
Avrupa Bilim ve Teknoloji Dergisi 

Özel Sayı, S. 120-129, Nisan 2020 

© Telif hakkı EJOSAT’a aittir 

Araştırma Makalesi 
 

 

 

 
www.ejosat.com ISSN:2148-2683 

 

European Journal of Science and Technology 

Special Issue, pp. 120-129, April 2020 

Copyright © 2020 EJOSAT 

Research Article 

 

 

http://dergipark.gov.tr/ejosat   120 

Neural Network Based Sliding Mode Controller with Genetic 

Algorithm for Two Link Robot Manipulator* 

Melikcan Ölgün1, Umut Tilki2 ** 

1 Suleyman Demirel University, Faculty of Engineering, Departmant of Electronics and Communication Engineering, Isparta, Türkiye (ORCID: 0000-0002-2892-

9319) 
2,* Suleyman Demirel University, Faculty of Engineering, Departmant of Electrical and Electronics Engineering, Isparta, Türkiye (ORCID: 0000-0002-8988-787X) 

(Conference Date: 5-7 March 2020) 

(DOI: 10.31590/ejosat.araconf16) 

 

ATIF/REFERENCE: Ölgün, M. & Tilki, U. (2020). Neural Network Based Sliding Mode Controller with Genetic Algorithm for 

Two Link Robot Manipulator. Avrupa Bilim ve Teknoloji Dergisi, (Special Issue), 120-129. 

Abstract 

In this paper, a novel control method is proposed in order to control the trajectory of two link robotic manipulator. The model of the 

manipulator has some unknown parameters because of the elasticity of the used materials for robot manipulator. Besides the robotic 

manipulators are generally open for the external disturbances. Radial basis function neural networks are employed in order to model 

these unknown parameters. The controller structure for trajectory tracking for the robot manipulator is based on robust and adaptive 

Sliding Mode Control (SMC). The coefficients of the SMC is calculated by the help of evolutionary algorithm, namely genetic 

algorithm. The proposed algorithm guarantees that the tracking error converges to zero in a finite time. The stability of the closed loop 

system is ensured by Lyapunov Theory. Numerical simulations have been conducted in Matlab/Simulink environment to demonstrate 

the validity of the proposed controller. Moreover, effectiveness and validity of the proposed control method is confirmed by 

comparative simulation results. The conducted experiments are demonstrated that proposed controller has disturbance rejection, 

chattering free, robust and fast property when we compared with other approaches in the literature. 

Keywords: Sliding Mode Control, Genetic Algorithm, Robot Manipulator, Trajectory Tracking, RBFNN.  

İki Linkli Manipülatör için Genetik Algoritma ile Yapay Sinir Ağı 

Tabanlı Kayan Kipli Kontrolcü 

Öz 

Bu makalede, iki eklemli robot manipülatörün yörünge kontrolü için yeni bir kontrol yöntemi önerilmektedir. Manipülatör modeli, 

robot manipülatör için kullanılan malzemelerin esnekliği nedeniyle bazı bilinmeyen parametrelere sahiptir. Ayrıca robot 

manipülatörler genellikle dış gürültülerden etkilenir. Bu bilinmeyen parametreleri modellemek için radyal bazlı fonksiyon tabanlı 

yapay sinir ağları kullanılır. Robot manipülatörün yörünge takibi için kontrolcü yapısı, gürbüz ve adaptif kayan kipli kontrolcüye 

(SMC) dayanmaktadır. SMC'nin katsayıları evrimsel algoritma, yani genetik algoritma yardımıyla hesaplanır. Önerilen algoritma, 

izleme hatasının belli bir sürede sıfıra yakınlaşmasını garanti eder. Kapalı döngü sisteminin kararlılığı Lyapunov Teorisi ile 

sağlanmaktadır. Matlab / Simulink ortamında önerilen denetleyicinin geçerliliğini göstermek için sayısal simülasyonlar yapılmıştır. 

Ayrıca, önerilen kontrol yönteminin etkinliği ve geçerliliği karşılaştırmalı simülasyon sonuçları ile teyit edilmiştir. Yapılan deneyler, 

önerilen denetleyici yapısının literatürdeki diğer yaklaşımlarla karşılaştırdığımızda gürültülere dayanıklı, tırlama etkisinden uzak, 

sağlam ve hızlı özelliklere sahip olduğunu göstermektedir. 
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1. Introduction 

Nowadays, due to the advancement of robot technology and the widespread usage of manipulators, trajectory tracking control of 

these systems is the focus of studies in robotics. As the requirement of high-performance requests such as fast response trajectory 

tracking with high precision increases, the new control strategies for manipulators develop. 

  The main purpose of the trajectory tracking problem is to improve the stability of the overall system and to minimize the 

trajectory tracking errors. For this aim, in this work a novel controller method, which is Neural Network Based Adaptive Sliding 

Mode Controller with Genetic Algorithm (NNSMACWGA), is developed. In this controller model uncertainties such as link 

flexibility and friction terms in the nonlinear two link robot manipulator equations are modeled by using Radial basis function neural 

networks. Desired trajectory is tracked by the help of adaptive sliding mode approach (ASMC). The coefficients in this ASMC 

controller is calculated with evolutionary optimization technique, namely genetic algorithm (GA) in order to get the fastest responses 

with minimum trajectory tracking errors.  

Control strategies for industrial robotic manipulators depend on model of the manipulator is exact or unknown. Because of the 

simple mathematical model, PID controllers are widely employed various applications for trajectory control of robot manipulators 

(Choi & Chung, 2004; Kumar et.al. , 2011). Although this controller gives satisfactory results according to trajectory tracking 

performance, the stability and convergence speed highly depends on the assigning proportional, integral and derivative coefficients. 

Moreover, manipulator dynamics has some unknown parameters due to the fact that having non rigid materials and open to external 

disturbances. Under varying conditions of the model with PID controller gives better result if the controller coefficients are dynamic 

(Loucif et.al. , 2020). Since robotic manipulators are used for highly precision trajectory tracking tasks, instead of PID controller, 

sliding mode controllers, which have variable control structure, give robust response for trajectory tracking against aforementioned 

model uncertainties and external disturbances (Tilki & Olgun, 2019).  The principle of SMC is composed of two subsections. In the 

first part, proper sliding surfaces, which are needed to be followed by the determined state variables in order to reach desired 

trajectory, are constructed. In second part, switching robust control laws enabling the state variables to reach these sliding surfaces 

constructed in the first stage (Nguyen et.al. , 2018). The disadvantage of SMC, namely chattering phenomena, which is switching the 

control signal fast to handle disturbance and uncertain model effects, occurs during the sliding phase. Trajectory tracking control of 3-

DOF manipulator is ensured with adaptive fuzzy sliding mode control technique (Amer et.al. , 2011). A supervisory fuzzy logic 

control was employed to replace switching terms and switching gains in the robust control input for SMC. Further study of this 

approach integrated adaptive laws were generated in order to eliminate chattering effects (He et.al. , 2016). Recently, to overcome the 

finite time convergence problem of traditional SMC, Terminal Sliding Mode Control approach was considered for robust trajectory 

tracking against model uncertainties (Tran & Kang, 2017). In TSMC method, sliding surfaces are modeled with nonlinear functions, 

which provides TSMC to enable fast convergence without extensive control inputs (Vijay & Jena, 2018). When compared with 

traditional SMC, it is stated that the response of TSMC method is rapidly converge the desired trajectory.     

In this work, model free system is preferred and the complexity of predicting the exact model of the robot manipulator is 

prevented. Neural Network technique is widely employed in order to deal with model uncertainties in the literature (Vijay & Jena, 

2018; Sun et.al. 2011). Because of this advantage, for modeling the uncertain terms in model free approach of robotic manipulator 

radial basis function of neural networks are employed.  

The rest of this paper is organized as follows: Mathematical preliminaries of the trajectory control of robot manipulator are given 

in Section 2. Two different controller design techniques namely neural network based sliding mode controller method and neural 

network based adaptive sliding mode controller with genetic algorithm method are also given in this section. The simulation results of 

these controllers are given and compared in Section 3. Concluding remarks are discussed in Section 4. 

2. Material and Method 

2.1. Mathematical Dynamics of 2 DOF Robot Manipulator 

In this paper, for a two-link manipulator which is subject to uncertainties and external disturbances in a finite time convergence 

guaranteed, robust trajectory tracking control problem is addressed. This section gives the mathematical background of the two link 

manipulator and proposed trajectory control methods.  

In this work, proposed control methods are examined and validated on 2 link robot manipulator. For an 𝑛-link robot manipulator 

the equation of motion is given in equation (1) according to Euler-Lagrange theory (Lewis et.al. 2003). 

𝑀(𝑞)�̈� + 𝑉𝑚(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝐹(�̇�) + 𝜏𝑑 = 𝜏                            (1) 

In this equation 𝑞 𝜖 𝑅𝑛, �̇� 𝜖 𝑅𝑛 𝑎𝑛𝑑 �̈� 𝜖 𝑅𝑛 represents position, velocity and acceleration, respectively. Besides, 𝑀(𝑞)𝜖𝑅𝑛𝑥𝑛  

expresses positive-definite symmetric inertial matrix. 𝑉𝑚(𝑞, �̇�)𝜖𝑅𝑛𝑥𝑛 shows coriolis and centripetal force matrix.  𝐺(𝑞)𝜖𝑅𝑛𝑥1 

represents the gravity component in the torque equation (1). As mentioned before, the overall system is open to external disturbances 

and uncertainties (friction) due to the model uncertainties. These terms are represented in the equation of motion with 𝐹(�̇�) and 𝜏𝑑.   

Equation of motion (1) can be expressed as follow: 

�̈� =  𝑀−1(𝑞)[𝜏 − (𝑉𝑚(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝐹(�̇�) + 𝜏𝑑)]                        (2) 
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The matrix and vector quantities and also the units in the above-mentioned manipulator equations which are used in this work are 

given as follows. 

𝑀(𝑞)=[
𝑀11 𝑀12

𝑀21 𝑀22
], 𝑉𝑚(𝑞, �̇�)=[

𝑉𝑚11 𝑉𝑚12

𝑉𝑚21 𝑉𝑚22
] 

𝑀11 = (𝑚1 + 𝑚2)𝑎1
2 + 𝑚2𝑎2

2 + 2𝑚2𝑎1𝑎2 cos 𝜃2                          (3) 

𝑀12 = 𝑀21 = 𝑚2𝑎2
2 + 𝑚2𝑎1𝑎2 cos 𝜃2                             (4) 

𝑀22 = 𝑚2𝑎2
2                                  (5) 

𝑉𝑚11 = −𝑚2𝑎1𝑎2�̇�2 sin 𝜃2                               (6) 

𝑉𝑚12 = −𝑚2𝑎1𝑎2(�̇�1 + �̇�2) sin 𝜃2                              (7) 

𝑉𝑚21 = 𝑚2𝑎1𝑎2�̇�1 sin 𝜃2                                (8) 

𝑉𝑚22 = 0                                   (9) 

𝐺(𝑞) = [
(𝑚1 + 𝑚2)𝑔𝑎1 cos 𝜃1 + 𝑚2𝑔𝑎2 cos(𝜃1 + 𝜃2)

𝑚2𝑔𝑎2 cos(𝜃1 + 𝜃2)
]                      (10) 

𝐹(�̇�) = [
�̇�1 + 𝑘𝑠𝑔𝑛(�̇�1)

�̇�2 + 𝑘𝑠𝑔𝑛(�̇�2)
]                             (11) 

The external disturbance is |𝜏𝑑𝑖| ≤ 1, 𝑖 = 1,2 is a random noise with the magnitude bounded. The axis representation of the robot 

manipulator is given in Figure 1. The variable angles are demonstrated with 𝜃1, 𝜃2. While 𝑎1, 𝑎2 indicate the link lengths,  𝑚1, 𝑚2 

show the link weights. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Two-link robot manipulator 

2.2. Neural Network Based Adaptive Sliding Mode Control Design 

In this chapter, a control system composed of the sliding mode controller, a Radial Based Function (RBF) based neural network 

descriptor and adaptive control is designed to make a robotic manipulator track the determined trajectory. As mentioned in the 

introduction part, neural network is used to represent the uncertainty of the robotic manipulator dynamics. In the adaptive control 

literature, neural networks are widely used to approximate unknown non-linear systems because of its abilities of approximation in the 

essence of neural networks (Lewis et.al. 2003). The function of the neural network is shown as below: 

𝑓1(𝑥) = 𝑊𝑇𝜙(𝑋) + 𝜀(𝑋)                            (12) 

In this equation, X represents the input vector, 𝑊𝜖𝑅𝑛𝑥2 represents the weight matrices. Each element of W represents the coefficient 

of the 𝜙  function. 𝜀(𝑋) represents the approximation error of the neural network. 𝜙  is constructed as a vector where, n>1 is the 

number of the neurons and it is shown as 𝜙(𝑋) = [𝜙1(𝑋), 𝜙2(𝑋), … , 𝜙𝑛(𝑋)]𝑇. 𝜙𝑖(𝑋) shown in the equation (13) is the RBF. 

𝜙𝑖(𝑋) = exp (
||𝑥−𝑐𝑖||2

𝜎𝑖
2 ) 𝑖 = 1,2, … , 𝑛                         (13) 

In equation (13) 𝑐𝑖 and 𝜎𝑖 are the center of the neuron and width, respectively. 

RBF is expected to approach the equation below. 

𝑀(𝑞)�̇� = 𝑀(�̈�𝑑 − �̈� + 𝛬�̇�) = 𝑀(�̈�𝑑 + 𝛬�̇�) − 𝑀�̈�                       (14) 

= 𝑀(�̈�𝑑 + 𝛬�̇�) − 𝑉𝑚𝑠 + 𝑉𝑚(�̇�𝑑 + 𝛬𝑒) + 𝐺 + 𝐹 + 𝜏𝑑 − 𝜏                     (15) 

RBF will converge to the 𝑓(𝑋) function that will be extracted out of the equation (15). 

𝑓(𝑋) = 𝑀(𝑞)(�̈�𝑑 + 𝛬�̇�) + 𝑉𝑚(�̇�𝑑 + 𝛬𝑒) + 𝐺 + 𝐹                       (16) 

𝛳1 

𝛳2 

𝑚1 

𝑚2 

𝑎2 

𝑎1 

𝑦 

𝑥 
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By assuming that the sliding variable will converge to zero after inserting the equation (17) into equation (16), the controller is 

obtained as below: 

𝜏 = 𝑓(𝑋) − 𝑉𝑚𝑠 + 𝜏𝑑                             (17) 

After the result of the equation (17) and the error (𝜀(𝑋)) from the RBF are considered, the controller design takes the following 

form. 

𝜏 = 𝑓1(𝑋) + 𝐾𝑣𝑠 + 𝑣                             (18) 

When selecting this type of a controller, variable 𝑣 is added in order to eliminate 𝜏𝑑 coming from outside and error 𝜀(𝑋) coming 

from the RBF. In this case, 𝐾𝑣 adaptive controller coefficient is used to make the system robust. In Eq.19 and Eq.20 𝑣 will provide 

resistance against the noise and error because   𝑓1(𝑋) will converge to 𝑓(𝑋). 𝐾𝑣 will ensure the stability of the system. The inputs of 

the 𝑓1(𝑋) are determined as  X = [�̈�𝑑 , �̇�, �̇�𝑑, 𝑒, 𝑞𝑑] which can be predicted from the equation (16). 

𝑣 = −𝑏𝑠𝑔𝑛(𝑠)                               (19) 

𝑠𝑔𝑛(𝑠) = {
  +1, 𝑠 > 0  

   0, 𝑠 = 0
−1, 𝑠 < 0

                             (20) 

The Lyapunov function selected for this controller is shown in the equation (21). 𝐾𝑣 comes out to be positive from the Lyapunov 

function. 

𝑉 =
1

2
𝑠𝑇𝑀𝑠 +

1

2
𝑡𝑟(𝑊𝑇𝐹𝑤

−1𝑊)                           (21) 

where M and 𝐹𝑤 are positive matrices. 𝑊 comes out from the Lyapunov function which is given in equation (22). 

�̇� = 𝐹𝑤 𝜙(𝑋)𝑠𝑇                                (22) 

The variable v shown in equation (19) varies depending on the sliding surface. Adaptive control is used in this system and this 

controller determines the stability of the system. In this way, the uncertainties coming from the artificial neural network have been 

stabilized. In addition, the sliding mode controller which is robust against all noisy terms in mathematical model and the error 𝜀(𝑋) 

from the RBF is used. The block diagram that summarizes this Neural Network Based Adaptive Sliding Mode Control is given in 

Figure 2. 

 

 

Figure 2. Neural Network Based Adaptive Sliding Mode Control 

2.3. Neural Network Based Adaptive Sliding Mode Control Design with Genetic Algorithm 

In this paper the genetic algorithm is used to find artificial neural network and sliding mode controller coefficients which are 

mentioned in previous subsection. The center of the neuron and width (𝑐𝑖 and 𝜎𝑖 respectively) of RBF and accordingly, the weight 

(𝑊) coefficients of the neural network are approximated by the genetic algorithm. Additionally, the adaptive controller and the sliding 

mode controller coefficients 𝐾𝑣  𝑎𝑛𝑑 𝛬 which affects the performance of overall system are also determined by the genetic algorithm. 

Genetic algorithm is designed for the purpose of minimizing the error between the reference trajectory and the tracked trajectory. The 

inputs of the genetic algorithm are trajectory-tracking errors whereas the outputs are generated controller coefficients and neural 

network parameters. 

Genetic algorithms are formed by searching ideal results in a wide space to solve complex problems. For this reason, a population 

with all these coefficients mentioned above should be created. After the error is minimized, the most appropriate population of the 

system will be found coefficients. 

2.3.1. Population Creation 

A random solution group with possible solutions is created. Solution group is called population due to its similarity in biology. In 

Figure 3, the row formed solutions are called as chromosome. The sum of the chromosome numbers constitutes the population width. 

The experimenter determines the population size. 

[Λ 𝐼] 

Sliding Mode 

Control 

NN 

Robot 

Manipulator 

[
𝑒
�̇�

] [
𝑞𝑑

�̇�𝑑
] [

𝑞
�̇�] 

𝜏 

Adaptive 

Control 

Random 

Noise 

�̈�𝑑  



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  124 

 

 

 

Figure 3. Population Representation 

In the population, each coefficient is  represented in a column. Coefficients in each row are used as the input for the controller and 

neural network. The cost function of the overall system is the trajectory tracking error which has to be minimized.  The coefficients 

that are shown in figure 3 are selected randomly between 0 to 100. 

After than population becomes exist, the experimenter follows the genetic algorithm scheme shown figure 4. Experimenter 

applies calculation of suitability value, selection, crossover, mutation respectively. When genetic algorithm reaches the maximum 

iteration, the optimal solution is approached. 

 

Figure 4. Genetic Algorithm Diagram 

2.3.2. Roulette Wheel Selection 

The suitability values of each chromosome is calculated, this suitability values that are error of robot manipulator system is vital 

for survival of the chromosome. According to these suitability values, the probability of survival is examined. In other words, the 

probability of survival varies according to the suitability value. After the probability of survival of each chromosome is calculated, 

from the normal probabilities cumulative probabilities are calculated. A random number is generated. If the random number falls 

within the cumulative probability values, this chromosome will be selected. 

2.3.3. Mutation 

Based on the initial population of chromosomes, which denote tentative solutions to the optimization problem, new generations are 

created by applying a randomly change at an arbitrary point in the individual. For each element vector, 

the mutant vector is produced according to equation (23). 

𝑝𝑔
𝑖,𝑗

= 𝑝𝑔−1
𝑖,𝑗 

+ 𝑟𝑎𝑛𝑑𝑔
𝑖,𝑗 ∗ (100 − 0)                         (23) 
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In this equation, the index g indicates the generation to which a vector belongs and p demonstrates the cell number. 

2.3.4. Crossover 

First, each chromosome in the population is paired with each other. Again, a random number is generated between 0 and 1. If this 

random number is smaller than the crossover rate, the crossover operation will be performed. While the crossover is performing, the 

chromosomes that are paired are divided from a random point. Divided pair chromosomes pieces are changed between each other 

from the point where they divide. 

2.3.5. Genetic Algorithm-based Coefficient Calculation 

The error term of the system is the input of the genetic algorithm and then the controller's coefficients are created by looking at 

those error terms. When the smallest error is reached, coefficients that are performed are optimum. The minimized formula is shown 

in equation (24) 

𝑠𝑣 =  
𝑚𝑒𝑎𝑛(|𝑒1|)+𝑚𝑒𝑎𝑛(|𝑒2|))

2
                            (24) 

where  𝑒1 and 𝑒2 are error of link 1 and link 2 respectively. The application of the genetic algorithm to the controllers is shown in 

figure 5. 

 

Figure 5. Neural Network Based Adaptive Sliding Mode Control with Genetic Algorithm 

3. Results and Discussion 

In this work, a novel controller approach was designed for trajectory-tracking control of a 2-link robot manipulator modelled 

using the Euler Lagrange approach. To verify the effectiveness of the proposed controller, numerical simulations are conducted in 

MATLAB/Simulink environment.  In the first part, neural network-based design is used to model dynamic uncertainties of the robot 

manipulator. One of the most common smart approaches, the artificial neural network has a natural learning ability. The neural 

network can approach the nonlinear continuous state with random accuracy. The uncertainties are represented by error term in neural 

network’s formula, so the neural network converges to the mathematical dynamics of the robot manipulator. Adaptive control is a 

parameter that needs for the system stability. Besides these controllers, the genetic algorithm has been developed to calculate the 

controller's coefficients that will make the system more stable. In this study, all systems were created on MATLAB / Simulink and 

simulations were done on this program. In the tables below, robot manipulator parameters and simulation inputs are given 

respectively. 

Table 1. Robot Manipulators Parameters 

𝐦𝟏 weight of link 1 1 kg 

𝐦𝟐 weight of link 2 1 kg 

𝐚𝟏 length of link 1 1 m 

𝐚𝟐 length of link 2 1 m 

𝐠 gravitational acceleration 9,8 m/𝑠2 

The initial conditions of the system are considered to be  𝑞(0) = [𝑞1(0)𝑞2(0)]𝑇 = 0, �̇�(0) = [�̇�1(0)�̇�2(0)]𝑇 = 0. The noise is a 

random noise with the magnitude bounded. 
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Table 2. Simulation Parameters 

𝐪𝐝𝟏
 Desired trajectory for link 1 𝜋/2 − (𝜋/4)cos (0.5𝑡) 

𝐪𝐝𝟐
 Desired trajectory for link 2 (𝜋/3)𝑠𝑖𝑛 (0.5𝑡) 

𝛕𝐝𝟏
 Noise for link 1 |τd1

| ≤ 1 

𝛕𝐝𝟐
 Noise for link 2 |τd2

| ≤ 1 

𝐅(�̇�𝟏) Friction term for link 1 �̇�1+2sign (�̇�1) 

𝐅(�̇�𝟐) Friction term for link 2 �̇�2+2sign (�̇�1) 

Trajectory-tracking performance of Neural Network based Sliding Mode Adaptive Control (NNSMAC) is demonstrated with the 

figures given below (Fig. 6-8). For this controller tracking errors of each link and applied control inputs are given in Fig. 7-8 

respectively. 

 

 
Figure 6. Position tracking link 1 and link 2 for NNSMAC 

 

 

Figure 7. The Tracking Error Link 1 and Link 2 for NNSMAC 
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Figure 8. The Control Inputs for NNSMAC 

 

As it can be seen from the figures 6 and 7, although trajectory-tracking performance of NNSMAC is satisfactory in the steady-

state phase, the transient response of this controller does not have same satisfactory performance.  

The performance of the Neural Network based Sliding Mode Adaptive Control with Genetic Algorithm (NNSMACWGA), which 

is proposed in this work, represented in figures below (Figs. 9-11). It is clearly seen that both transient and steady responses of the 

system is enhanced. The oscillations in the transient response was decreased obviously. Moreover, steady state performance was 

preserved.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Position Tracking Link 1 and Link 2 for NNSMACWGA 

Besides the trajectory-tracking performance improvement, reaching time to reference input was shortened with this novel 

controller. While reaching to reference input with NNSMAC took around 2 seconds, NNSMACWGA shortened this time to around 

0.5 second. 



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  128 

 

Figure 10. The Tracking Error Link 1 and Link 2 for NNSMACWGA 

 

 

 

 

 

 

 

 

Figure 11. The Control Inputs for NNSMACWGA 

The RMS errors of the trajectory tracking in the 1st and 2nd links were applied as the evaluation condition for two different 

methods that NNSMAC and NNSMACWGA. This RMS error table is shown below. 

Table 3. Compare NNSMAC and NNSMACWGA 

 Link 1 RMS error Link 2 RMS error 

NNSMAC 0,1228 0.0296 

NNSMACWGA (population size 300) 0.0728 0,0112 

NNSMACWGA (population size 200) 0.0739 0.0110 

NNSMACWGA (population size 100) 0.0744 0.0122 

4. Conclusion 

In this paper, we presented a novel controller approach for robotic manipulator in order to achieve robust trajectory tracking 

against disturbances and uncertainties. The proposed controller contains neural network part for predict unknown model parameters, 

adaptive sliding mode controller part for robust trajectory-tracking and genetic algorithm part for calculating the adaptive controller 

parameters and neural network coefficients. The sliding controller laws are obtained by applying the Lyapunov stability theorem.  

To verify the effectiveness of the proposed controller approach we conducted numerical simulations in MATLAB/Simulink 

environment. Moreover, the obtained results with NNSMACWGA are compared with NNSMAC. The proposed method gives robust 

trajectory-tracking results under disturbances with bounded error. Both in transient and steady state phase proposed NNSMACWGA 

controller reveal better performance. The obtained results showed that our controller responses converges to desired trajectory in less 

time than other method. Besides, chattering phenomena is reduced significantly with NNSMACWGA. 
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