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Abstract

In this article, we present a method known as Natural decomposition transform method (NDTM). This
method is the couple of Natural transform and Adomian decomposition method. By means of this new
method, we successfully handle some coupled systems of nonlinear fractional order partial di�erential equa-
tions (NFPDEs). We obtain the solutions in the form of series which is rapidly converges to the exact
solution. Two test examples are provided for the illustration of our method.
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1. Introduction

In the last few decades fractional calculus has got considerable attention from researchers. This is
due to its wide range applications in various branches of mathematics,engineering and all other applied
sciences. As most of the phenomenons of physical science ,biological sciences and chemical sciences etc
are accurately described by fractional di�erential equations (FDEs), for detail see [1, 2, 3, 4, 5]. The area
devoted to the existence and uniqueness of positive solutions to FDEs has been widely explored by many
researchers and plenty of research articles are available in literature, we refer few of them which can be found
in [6, 7, 8, 9, 10]. Since most of the physical biological ,chemical phenomena and description of memory
hereditary properties can be well studied in the form of mathematical models involving di�erential equations.
However these models are well studied in terms of classical di�erential equations. But classical di�erential
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equations can not explain the characteristic behavior of hereditary material and process more accurately.
Therefore this area need further exploration and investigations in terms of FDEs as the said equations can
the ability to describe the aforementioned characteristic more precisely. Therefore in last few decades, the
area devoted to FDEs has given much importance and now plenty of articles are available in literature,
we refer few of them as [11, 12, 13, 14, 15]. Sine in most of the problems of dynamics, physics, biological
and engineering disciplines are nonlinear in nature and to �nd their exact solution is very di�cult task. To
obtain better approximate solutions numerious techniques have been developed in literature. For instance, in
[16, 17, 18, 19], authors have solved numerically various PDEs representing mathematical models of various
phenomenons. As the coupled systems of linear FPDEs have been studied by many authors in last few years
by using Adomian decomposition method [20], Homotopy Analysis method [21] and operational matrices
and �nite di�erence method [22, 23, 24, 25]. On the other hand, coupled system of non-linear FPDEs are
rarely studied. For example in [34], authors have solved a coupled system of nonlinear PDEs by using Natural
transform decomposition method. In same line in [20], the authors have used Adomian decomposition method
to �nd approximate solutions to a coupled system of FDEs. Natural transform was introduced by Khan and
his co-author [26] in 2008. The concerned transform has the property of being converging to both Laplace
and Sumudu transform. Also the integral transforms like Fourier, Laplace, Mellin, and Sumudu transform
can be extracted from Natural transform easily, see [27]. The analytical solution to some ordinary FDEs have
been found by using Natural transform, for detail see[28]. In this article, we used Natural transform coupled
with Adomian decomposition method to establish an iterative scheme which is helpful in solving coupled
system of nonlinear FPDEs. The respective method is applicable to both linear and non linear ordinary as
well as PDEs with fractional order. Our procedure is an easy tools and can be applied to a verity of problems
of linear and nonlinear FPDEs. In this paper, we solve the following coupled system of FPDEs

Dα
t U(x, t)−D2

xU(x, t)− 2U(x, t)Dα
xU(x, t) +Dx[U(x, t)V (x, t)] = 0, 0 < α ≤ 1,

D
β
t V (x, t)−D2

xV (x, t)− 2V (x, t)Dα
xV (x, t) +Dx[U(x, t)V (x, t)] = 0, 0 < β ≤ 1,

subject to the initial conditions U(x, 0) = sin(x), V (x, 0) = sin(x).

(1.1)

Further, we extend the proposed method to solve a more general non-linear non-homogenous coupled system
of FPDEs given by

Dα
t U(x, y, t)−DxV (x, y, t)DyW (x, y, t)−DxV (x, y, t)DxW (x, y, t) = −U(x, y, t), 0 < α ≤ 1,

D
β
t V (x, y, t) +DxW (x, y, t)DyU(x, y, t)−DyU(x, y, t)DxW (x, y, t) = V (x, y, t), 0 < β ≤ 1,

D
γ
tW (x, y, t)−DxU(x, y, t)DyV (x, t)−DxU(x, y, t)DxV (x, y, t) =W (x, y, t), 0 < γ ≤ 1,

subject to the initial conditions

U(x, y, 0) = ex+y, V (x, y, 0) = ex−y, W (x, y, 0) = ey−x.

(1.2)

In the system (1.1) and (4.15), the notation Dz is used for ∂
∂z . We solve the above coupled systems of FPDEs

by means of the proposed method.

2. Basic De�nitions and Results

We recall some basic de�nitions and known results from fractional calculus which can be traced in
[5, 6, 7, 23, 24, 25, 26, 30, 31, 32].

De�nition 1. The Rieman-Liouville fractional integral of order α ∈ R+ of a function h(t) ∈ L([0, 1],R) is
de�ned by

Iαt h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s) ds

provided that the integral on the right side is converging.
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De�nition 2. [23], For µ ∈ R, a function f : R → R+ is said to be in the space Cµ if it can be written as
f(x) = xqf1(x) with q > µ, f1(x) ∈ C[0,∞) and it is in the space f(x) ∈ Cn

µ , if f
(n) ∈ Cµ for n ∈ NU{0}.

De�nition 3. If α > 0, then the Rieman-Liouville fractional order derivative of a function h ∈ Cn
−1 with

n ∈ NU{0} is de�ned by
Dα

t h(t) = Dn
t [I

n−αh(t)], n− 1 < α ≤ n, n ∈ N.

.

De�nition 4. If α > 0, then the Caputo's fractional order derivative of a function h ∈ Cn
−1 with n ∈ NU{0}

is de�ned by

Dα
t h(t) =

{
In−α[f (n)(t)], n− 1 < α ≤ n, n ∈ N,

Dn
t h(t), α = n, n ∈ N.

.

De�nition 5. A two parameter Mittag-Le�er function is de�ned by

Ep,q(t) =

∞∑
k=0

tk

Γ(kp+ q)
.

for p = q = 1, E1,1(t) = et, E1,1(−t) = e−t.

De�nition 6. The Natural transform of a function v(x, t) for t ≥ 0, is de�ned by

N[v(x, t)] = R(x, s, u) =

∫ ∞

0
e−st v(x, ut) dt,

where s, u are the transform parameters and are assumed to be real and positive.

De�nition 7. The Natural transform of Mittag-Le�er function Ep,q(t) is de�ned by

N[Ep,q(t)] =

∞∑
k=0

uk+1Γ(k + 1)

sk+1Γ(kp+ q)
.

.

De�nition 8. The Natural transform of Dαf(t) is de�ned by:

N (Dαf(t)) = N
(
In−αf (n)(t)

)
= N

[
1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds

]
=
un−α

sn−α
N{f (n)(t)} =

un−α

sn−α

[
sn

un
R(s, u)−

n−1∑
k=0

sn−k−1

un−k
f (k)(0)

]
.

(2.1)

Lemma 1. [30, 31, 32] The Natural transform of ∂αf(x,t)
∂tα w.r.t tcan be calculated as:

N

[
∂αf(x, t)

∂tα

]
=
sα

uα
F̄ (x, s, u)−

n−1∑
k=0

sn−k−1

un−k

[
lim
t→0

∂αf(x, t)

∂tα

]
. (2.2)

Lemma 2. [31] The Natural transform of α order partial derivative of f(x, t) w.r.t x is de�ned by

N

[
∂αf(x, t)

∂xα

]
= Dα

x F̄ (x, s, u).

Lemma 3. The dual relation between Natural transform and Laplace transform is given by

N [f(x, t)] = R(x, s, u) =
1

u

∫ ∞

0
e

−st
u f(x, t)dt =

1

u
F (x,

s

u
).
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3. Natural Decomposition Transform Method(NDTM)

In this section, we are carried out the general procedure of our proposed method Natural decomposition
transform method (NDTM) by considering the following coupled system of FPDEs

Dα
t U(x, t) +DxV (x, t) + F (U, V )(x, t) = f(x, t), 0 < α ≤ 1,

D
β
t V (x, t) +DxU(x, t) +G(U, V )(x, t) = g(x, t), 0 < β ≤ 1,

(3.1)

subject to the initial conditions
U(x, 0) = h1(x), V (x, 0) = h2(x), (3.2)

where Dα
t = ∂α

∂tα , Dx = ∂
∂x and D

β
t = ∂β

∂tβ
, partial di�erential operators and F (U, V )(x, t) and G(U, V )(x, t)

are nonlinear operators and f(x, t) g(x, t) are the non-homogenous source terms. Taking the Natural trans-
form of (3.1) and (3.2), we get

sα

uα
U(x, s, u)−

n−1∑
k=0

sα−k−1

uα−k
U (k)(x, t) |t=0 +N[DxV (x, t)] +N[F (U, V )(x, t)] = N[f(x, t)],

sβ

uβ
U(x, s, u)−

n−1∑
k=0

sβ−k−1

uβ−k
V (k)(x, t) |t=0 +N[DxU(x, t)] +N[F (U, V )(x, t)] = N[g(x, t)].

(3.3)

Using the initial conditions (3.2) and rearranging the terms, we have

U(x, s, u) =
h1(x)

s
− uα

sα
N[DxV (x, t) + F (U, V )(x, t)− f(x, t)],

V (x, s, u) =
h2(x)

s
− uβ

sβ
N[DxU(x, t) +G(U, V )(x, t)− g(x, t)].

(3.4)

Taking the inverse Natural transform of (3.3), we have

U(x, t) = ϕ(x, t)−N−1

[
uα

sα
N[DxV (x, t) + F (U, V )(x, t)− f(x, t)]

]
,

V (x, t) = ϕ(x, t)−N−1

[
uβ

sβ
N[DxU(x, t) + F (U, V )(x, t)− f(x, t)]

]
,

(3.5)

where

ϕ(x, t) =
h1(x)

s
+
uα

sα
N[f(x, t)],

ψ(x, t) =
h2(x)

s
+
uβ

sβ
N[f(x, t)].

(3.6)

Now assume the solution U(x, t) and V (x, t) in terms of in�nite series given by

U(x, t) =

∞∑
n=0

Un(x, t), V (x, t) =

∞∑
n=0

Vn(x, t). (3.7)

Also the nonlinear term F (U, V ) and G(U, V ) are decomposed in term of Adomian polynomials as

F (U, V ) =
∞∑
n=0

Pn(x, t), G(U, V ) =
∞∑
n=0

Qn(x, t), (3.8)
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where Pn and Qn are Adomian polynomials [35], and can be easily computed by the formula

Pn =
1

Γ(n+ 1)

dn

dλn

[
F

( n∑
i=0

λiUi(x, t)

)]∣∣∣∣
λ=0

,

Qn =
1

Γ(n+ 1)

dn

dλn

[
G

( n∑
i=0

λiVi(x, t)

)]∣∣∣∣
λ=0

,

where n = 0, 1, 2, . . . by putting (3.7) and (3.8) in (3.5), we have

∞∑
n=0

Un(x, t) = ϕ(x, t)−N−1

[
uα

sα
N

[
Dx[

∞∑
n=0

Un(x, t)] +
∞∑
n=0

Pn(x, t)

]]
,

∞∑
n=0

Vn(x, t) = ψ(x, t)−N−1

[
uα

sα
N

[
Dx[

∞∑
n=0

Vn(x, t)] +

∞∑
n=0

Qn(x, t)

]]
.

(3.9)

From (3.9), we equate terms on both sides to produce a recurrence relations as

U0(x, t) = ϕ(x, t),

U1(x, t) = −N−1

[
uα

sα
N[DxU0(x, t) + P0(x, t)]

]
,

U2(x, t) = −N−1

[
uα

sα
N[DxU1(x, t) + P1(x, t)]

]
,

...

Un+1(x, t) = −N−1

[
uα

sα
N[DxUn(x, t) + Pn(x, t)]

]
, n ≥ 1.

(3.10)

Similarly

V0(x, t) = ψ(x, t),

V1(x, t) = −N−1

[
uα

sα
N[DxV0(x, t) +Q0(x, t)]

]
V2(x, t) = −N−1

[
uα

sα
N[DxV1(x, t) +Q1(x, t]

]
...

Vn+1(x, t) = −N−1

[
uα

sα
N[DxVn(x, t) +Qn(x, t)]

]
, n ≥ 1.

(3.11)

Hence after evaluation of (3.10) and (3.11), the approximate solutions for the nonlinear system(3.1) are given
by

U(x, t) =

∞∑
n=0

Un(x, t), V (x, t) =

∞∑
n=0

Vn(x, t).

4. Application of Natural Decomposition Transform method

In this section, we test the newly established algorithm of previous section by solving the following
systems of FPDEs.
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Example 4.

Dα
t U(x, t)−D2

xU(x, t)− 2U(x, t)DxU(x, t) +Dx(UV ) = 0, 0 < α ≤ 1,

D
β
t V (x, t)−D2

xV (x, t)− 2V (x, t)DxV (x, t) +Dx(UV ) = 0, 0 < β ≤ 1,
(4.1)

subject to the initial conditions

U(x, 0) = sin(x), V (x, 0) = sin(x). (4.2)

Using the afore mentioned method, we can generate the following recursive relation as

U0(x, t) = sin(x)

U1(x, t) = N−1

[
uα

sα
N[(U0)xx + 2P0(U)−Q0(U, V ))]

]
U2(x, t) = N−1

[
uα

sα
N[U1xx + 2P1(U,Ux)−Q1(U, V )]

]
...

...
...

Un+1(x, t) = N−1

[
uα

sα
N[(Unxx + 2Pn(U)−Qn(U, V )]

]
(4.3)

and

V0(x, t) = sin(x)

V1(x, t) = N−1[
uα

sα
N [(V0)xx + 2R0(V )− (Q0(U, V ))x]]

V2(x, t) = N−1[
uα

sα
N [(V1)xx + 2P1(V )− (Q1(U, V ))x]]

...
...

...

Vn+1(x, t) = N−1[
uα

sα
N [(Vn)xx + 2Rn(U)− (Qn(U, V ))x]].

(4.4)

Now from the recurrence relation (4.3) and (4.4), we calculate the remaining terms as

U1(x, t) = − sin(x)
tα

Γ(α+ 1)
, (4.5)

U2(x, t) = sin(x)
t2α

Γ(2α+ 1)
, (4.6)

U3(x, t) = − sin(x)
t3α

Γ(3α+ 1)
, (4.7)

... (4.8)

and

V1(x, t) = − sin(x)
tβ

Γ(β + 1)
, (4.9)

V2(x, t) = sin(x)
t2β

Γ(2β + 1)
, (4.10)

V3(x, t) = − sin(x)
t3β

Γ(3β + 1)
, (4.11)

... (4.12)
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Accumulating the terms, we have the approximate solutions of unknown functions U(x, t), V (x, t) as

U(x, t) = sin(x)− tα

Γ(α+ 1)
sin(x) +

t2α

Γ(2α+ 1)
sin(x)− t3α

Γ(3α+ 1)
sin(x) + ...

= sin(x)Eα(−tα)
(4.13)

and similarly

V (x, t) = sin(x)[
∞∑
k=0

(−1)k
tkβ

Γ(kβ + 1)
] = sin(x)Eβ(−tβ). (4.14)

Now if we put α = β = 1 in (4.13) and (4.14), we get exact solution as given in [34] which are U(x, t) =
sin(x)e−t, V (x, t) = sin(x)e−t.

At α = 1 and β = 1 the exact and approximate solutions are in close agreement with each other. When
α, β are tending to 1 the approximate solutions approaches to exact solutions. This phenomenon stats that
our method is in close agreement with exact solution.

Example 5. Consider the following coupled system of nonlinear FPDES of the form

Dα
t U(x, y, t)−DxV (x, y, t)DyW (x, y, t)−DxV (x, y, t)DxW (x, y, t) = −U(x, y, t), 0 < α ≤ 1,

D
β
t V (x, y, t) +DxW (x, y, t)DyU(x, y, t)−DyU(x, y, t)DxW (x, y, t) = V (x, y, t), 0 < β ≤ 1,

D
γ
tW (x, y, t)−DxU(x, y, t)DyV (x, t)−DxU(x, y, t)DxV (x, y, t) =W (x, y, t), 0 < γ ≤ 1,

subject to the initial conditions

U(x, y, 0) = ex+y, V (x, y, 0) = ex−y, W (x, y, 0) = ey−x.

(4.15)

We solve the above system with the help of proposed method and get the terms of required series solutions
as

U0(x, y, t) = ex−y,

U1(x, y, t) = −ex+y tα

Γ(α+ 1)
,

U2(x, y, t) = ex+y t2α

Γ(2α+ 1)
,

U3(x, y, t) = −ex+y t4α

Γ(4α+ 1)

...

(4.16)

and

V0(x, y, t) = ex−y,

V1(x, y, t) = ex−y tβ

Γ(β + 1)
,

V2(x, y, t) == ex−y t2β

Γ(2β + 1)
,

V3(x, y, t) = ex−y t3β

Γ(3β + 1)
,

V4(x, y, t) = ex−y t4β

Γ(4β + 1)
,

...

(4.17)
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and

W0(x, y, t) = ex−y

W1(x, y, t) = ey−x tγ

Γ(γ + 1)
,

W2(x, y, t) = ey−x t2γ

Γ(2γ + 1)
,

W3(x, y, t) = ey−x t3γ

Γ(3γ + 1)
,

....

(4.18)

After accumulating the terms, we have

U(x, y, t) = U0 + U1 + U2 + · · ·

= ex+y − ex+y tα

Γ(α+ 1)
+ ex+y t2α

Γ(2α+ 1)
+ · · ·

= ex+yEα(−tα)

(4.19)

and

V (x, y, t) = V0 + V1 + V2 + · · ·
= ex−yEβ(t

β)
(4.20)

and

W (x, y, t) =W0 +W1 +W2 + · · ·
= ey−xEγ(t

γ).
(4.21)

If we put α = β = γ = 1 in (4.19), (4.20) and (4.21), we have

U(x, y, t) = ey+x−t, V (x, y, t) = ex−y+t, and W (x, y, t) = ey−x+t

which is the exact solution obtained in [20] by using ADM and [34] using NDTM. At α = 1, β = 1 and γ = 1
the exact and approximate solutions are in close agreement with each other. When α, β, γ are tending to 1
the approximate solutions approaches to exact solutions. This phenomenon stats that our method is in close
agreement with exact solution.

5. Conclusions

we have applied successfully the newly developed method Natural Decomposition transform method
to nonlinear coupled system of fractional order partial di�erential equations. This new proposed method
established in this article is highly accurate. With the help of this method we found exact solution of
nonlinear coupled system of FPDES. We also compared our results with exact solution obtained by using
other method such as ADM, HAM and LDM. We found that our results completely agree with the results
of aforementioned method. Also the applicability of the proposed method is shown by images of exact
and approximate solutions for the considered problems. Hence Natural decomposition transform method is
applicable to a variety of problem both linear and non-linear fractional order partial di�erential equations
and fractional order ordinary di�erential equations.
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