of significance of the model. The
adequacy of rsm model and the reliability of the resulting
second order polynomial equation were assessed using the
goodness of fit statistics, namely; coefficient of determination
(R?), adjusted (R-squared) value and adequate precision value.

353
network

Data analysis and prediction using Modular neural

For modular neural network modelling, each layer of
parameters usually contains a vector of processing elements
(PEs) and the parameters selected apply to the entire vector.
The parameters are dependent on the neural model, but all
require a nonlinearity function to specify the behaviour of the
PEs. In addition, each layer has an associated learning rule
and learning parameters. Note that the number of PEs for the
output layer is determined by the number of columns selected
as your desired response.

3.5.3.1 Input data generation and processing

Input data employed for the training, validation and testing
were gotten from series of batch experiments based on central
composite design of experiment under varied initial metal ion
concentration, pH, adsorbent dose and contact time. A full
factorial central composite design of experiment with 6 center
points and 3 replicates resulted in a total of 90 experimental
runs were used as the input data. The data were randomly
divided into three subsets to represent the training (60%),
validation (25%) and testing (15%). The validation data was
employed to assess the performance and the generalization
potential of the trained network while the testing data was to
test the quality of the trained network.

To avoid the problem of weight variation which can
subsequently affects the efficiency of the training process, the
input and output data were first normalized to a give a weight
between 0.1 and 1.0 using visual developer (7).

3.5.3.2 Data training and design of network architecture

Input data training resulting to design of network architecture
is of paramount importance in the application of neural
network to data modeling and prediction. To obtain the
optimal network architecture that possesses the most accurate

understanding of the input data, two factors were considered.
First was the selection of the most accurate training algorithm
and secondly, the number of hidden neuron.

Based on this consideration, different training algorithm were
selected and tested to determine the best training algorithm
that will produce the most accurate network architecture.
Thereafter different hidden neurons were selected based on the
most accurate training algorithm to determine the exact
number of hidden neurons.

3.5.3.3 Network training and performance of modular neural
network

To train the network, 3 runs of 1000 epochs each were used.
In addition, cross validation data representing about 15% of
the total input data were introduce to monitor the training
process and prevent the network from memorizing the input
data instead of leaning which was a common problem
associated with overtraining. The progress of the training was
checked using the mean square error of regression (MSEREG)
graph for training and cross validation

3.5.3.4 Network testing and validation

To test the efficiency of the trained network, 25% of the input
data representing 22 input parameters were introduced to the
network. To validate the accuracy of the trained network, a
linear plot of the predicted value and the observed value of
Pb(1l) ion sorption efficiency onto acid activated shale was
obtained and the coefficient of determination R? value was
employed as a bases for judgement.

3.5.3.5 Sensitivity analysis of modular neural network

Sensitivity analysis of the network was done to allow the
trained network to assess the overall contributions of each
input variabless to the sorption efficiency of Pb(ll) ion onto
acid acitivated shale. Sensitivity analysis was employed to
give insights into the relative importance of individual input
parameters in other to identify those parameters that can be
safely ignored in subsequent analysis

3.5.3.6 Network application to new data

To test the ability of the network to predict the sorption
efficiency of Mn(ll) ion onto acid activated shale, 30 input
data generated from a response surface CCD design of
experiment were normalized and presentd to the network as
prediction data. Comparison between the predicted sorption
efficiency of manganese and the experimental values was
obtained and the correlation coefficient was employed the
measure the accuracy of prediction.

4. Resuslts and discussion

4.1 Microstructural and chemical composition of shale
fractions

Result of the microstructural and chemical analysis of the raw
shale, calcinated and acid activated shale conducted using
scanning electron  microscopy (SEM) and X-Ray

7
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Fluorescence (XRF) is presented in Figure 4.1, Figure 4.2,
Figure 4.3 and Table 4.1 respectively

2 coe e ra '.In". _-oru i '—_
Figure 4.3: SEM of acid activated shale

Scanning electron micrograph (SEM) was taken in order to
verify the presence of micropores in the structure of the shale.
It was observed from Figures 4.1, 4.2 and 4.3 that the surface
characteristics of the shale materials changes drastically with
calcination and acid treatment with the acid treated shale
showing a better irregular porous surface structure. The
implication is that acid treatment tends to open up the pore
spaces better than calcination thereby increasing the
adsorption properties of the material. The larger number of
macroporous structure seen with acid activated shale indicates
a higher surface area. This claim is based on the fact that as
biosorbent materials present larger numbers of microporous

structure, it adsorb higher amount of nitrogen, which resulted
to a higher BET surface area as reported in (21, 22)

Scanning electron micrograph (SEM) was taken in order to
verify the presence of micropores in the structure of the shale.
It was observed from Figures 4.1, 4.2 and 4.3 that the surface
characteristics of the shale materials changes drastically with
calcination and acid treatment with the acid treated shale
showing a better irregular porous surface structure. The
implication is that acid treatment tends to open up the pore
spaces better than calcination thereby increasing the
adsorption properties of the material. The larger number of
macroporous structure seen with acid activated shale indicates
a higher surface area. This claim is based on the fact that as
biosorbent materials present larger numbers of microporous
structure, it adsorb higher amount of nitrogen, which resulted
to a higher BET surface area as reported in (21, 22)

It was observed from the result of Table 4.1 that aluminium
oxide and silicon oxide were the dominant oxides present in
shale minerals. The alumina composition of the raw shale was
observed to be 21.33wt%, it increases to 24.41wt% for the
calcinated shale and decreases to 18.13wt% for the acid
activated shale apparently due to the acid dealumination of the
shale resulting from the effects of acidification. The high
value of alumina observed with shale makes shale fraction a
potential adsorbent.

Table 4.1: Chemical analysis of shale fractions

Oxides Lit. RSA CcsA AAS

CWt. 25) Value
Si0O2 69.00 490.53 54.47 57.19
AlOs 13.33 21.33 24.41 18.13
TiO> ~NA 136 118 =17
FeaOs = 09 = 74 = 09 0.28
Moo 3 38 173 114 1.63
MO N A 0.06 0.05 0.0
CaO 2.83 2.23 2.03 1.64
Na0O 1.03 2.Z1 1.87 1.56
KO NA 2,11 2.26 2.03
FP2Os NA 0.54 1.23 0.32
Si/Als s 176 1581 = 231 3.154a

(RSA: Raw Shale Adsorbent) (CSA: Calcinated
Shale Adsorbent) (AAS: Acid Activated Shale)

4.2 Screening of absorption variables using Anfis

An error tolerance level of 0.5, 40 epochs and a hybrid
optimization method was used to generate the fis structure as
shown in Figures 4.4, 4.5 and 4.6 respectively.

The adequacy of the fis structure was established from the
performance error curve which shows the learning rate against
the propergated error. Performance error lesser than unity
implies that the fis structure is adequate. Upon validation, the
performance of the fis structure was then assessed using the
checking data sets. A root mean square error (rmse) value of
0.04028 was good enough to declare that the fis structure can
navigate the design space and predict accurately the variables
with the most significant contributions towards the adsorption
process. To ascertain the variables with the highest significant
contributions, a graphical variation of each independent factor
variable and the corresponding root mean square error was
generated as presented in Figure 4.7a-d
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From the results of Figure 4.7a-d, it was observed that initial ~ The same procedure was employed to select the most
metal ion concentration, pH of aqueous solution, adsorbent  significant variables affecting the sorption of Mn(ll) ions onto
dose and contact time were the most significant variables that  acid activated shale and results obtained are presented in
affect the adsorption of Pb(ll) ion onto acid activated shale. Figures 4.8a-b.
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From the results of Figures 4.8a-b, it was observed that initial ~ optimize the overall process of adsorption in other to
metal ion concentration, pH of aqueous solution, adsorbent  determine the optimal values of each independent variables
dose and contact time were the most significant variables that  that will bring about the most effective metal ion removal.
affect the adsorption of Mn (1) ion onto acid activated shale.

Since adaptive neuro fuzzy inference system (Anfis) was able

to successfully select the variables that most influenced the 4.3 Adsorption process optimization using RSM, Inverse

adsorption of each metal ion on acid activated shale, a Matrix and Genetic Algorithm
response surface methodology (rsm) employing the central
composite design (CCD) was thereafter employed to Result of the one way analysis of variance (ANOVA) for the

sorption of Pb(I1) and Mn(ll) ion onto acid activated shale are
presented in Tables 4.2a-b

Table 4.2a: Analysis of variance table for validating model significance in optimizing the sorption of Pb(ll) ion onto acid
activated shale

Response 1 Pb{ll} Sorption Efficiency
ANOVA for Response Surface Quadratic Model
Analysis of variance table [Partial sum of squares - Type Il
Sum of Mean F p-value

Source Squares df Square Value Prob>F

Block 112.85 1 112.89

Model 2715.52 14 183.97 35.94 < 0.0001 =significant
A-initial metal 148680 i 1486.80 275.52 < QL0001
B-pH 66.33 1 66.33 12.29 0.0035
C-Adsorbent d 0.92 1 092 017 0.6859
D-Contact time 353.43 1 35343 £5.49 = 0.0001
AB 7.98 1 7.98 1.48 02441
AC 50.77F 1 50.77 9.41 0.0084
AD 82.36 i 82.36 15.26 00016
BC 38.75 1 38.75 7.18 0.0180
BD 8.56 1 8.56 1.59 0.2286
co 58.14 1 58.14 10.77 0.0055
A2 284.35 1 284.35 52,69 = 0.0001
g2 266.97 1 266.97 49 47 = 0.0001
c? 160.61 1 160.61 29.76 = 0.0001
02 48.69 1 48.68 9.02 0.0095

Table 4.2b: Analysis of variance table for validating model significance in optimizing the adsorption of Mn(ll) ion onto
acid activated shale

Response 1 Mn{ll} Sorption Efficiency
ANOWVA for Response Surface Quadratic Model
Analysis of variance table [Partial sum of squares - Type Ill]
Sum of Mean F p-value

Source Squares df Square Value Prob > F

Block 13.73 1 13.73

Model 1317.48 14 9411 13.03 = 0.0001 significant
A-lnitisl metal 123.76 1 123.76 17.13 a.00q0
E-Ad=zorbent o 15.20 1 15.20 210 0.1689
C-pH 16.83 1 16.83 233 01432
D-Contact time 904.05 1 04,05 125.14 = 0.0001
A 410 1 410 o.57 04637
AC 52.93 i 52.593 7.33 a.oi70
AD 1.27 1 1.27 o185 0.68719
BC 9.77 1 9.77 1.35 0.2644
80 23.28 1 23.28 3.22 0.0942
co 0.057 1 0.057 7.008E-003 0.9345
Az 37.40 i 37.40 518 00397
B oo 1 oo 1.487E-003 0.9698
ce 131.88 1 131.88 18.25 0.0008
De o.rs 1 o.7s o1 O.7457
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The goodness of fit statistics used in validating the
significance of the model is presented in table 4.3.

Table 4.3: Goodness of fit statistics for verifying model reliability

S/No Goodness of Fit Pb(ll) ion Mn(11) ion Adsorption
Statistics Adsorption
1 R? 0.9729 0.9287
2 Adj. R-Square 0.9459 0.8574
3 Pred. R-Square 0.8360 0.8122
4 Adeq. Precision 20.753 12.507
5 CV% 2.90 3.66

It was observed from the result of table 4.3 that; there is a  Based on the goodness of fit statistics presented in table 4.3, a
reasonable agreement between the predicted R? and the  second order polynomial equation was generated as presented
adjusted R? value. This reasonable agreement shows the  inequation 4.1 and 4.2 respectively

adequacy of the second order polynomial equation.

Y., =82.39333-0.32271X, + 2.71094X , — 2.00521X , + 0.055599X , —0.017656 X, X,
+0.44531X X , + 4.72656E — 003X, X, +0.97266 X , X , — 3.80859E — 003X, X,

+0.099284 X , X, —0.032198X 7 —0.19499X 7 —15.12370X . —5.78252E — 004 X ? (4.1)
where; X, =initial metalion conc., X, =pH, X, =adsorbentdose, X, =contact time

Y nanganese = 97-75667 +0.45286 X, —1.65104 X, +2.8078X , +0.086589X , +0.15820X, X,
—0.056836 X, X, —7.32422E — 004X, X , —0.48828X ,X, +0.062826 X , X , + 2.92969E — 004X , X,
—0.018245X +0.12370X 7 — 0.13704X? +7.36943E — 005X ; 4.2)
where; X, =initial metal ion conc., X, =adsorbentdose, X, =pH, X, =contact time

To diagnose the statistical properties of the model, the normal probability plot of residual presented in Figures 4.9a-b were
employed.

Normal % Prahahilitv
(%)
[=]

-2.88 -1.64 -0.40 084 208

Internally Studentized Residuals

Figure 4.9a: Normal probability plot of studentized residuals for the adsorption of Pb(l1) ion onto acid activated shale
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Figure 4.9b: Normal probability plot of studentized residuals for the adsorption of Mn(ll) ion onto acid activated shale

The normal probability plot of studentized residuals was
employed to assess the normality of the calculated residuals.
The normal probability plot of residuals which is the number
of standard deviation of actual values based on the predicted
values was employed to ascertain if the residuals (observed —
predicted) follows a normal distribution. It is the most
significant assumption for checking the sufficiency of a

statistical model. Result of Figures 4.9a and 4.9b revealed that
the computed residuals are approximately normally
distributed an indication that the model developed is
satisfactory. To study the effects of combine variables on the
sorption efficiency of Pb(ll) and Mn(ll) onto acid activated
shale, 3D surface plots presented as shown in Figure 4.10a-b
were employed

Pb(ll) Sorption Efficiency

0.60

C: Adsorbent dose

2500

T 15.00

A Initial metal ion conc.

020 500

Figure 4.10a: Response surface plot showing the interaction between selected variables on Pb(l1) ion adsorption onto acid
activated shale
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0on 400

Figure 4.10b: Response surface plot showing the interaction between selected variables on Mn(lIl) ion adsorption onto acid
activated shale
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A closer look at Figure 4.10a-b shows the presence of a
coloured hole at the middle of the upper surface. That was a
clue that more points lightly shaded for easier identification
fell below the surface. From the surface plots of Figures 4.10a
and 4.10b, it was observed that the colour of the surface get
darker towards initial metal ion concentration and indication
that this variable strongly influenced the adsorption of Pb(ll)
and Mn(ll) ions. The second order polynomial equations
showing the relationship between the sorption efficiency (y)
and the selected variables (x) as presented in equation 4.1 and
4.2 were thereafter solved to

determine the optimum values of the process variables in
enhancing the removal of Pb(ll) and Mn(ll) ions by acid
activated shale. To solve the equation, two additional methods
were employed to verify the numerical solution obtained from
the experimental design software and they include; Genetic
Algorithm (GA) and Inverse Matrix Method For the inverse
matrix method, the second order polynomial equations were
first written in terms of the coded value of the variables using
the coefficient statistics of each metal ion studied as presented
in equation 4.3 and 4.4 respectively.

Y., =87.58—7.87A+1.66B—0.20C +3.84D —0.71AB +1.78AC + 2.27AD +1.56BC — 0.73BD

+1.91CD — 3.22AA—3.12BB — 2.42CC —1.33DD (4.3)
Y, anganess = 7564 — 2.27A+0.80B + 0.84C + 6.14D + 0.51AB —1.82AC — 0.28AD —0.78BC
+1.21BD +0.056CD —1.17 AA + 0.020BB — 2.19CC +0.17DD (4.4)

A (4 by 4) matrix from where the stationary point in terms of
the selected input variables; initial metal ion concentration,
pH, adsorbent dose, adsorption temperature and contact time

—~3.220 -0.355 0.890 1.135
5 _ |~0855 -3120 0780 -0365
tead 0.890 0.780 -2.420 0.955
1.135 -0.365 0.955 -1.330

(Lead)

The product of the 4 by 4 matrix was solved using Microsoft
Excel and the stationary point was determined as follows

_1 B b

For Pb(ll) ion; 2 =

38019447 [-1.900972
1| -0.68686 | | 034343
2| 2.058054 |~ | ~1.029027
2023574 | | -1.011787
Ly

For Mn(ll) ion; 2 =

-5.81719 2.90860

1| 3.49970| |-1.74985
T 2| -3.46849| | 1.73425
_348114| | 1.74057

were determined was then derived for each of the metal ion
studied as presented below.

—7.870
- T%EH 2 0.255 -0.910 -0.140
Bf::ng:nese | 0.%65 b 0.020 -0.390 0.605
3}9481) -0.390 -2.190 0.028
-0.140 0.605 0.028 0.170

(Manganese)

The computed value of the stationary points (X;) was

substituted into equations 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10
respectively to determine the optimum values of the selected
variables while the efficiency of metal ion adsorbed expressed
as percentage was calculated using equation 4.11

X, =15
Xconc (Pb) = - 5 ) (45)
X, 12
Xconc (Mn) = 14 (46)
XpH = XZ__6 (4.7)
2
X, —298
Xtemp = 3 5 (48)
X,—0.6
Xdose = 407 (4.9)
X. =72
Xiime = 52—4 (4.10)
y=B,+=xb (4.12)
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To find the optimal solution using genetic algorithm, equation
4.3 and 4.4 were written in MATLAB codes using M-File and
saved as (.m file) so as to generate the fitness function. Genetic
algorithm tool box was then activated using ‘gatool’
command. Performance criteria selected for the algorithm
include;

1. Double vector population type was selected since it
works directly with the default creation mutation and
crossover functions unlike custom population type
that demands the writing of a new creation mutation
and crossover functions.

2. The population size was set at 20 representing the

8. Elite count of 2 and a crossover fraction of 0.8 was
employed

Using the above performance criteria, the algorithm was
lunched to perform the optimization in other to calculate the
optimum values of the variables together with the graphical
presentation of the current best individual among the variables
and the average distance between individuals in each
generation. The matrix form of GA solution is presented as
follows

number of individual in each generation. This size 1.81800 0.24012

was chosen to allow the algorithm creates multiple 0.36930 228037

subpopulation with each subpopulation working in  Pb(ll) = Mn(ll) =

synergy to obtain an optimum result 3.52581 -1.8011
3. The creation function was set at uniform to allow the 0.21496 0.24938

algorithm creates random initial population with a
uniform distribution.

4. The initial population was left blank to allow the
algorithm search and fix the best initial population

5. The initial scores were left blank to allow the
algorithm use the fitness function to compute the
most accurate initial population scores.

6. An initial range of [1 : 1.1] was set for the initial
population

7. The default stochastic uniform selection function
was used

The optimum value of the variables; initial metal ion
concentration, pH, adsorbent dose, adsorption temperature
and contact time were also computed using equations 4.5, 4.6,
4.7,4.8,4.9 and 4.10 respectively while the efficiency of metal
ion adsorbed expressed as percentage was calculated using
equation 4.11. The graphical presentation of the current best
individual and the average distance between individuals per
each generation are presented in Figures 4.11a-b
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Figure 4.11a: Current best individual and the average distance for Pb(Il) ion adsorption
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Based on the results of Figures 4.11a and 4.11b, metal ion
concentration was marked the best variable affecting the
adsorption of Pb(Il) and Mn(Il) ions by acid activated shale.
To validate the optimal solutions produced by the different

methods and select the optimum value of the variables, batch
adsorption experiment was conducted based on the different
solutions and the sorption efficiency of the metal ions were

calculated and compared as shown in Table 4.4a.

Table 4.4a: Computed optimum values of adsorption variables based on different methods of optimization

Optimum Values of Selected

% Sorption Efficiency

Optimization Variables Variables
Method Absolute
Pb(I1) ion Mn(ll) ion | Predicted | Experiment | Difference
Adsorption Adsorption

Initial metal ion 5.91 16.20
concentration (mg/I) Pb(ll) = 88.9 | Pb(ll) = 89.3 | Pb(ll) = 0.40

pH 6.74 2.40
Genetic Adsorbent dose (g) 1.03 1.06 Cr(111) =80.6 | Cr(lll)=71.2 | Cr(l11) =9.40

Algorithm Contact time (min) 77.16 77.99
Adsorption temp. (K) Nil Nil Mn(ll) =76.6 | Mn(ll) =46.7 | Mn(ll) = 29.9

Initial metal ion 5.50 23.63
concentration (mg/I) Pb(ll) =84.0 | Pb(ll) = 83.8 | Pb(ll) = 0.20

Adsorbent dose (g) 0.40 0.25
Inverse Matrix | Adsorption temp. (K) Nil Nil Cr(l11) =78.8 | Cr(lll)=76.3 | Cr(lll) =2.50

Method Contact time (min) 48 114
pH 6.69 947 Mn(11) = 80.3 | Mn(ll) = 74.3 | Mn(ll) = 6.00

Initial metal ion 23.29 4.00
concentration (mg/I) Pb(ll) =84.4 | Pb(ll) =88.7 | Pb(ll) =4.30

Adsorbent dose (g) 0.89 1.00
Numerical pH 6.97 7.74 Cr(l11)=78.8 | Cr(lll) =77.4 | Cr(lll) =1.40

Optimization Contact time (min) 120 120
Adsorption temp. (K) Nil Nil Mn(l1) = 85.3 | Mn(I) =88.7 | Mn(ll) = 3.40

From the results of Table 4.4, inverse matrix method had the
absolute difference between the predicted and
experimental values and was therefore selected as the best
solution to the optimal second order polynomial equation.

least

Based on the optimal solution generated by inverse matrix
method of optimization, the calculated optimal values of
adsorption variables for Pb(Il) and Mn(l1) ion adsorption onto
acid activated shale is presented in Table 4.4b

Table 4.4b: Optimal values of adsorption variables

Optimization Adsorption Variables Calculated Optimal Values
Method Pb(Il) Mn(11)
Initial metal ion 5.50 23.63
concentration (mg/l)
Adsorbent dose (g) 0.40 0.25
Inverse Matrix Adsorption temp. (K) Nil Nil
Method Contact time (min) 48 114
pH 6.69 9.47
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4.4 Modeling and prediction using modular neural network

The descriptive statistics of the input and output

data used for the neural network training is
presented in Table 4.5

Table 4.5: Descriptive statistics of modular neural network variables

Data Statistics
Variables Minimum Maximum Mean Standard deviation
Input Layer
Initial conc. of Pb(II) ion (mg/1) El 35 14.21 8.029
rH 2 10 6.02 2.868
Adsorbent Dose {(g) 0.2 1.0 0.593 0.3005
Contact Time (min) 24 120 T70.93 35.050
Output Layer
Pb(II) Sorption Efficiency (%) 54.6 02.3 77.074 0.453
To ascertain the most accurate training algorithm,  will produce the most accurate network

different training algorithm were selected and tested
to determine the best training algorithm that

architecture. Table 4.6 shows the performance of
the different algorithm tested.

Table 4.6: Selection of optimum training algorithm for modular neural network

S/MNo Training Algorithm Training MSE Cross R-Square
(Learning Rule) Validation MSE
1 Gradient information (Step) 0.06578 0.04803 0.7495
2 Gradient and weight 0.05895 0.04719 0.7726
change (Momentum)
3 Gradient and rate of change 0.06234 0.04924 0.7483
of gradient (Quick prop)
4 Adaptive step sizes for 0.02424 0.02692 0.8738
gradient plus momentum
(Delta Bar Delta)
5 Second order method for 0.02217 0.06828 0.7662
gradient (Conjugate
gradient)
6 Improved second order 0.00010* 0.00621* 0.988*
method for gradient
(Levenberg Marquardt)

From the result of Table 4.6, it was observed that
improved second order method for gradient also
known as Levenberg Marquardt Back Propagation
training algorithm was the best learning rule and
was therefore adopted in designing the network
architecture. To determine the exact number of
hidden neuron, different numbers of hidden neurons
were selected to train a network using the

Levenberg Marquardt Back Propagation training
algorithm. The performance of the trained network
was then assessed using mean square error (MSE)
and coefficient of determination R2. The number of
hidden neuron corresponding to the lowest MSE
and the highest R? as presented in Table 4.7 was
selected to design the network architecture

Table 4.7: Optimum number of hidden neurons for modular neural network

S/No Number of Hidden Training MSE Cross R-Square
Neurons Validation MSE
1 2 0.000100* 0.006320%* 0.988*
2 3 0.000105 0.011606 0.985
3 5 0.000100 0.063900 0.944
4 8 0.000105 0.107660 0.878
5 10 0.000104 0.221130 0.806
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Based on the results of Table 4.6 and 4.7, Levenberg
Marquardt Back Propagation training algorithm
with 2 hidden neuron in the input and output layer
with tangent sigmoid transfer function, having a
target goal of 0.001 and epoch of 1000 was used to

train a network of 4 input processing elements
(PEs), 1 output processing elements and 54
exemplars to produce an optimal neural network
structure as presented in Figures 4.12a and 4.12b.

Modular

Input PE =:

Output PE 2:

Exemplarz:

Hidden Layvers: 2

Figure 4.12b: Optimun network architecture

To assess the progress of the training, the mean square error
(MSE) graph for training and cross validation presented in
Figures 4.13a and 4.13b were obtained

The training and cross validation statistics which was
employed to evaluate the effectiveness of the trained network
is presented in figure 4.14

Training MSE
1
03
08
06
g os ——Run#1
0.4 — Run #2
03 | Run #3
2
41 100 199 288 397 496 595 €984 793 @92 991
Epoch

Figure 4.13a: Training progress of MNN
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Cross Validation MSE
1
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08
LU=
06
-
g 0s ——FRun#1
04 Run#2
a3 Run #3
01
R =
1 100 183 288 3BT 436 585 €84 733 892 981
Epoch
Figure 4.13b: Cross validation progress of MNN
Training Cross Validation
Training Standard Cross Validation Standard
[All Runs Minimum Deviation Minimum Deviation
Average of b ) b
Minimum MSEs 0.000104837 o 0.021899809 0.017056541
Average of Final b A b h
MSES 0.000104837 3.58365E-18 0.075534031 0.061351226
Best Networks Training Cross Validation
Run # 1 ) 1
Epoch # 100 ? 77 A
Minimum MSE 0.000104837 = 0.003058134 |
Final MSE 0.000104837 0.045040441 |

Figure 4.14: Evaluation statistics for MNN

To evaluate the performance of the trained network,

experimental

values of Pb(Il)

ion

sorption

comparison

between

the

predicted

sorption

efficiency by acid activated shale was obtained as

efficiency of Pb(Il) ion onto acid activated shale
using modular neural network (MNN) and the

presented in Figure 4.15

E..
S
performance Efficiency

Desired Output and Actual Network Output

krase
MRMSE
MAE

pMin Abs Error
fMax Abs Erfror

0.038147633
0.040973384
0.026206724
0.000405417
0.091824991
0.988433872

Figure 4.15: Comparison of predicted sorption efficiency of Pb(ll) ion using MNN against the experimental values
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Figure 4.17: Performance of MNN on new input data

Result of figure 4.15 revealed a strong agreement between the
experimental sorption efficiency data and modular neural
network predicted data with a performance statistics of RMSE
(0.03815), NRMSE (0.04097), Max.AE (0.02621), Min.AE
(0.00041) and R? (0.988).

Sensitivity analysis was employed to give insights into the
relative importance of individual input parameters in other to
identify those parameters with the highest significant
contributions towards the sorption of Pb(ll) ion onto acid
activated shale. Result of the sensitivity analysis is presented
in Figure 4.16

Coefficient of determination of 0.9648 as observed in Figure
4.17 was good enough to justify the strength and accuracy of
modular neural network as a tool for modeling and prediction
of adsorption processes.

5. Conclusion

The study has successfully demonstrated the use of adaptive
neuro-fuzzy inference system (Anfis) in ranking selected
adsorption variables in terms of their significant contributions
towards the effective removal of metal ions from aqueous
solution. In addition, the performance of numerical
optimization, inverse matrix method, and genetic algorithm in
obtaining the optimal solution of the second other polynomial
equation generated from statistical design of experiment has
been successfully implemented. The approach will not only
encourage the use of DOE in adsorption process, it will also
expose researchers in the field of environmental systems
optimization to new methods of optimal solution
determination. More also, the suitability of modular neural
network in modeling and prediction of metal ion adsorption
onto porous solid adsorbent was investigated and found to be
highly effective. Modular neural network gave a strong
agreement between the experimental and predicted sorption
efficiency of Pb(ll) and Mn(ll) ions with R? values of 0.977
and 0.9648 having performance statistics of RMSE (0.03815),
NRMSE (0.04097), Max.AE (0.02621), Min.AE (0.00041)
and R? (0.988).
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