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Abstract: This paper addresses the problem of estimating the population mean of the study variable in two
occasions successive sampling. Based on the available information from the first and second occasions, class
of estimators produced under two situations, i) when the information on a positively correlated auxiliary
variable with the study variable is available on both the occasions and ii) when the information on the
auxiliary variable which is negatively correlated with the study variable is available on both the occasions.
Properties of the suggested class of estimators have been studied and compared with the sample mean
estimator with no matching from the previous occasion and traditional successive sampling linear estimator.
The study is supported by an optimal replacement policy. Empirical study also has been illustrated to show
the performance of the recommended estimators theoretically.
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1. Introduction
In most surveys, the interest is on the current average despite looking at it from one occasion

to the next occasion and all occasions. In successive (rotation) sampling, it is common to use the
entire information gathered on the previous occasions to improve the precision of the estimator on
the current occasion. The main objective of the sampling on two successive occasions is to estimate
the population parameters viz. population total, mean, ratio, product, etc. for the most recent
occasion as well as changes in the parameters from one occasion to the next occasion, see Okafor
and Arnab [6]. Jessen [4] was the first who pioneered the procedure of utilizing the information
obtained on the first occasion in improving the estimates of the current occasion. Patterson [7]
extended the work of Jessen from two occasions to more. Further, Eckler [2], Rao and Graham [8],
Singh et al. [10], Feng and Zou [3], Biradar and Singh [1], Singh and Vishwakarma [12], Singh and
Vishwakarma [13], Singh and Pal [15] among others have suggested several estimators by using
the auxiliary information for estimating the population mean on the current occasion successive
(rotation) sampling.
In this paper, we extend a procedure of utilizing the information of the auxiliary variable readily
available on both the equations under two different situations, by suggesting the estimator of the
population mean Ȳ of the study variable y:
Situation I: When the auxiliary variable z1 is positively correlated with the study variable y.
Situation II: Readily available auxiliary variable z2 is negatively correlated with the study vari-
able y.

* Corresponding author. E-mail address:vishwantrasharma07@gmail.com

39



Sharma and Kumar: Improved Estimators
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Keeping in view the situation I and II, we have suggested two estimators and studied the properties
of the suggested estimators. The behaviour of the suggested estimator is explained through empir-
ical study. We found that the proposed study is more efficient than the other considered estimators
when there is close association between auxiliary and study variables.

2. Notations used and the proposed estimator
Consider a finite population U = (U1,U2, ...,UN) of N distinct identifiable units. Let the variable

under study on the first (second) occasion be denoted by x(y) respectively. It is assumed that the
information on the auxiliary variable z1 and z2 are known and have positive and negative correlation
with x and y respectively readily available on both the occasions. A simple random sample (without
replacement) of n units is taken on the first occasion from population U . A random sub-sample of
m(= nλ) units is retained (matched) for use on the second occasion. Now, at the current occasion,
we again withdraw a simple random sample (without replacement) of size u= n−m= nµ units
from the remaining (N −n) units of the population so that the sample size on second occasion is
also n. λ and µ are the fractions of matched and fresh samples respectively at the second (current)
occasion such that (λ+µ= 1). We shall use the following notations:

� X̄, Ȳ , Z̄1, Z̄2 : The population means of variables x, y, z1 and z2 respectively.
� Sxy, Syz1 , Syz2 , Sxz1 , Sxz2 : The population covariance between variables in suffixes.
� ρxy, ρyz1 , ρyz2 , ρxz1 , ρxz2 : The population correlation coefficients between variables in suffixes.
� S2

x, S
2
y , S

2
z1
, S2

z2
: The population variances of x, y, z1 and z2 respectively.

For obtaining the expression of bias and mean squared error of the proposed estimator, we assume
that

yu = Ȳ (1 + e0u), ym = Ȳ (1 + e0m), xm = X̄(1 + e1m), xn = X̄(1 + e1n), z1u = Z̄1(1 + e1u),

z2u = Z̄2(1 + e2u), z1n = Z̄1(1 + e2n), z2n = Z̄2(1 + e2n
′ ), byz1u =

syz1(u)

s2
z1(u)

, byx(m) =
syx(m)

s2
x(m)

,

syz1(u) = Syz1(u)(1 + e3u), s2
z1(u) = S2

z1(u)(1 + e4u), syx(m) = Syx(m)(1 + e3m), s2
x(m) = S2

x(m)(1 + e4m)
such that

E(e0u) =E(e0m) =E(e1m) =E(e1n) =E(e1u) =E(e2u) =E(e2n) =E(e2n
′ ) =E(e3u)

=E(e4u) =E(e3m) =E(e4m) = 0 and

E(e2
0u) = ( 1

u
− 1

N
)C2

y ,E(e2
0m) = ( 1

m
− 1

N
)C2

y , E(e2
1m) = ( 1

m
− 1

N
)C2

x,E(e2
1n) = ( 1

n
− 1

N
)C2

x,

E(e2
1u) = ( 1

u
− 1

N
)C2

z1
,E(e2

2u) = ( 1
u
− 1

N
)C2

z2
,E(e2

2n) = ( 1
n
− 1

N
)C2

z1
,E(e

′2
2n) = ( 1

n
− 1

N
)C2

z2
,

E(e0ue0m) =−( 1
N

)C2
y ,E(e0ue1m) =−( 1

N
)ρxyCyCx, E(e0ue1n) =−( 1

N
)ρxyCyCx,

E(e0ue1u) = ( 1
u
− 1

N
)ρyz1CyCz1 , E(e0ue2u) = ( 1

u
− 1

N
)ρyz2CyCz2 ,E(e0ue2n) =−( 1

N
)ρxz1CyCz1 ,

E(e0ue2n
′ ) =−( 1

N
)ρxz1CyCz1 ,E(e0me1m) = ( 1

m
− 1

N
)ρyxCyCx,E(e0me1n) = ( 1

n
− 1

N
)ρyxCyCx,

E(e0me1u) =−( 1
N

)ρyz1CyCz1 ,E(e0me2u) =−( 1
N

)ρyz2CyCz2 ,E(e0me2n) = ( 1
n
− 1

N
)ρyz1CyCz1 ,

E(e0me2n
′ ) = ( 1

n
− 1

N
)ρyz2CyCz2 ,E(e0me2n) = ( 1

n
− 1

N
)C2

x,E(e1me1u) =−( 1
N

)ρxz1CxCz1 ,
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E(e1me2u) =−( 1
N

)ρxz2CxCz2 ,E(e1ne1u) =−( 1
N

)ρxz1CxCz1 ,E(e1ne2u) =−( 1
N

)ρxz2CxCz2 ,

E(e1ne2n) = ( 1
n
− 1

N
)ρxz1CxCz1 ,E(e1ne2n

′ ) = ( 1
n
− 1

N
)ρxz2CxCz2 ,E(e1ue2u) = ( 1

u
− 1

N
)ρz1z2Cz1Cz2 ,

E(e1ue2n) =−( 1
N

)C2
z1
,E(e1ue2n

′ ) =−( 1
N

)C2
z2
,E(e2ne2n

′ ) = ( 1
n
− 1

N
)ρz1z2Cz1Cz2 ,

E(e1ue3u) = (N−u)

u(N−2)
µ012
Z̄µ011

,E(e1ue4u) = (N−u)

u(N−2)
µ003
Z̄µ002

,E(e2ue3u) = (N−u)

u(N−2)
µ012
Z̄µ011

,

E(e2ue4u) = (N−u)

u(N−2)
µ003
Z̄µ002

,E(e1me3m) = (N−m)

m(N−2)
µ210
X̄µ110

,E(e1ne3m) = (N−n)

n(N−2)
µ210
X̄µ110

,

E(e1me4m) = (N−m)

m(N−2)
µ300
X̄µ200

,E(e1ne4m) = (N−n)

n(N−2)
µ300
X̄µ200

,

µpqr =E((xi− X̄)
p
(yi− Ȳ )

q
(zi− Z̄)

r
), (p, q, r) = 0,1,2.,C2

x = S2
x/X̄

2,C2
y = S2

y/Ȳ
2,

C2
z1

= S2
z1
/Z̄2

1 ,C
2
z2

= S2
z2
/Z̄2

2 .

We assume that information on the auxiliary character is readily available on both occasions
under two different situations, one can define the estimator when

Situation I: Estimation of the population mean Ȳ of the study variable y when the
auxiliary variable ‘z1’ is positively correlated with the study variable.
In a situation, when the regression of Y on X is a straight line that does not pass through the origin
then regression estimators are used. Replacing regression estimator in place of a sample mean and
using in exponential-type estimators of Singh and Pal [15]. We have suggested two independent
estimators for estimating the population mean Ȳ of the study variable y on the second occasion.
One is based on the sample of size u(= nµ) drawn afresh on the second occasion defined by

Tu = tlreguexp

(
Z̄1− z̄1u

Z̄1 + z̄1u

)
(2.1)

where tlregu = [ȳu + byz1(u)(Z̄1 − z̄1u)] and byz1(u) is the sample regression coefficient of y and z1

based on the sample size u.
Second estimator is based on the sample of size m(= nλ) common for both the occasions is defined
by

Tm = tlregmexp

(
x̄n− x̄m
x̄n + x̄m

)
exp

(
Z̄1− z̄1n

Z̄1 + z̄1n

)
(2.2)

where tlregm = [ȳm+byx(m)(x̄n− x̄m)] and byx(m) is the sample regression coefficient of y and x based
on the matched sample of size m.

The estimator Tu may be used to estimate the population mean on each occasion, while the
estimator Tm is suitable to estimate the change over occasions. To device suitable estimation
procedures for both the problems simultaneously, a convex linear combination of Tu and Tm is
considered as a final estimator of the population mean Ȳ and is given by

T = φTu + (1−φ)Tm (2.3)

where φ(0≤ φ≤ 1) is an unknown scalar to be defined such that the mean squared error (MSE) of
T is minimum.

Remark 1 : For estimating the mean on each occasion the estimator Tu is suitable, which implies
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that for φ close to 1 while for estimating the change from one occasion to next occasion, the estima-
tor Tm is more suitable so that the value of φ might be close to 0. For asserting both the problems
simultaneously, the optimum (minimized) choice of φ is required.

3. Bias and Mean Square Error of T
Since Tu and Tm are biased estimators of Ȳ , therefore the estimator T is also a biased estimator

of Ȳ . For bias, express the estimator Tu and Tm in terms of ε
′
s, we have

Tu = {Ȳ (1 + e0u)− byz1(u)Z̄1e1u}exp
[
−e1u

2

(
1 +

e1u

2

)−1]
(3.1)

Tm = Ȳ {(1 + e0m) + kyx(e1n− e1m + e1ne3m− e1ne4m− e1me3m + e1me4m)}

exp

[
e1n− e1m

2

(
1 +

e1n + e1m

2

)−1]
exp

[
−e2n

2

(
1 +

e2n

2

)−1]
(3.2)

Expanding the right-hand side of equation (4) and (5) in terms of e’s and neglecting the terms
having power greater than two, we get

Tu ∼= Ȳ

[
1 + e0u−

(
1

2

)
e1u−

(
1

2

)
e0ue1u +

(
3

8

)
e2

1u− kyz1(e1u−
(

1

2

)
e2

1u− e1ue4u + e1ue3u

]

(Tu− Ȳ )∼= Ȳ

[
e0u−

(
1

2

)
e1u−

(
1

2

)
e0ue1u +

(
3

8

)
e2

1u− kyz1(e1u−
(

1

2

)
e2

1u− e1ue4u + e1ue3u

]
(3.3)

Tm ∼= Ȳ

[
1 + e0m−

(
1

2

)
(e1n− e1m− e2n) +

(
3

8

)
e2

2n +

(
1

2

)
(e0me1n− e0me1m−

e0me2n)−
(

1

4

)
(e2

1n− e2
1m + e1ne2n− e1me2n) +

(
1

8

)
(e2

1n + e2
1m− 2e1ne1m)

+kyx{e1n− e1m +

(
1

2

)
(e2

1n + e2
1m)−

(
1

2

)
(e1ne2n + e1ne1m− e1me2n+

e1ne1m) + e1ne3m− e1ne4m− e1me3m + e1me4m}
]

(Tm− Ȳ )∼= Ȳ

[
e0m−

(
1

2

)
(e1n− e1m− e2n) +

(
3

8

)
e2

2n +

(
1

2

)
(e0me1n− e0me1m− e0me2n)−(

1

4

)
(e2

1n− e2
1m + e1ne2n− e1me2n) +

(
1

8

)
(e2

1n + e2
1m−

2e1ne1m) + kyx(e1n− e1m +

(
1

2

)
(e2

1n + e2
1m)−

(
1

2

)
(e1ne2n + e1ne1m

−e1me2n + e1ne1m) + e1ne3m− e1ne4m− e1me3m + e1me4m)

]
(3.4)

where, kyz1 = ρyz1
Cy

Cz1
and kyx = ρyx

Cy

Cx
.

Taking expectation on both sides of equation (6) and (7), one can obtain the bias of Tu and Tm to
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the first degree of approximation as

B(Tu) = Ȳ

[(
1

u
− 1

N

)[(
3

8

)
+ kyz1

]
C2
Z1
−
(

1

2

)(
1

u
− 1

N

)
ρyz1CyCz1 − kyz1(

N −u
u(N − 2)Z̄

)[
µ012

µ011

− µ003

µ002

]]
(3.5)

B(Tm) = Ȳ

[(
3

8

)(
1

n
− 1

N

)
C2
z1

+

(
1

2

)[(
1

n
− 1

m

)
ρyxCyCx−

(
1

n
− 1

N

)
ρyz1

CyCz1

]
−
(

7

8

)(
1

n
− 1

m

)
C2
x +

(N −n)

n(N − 2)X̄

[(
1

n

)(
µ210

µ110
− µ012

µ011

)
−(

1

m

)(
µ210

µ110

− µ012

µ011

)]]
(3.6)

For MSE, squaring both side of equation (6) and (7), and neglecting terms of e’s having power
greater than two, we have

(Tu− Ȳ )2 ∼= Ȳ 2

[
e0u−

(
1

2

)
e1u− kyz1e1u

]2

(3.7)

(Tm− Ȳ )2 ∼= Ȳ 2

[
e0m +

(
1

2

)
(e1n− e1m− e2n)− kyx(e1n− e1m)

]2

(3.8)

Taking expectations to both sides of equation (10) and (11) we get the MSE of Tu and Tm respec-
tively, as

MSE(Tu) = Ȳ 2

(
1

u
− 1

N

)[
Cy2 +C2

z1

{(
1

4

)
+ k2

yz1
+ kyz1

}
− (1 + 2kyz1)ρyz1CyCz1

]
(3.9)

MSE(Tm) = Ȳ 2

[(
1

m
− 1

N

){
C2
y +

(
1

4

)
C2
x + k2

yxC
2
x − ρyxCyCx + kyxC

2
x − 2kyxρyxCyCx

}
+

(
1

n
− 1

N

){(
1

4

)
C2
z1
−
(

1

4

)
C2
x + k2

yxC
2
x + ρyxCyCx− kyxC2

x − ρyz1CyCz1 − 2kyxρyxCyCx

}]
(3.10)

The covariance between the two estimators Tu and Tm to the first degree of approximation is
obtained as follows:

Cov(Tu, Tm) =E[(Tu− Ȳ )(Tm− Ȳ )]

= Ȳ 2E
[(
e0u− (1/2)e1u− kyz1e1u

)(
e0m− (1/2)(e1n− e1m− e2n) + kyx(e1n− e1m)

)]
= Ȳ 2E

[
e0ue0m− (1/2)e0me1u− kyz1e0me1u + (1/2)

(
e0ue1n− (1/2)e1ue1n− kyz1e1ue1n− e0ue1m+

(1/2)e1ue1m + kyz1e1ue1m− e0ue2n + (1/2)e1ue2n + kyz1e1ue2n

)
+ kyx

(
e0ue1n− (1/2)e1ue1n−

kyz1e1ne1u− e0ue1m + (1/2)e1ue1m + kyz1e1ue1m

)]
=−(Ȳ 2/N)

[
C2
y − ρyz1CyCz1 + (1/4)C2

z1
− kyz1ρyz1CyCz1 + (1/2)kyz1C

2
z1

]
(3.11)

Assumption 1. Considering the stability nature of the variables, the coefficient of variation of
x, y, z1, z2 are assumed to be approximately equal (Cy ∼=Cx ∼=Cz1

∼=Cz2), see Murthy [5], Reddy [9],
Singh and Ruiz-Espejo [11]. Under Assumption 1, we state the following theorems without proof.
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Theorem 1. The bias of the proposed estimator ‘T’ to the first degree of approximation is
given by

Proof.
B(T ) = φB(Tu) + (1−φ)B(Tm) (3.12)

where

B(Tu) = Ȳ

[(
1

u
− 1

N

)(
3

8
+
ρyz1

2

)
C2
y − ρyz1

(
N −u

u(N − 2)Z̄1

)(
µ012

µ011

− µ003

µ002

)]
(3.13)

and

B(Tm) = Ȳ

[{(
3

8

)(
1

n
− 1

N

)
+

(
1

2

){(
1

n
− 1

m

)
ρyx−

(
1

n
− 1

N

)
ρyz1

}
C2
y

−
(

7

8

)(
1

n
− 1

m

)}
+

N −n
n(N − 2)X̄

{(
1

n

)(
µ210

µ110

− µ012

µ011

)
−
(

1

m

)
(
µ210

µ110

− µ300

µ200

)}]
(3.14)

Theorem 2. The MSE of ‘T’ to the first degree of approximation is obtained by

Proof.

MSE(T ) = φ2MSE(Tu) + (1−φ)2MSE(Tm) + 2φ(1−φ)Cov(Tu, Tm), (3.15)

where

MSE(Tu) =

(
1

u
− 1

N

)[
5

4
− ρ2

yz1

]
S2
y , (3.16)

MSE(Tm) =

[
1

m

(
5

4
+ ρ2

yx

)
+

1

n

(
ρyz1 + ρ2

yx

)
− 1

N

(
5

4
− ρyz1

)]
S2
y (3.17)

and

Cov(Tu, Tm) =−
S2
y

N

[
5

4
− ρyz1

2
− ρ2

yz1

]
(3.18)

4. Minimum mean squared error of the estimator ‘T’
Since MSE(T) in equation (18) is a function of unknown constant φ, therefore, it can be mini-

mized with respect to φ and equating it to zero, we get the optimum value of φ as

φopt =
[MSE(Tm)−Cov(Tu, Tm)]

[MSE(Tu) +MSE(Tm)− 2Cov(Tu, Tm)]
(4.1)

By substituting the value of optimum ‘φ’ from equation (22) in equation (18) we will have the
minimum MSE of ‘T’ as

min.MSE(T ) =
[MSE(Tu)MSE(Tm)− (Cov(Tu, Tm))2]

[MSE(Tu) +MSE(Tm)− 2Cov(Tu, Tm)]
(4.2)

Substituting the values of MSE(Tu), MSE(Tm) and Cov(Tu, Tm) in equations (22) and (23), we
will have the value of φopt and min.MSE(T), respectively.
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For simplification, further we use the following notations,

δ1 =Nα2−nα5, δ2 =Nα1−Nα2−nα5−Nα4, δ3 = n2α2
8−nNα2α4−n2α4α7,

δ4 =N 2α2α4 +n2(α4α7−α82),δ5 =N 2α1α4−N 2α2α4−nNα4α7,

α1 = (5/4)− ρ2
yx,α2 = ρyz1 − ρ2

yx,α3 = ρ2
yz1
− (ρyz1/2), α4 = (5/4)− ρ2

yz1
,

α5 = ρ2
yz1

, α7 = (5/4)− ρyz1 ,α8 = (5/4)− (ρyz1/2)− ρ2
yz1

.

Now, we have the reduced form of φopt and min.MSE(T) from equation (22) and (23) as

φopt =
[µNα1−µ(1−µ)(Nα2 +nα3)]

[µNα1− (1−µ)(µNα2 +nµα5−Nα4)]
(4.3)

and

min.MSE(T ) =

(
S2
y

nN

)
µ2δ3 +µδ4 + δ5

µ2δ1 +µδ2 +Nα4

(4.4)

5. Optimum replacement policy

For obtaining the optimum value of µ (fraction of a sample to be taken afresh at the second

occasion) so that the population mean Ȳ may be estimated with maximum precision, we minimize

MSE of T in equation (25) by differentiating it with respect to ‘µ’ and hence we get the optimum

value of ‘µ’ as

µ2λ1 +µλ2 +λ3 = 0 (5.1)

where λ1 = (δ2δ3− δ1δ4); λ2 = (2Nα4δ3− 2δ1δ5); λ3 = (Nα4δ4− δ2δ5).

Solving equation (26) for ‘µ’, we get

µ̂=
−λ2±

√
λ2

2− 4λ1λ3

2λ1

(5.2)

The value of µ̂ exists, if λ2
2 ≥ 4λ1λ3. For any combinations of correlations (ρyx, ρyz1) that satisfy the

condition of solution, two values of µ̂ are possible. If both the two values µ̂ are admissible, then the

lowest one is best. Substituting the admissible values of µ̂, say µ0, from equation (27) into (25),

we get the optimum value of the mean squared error of ‘T’, which is given by

min.MSE(T )opt =

(
S2
y

nN

)[
µ2

0δ3 +µ0δ4 + δ5

µ2
0δ1 +µ0δ2 +Nα4

]
(5.3)
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46 İSTATİSTİK: Journal of the Turkish Statistical Association 13(2), pp. 39–51, © 2021 İstatistik

6. Efficiency comparison
The percent relative efficiencies of the estimators T with respect to (i) ȳn, when there is no

matching, (ii) usual successive sampling estimator, ˆ̄Y = ψȳu + (1−ψ)ȳd′ , when no auxiliary infor-
mation is used at any occasion, where [ȳd′ = ȳm + bmyx(x̄n − x̄m)] have been obtained for different

choices of ρyx, ρyz1 and ρyz2 . Since ȳn and ˆ̄Y are unbiased estimators of the population mean Ȳ ,

the variance of ȳn and the minimum variance of ˆ̄Y [as given in Sukhatme et al.[13]] are given by

V (ȳn) =
1− f
n

S2
y (6.1)

V ( ˆ̄Y ) =

[(
1

2

){
1 +

√
(1− ρ2

yx)

}
− f
]
S2
y

n
(6.2)

From (27), (28), (29), and (30) the percent relative efficiencies of the estimators ‘T’ with respect
to Ȳn are given by

E1 = PRE(T, ȳn) =
V (ȳn)

min.MSE(T )opt
× 100

=
N(1− f)(µ2

0δ1 +µ0δ2 +Nα4)

µ2
0δ3 +µ0δ4 + δ5

× 100 (6.3)

E2 = PRE(T, ˆ̄Y ) =
V ( ˆ̄Y )

min.MSE(T )opt
× 100

=
N
[{

1 +
√

(1− ρ2
yx)
}
− 2f

]
(µ2

0δ1 +µ0δ2 +Nα4)

2(µ2
0δ3 +µ0δ4 + δ5)

× 100 (6.4)

For N = 2000, n= 200 and various choices of correlations (ρyx, ρyz1) and using the formulae from
equations (27), (31) and (32) we have computed the optimum values of µ0 and percent relative
efficiencies E1 and E2. The findings are displayed in Table 1.

Table 1. Optimum values µ0 and percent relative efficiency of T with respect to ȳn and ˆ̄Y .

ρyx 0.2 0.3 0.4 0.5
ρyz1 µ0 E1 E2 µ0 E1 E2 µ0 E1 E2 µ0 E1 E2

0.6 0.72 101.46 100.32 0.75 102.23 99.61 0.80 103.91 - 0.90 103.91 -
0.7 0.65 112.20 110.94 0.67 113.18 110.28 0.71 114.49 109.18 0.78 115.92 107.30
0.8 0.58 128.32 126.88 0.59 129.57 126.25 0.62 131.31 125.22 0.67 133.45 123.52
0.9 0.48 155.05 153.31 0.50 156.70 152.69 0.52 159.05 151.67 0.55 162.10 150.03

ρyx 0.6 0.7 0.8 0.9
ρyz1 µ0 E1 E2 µ0 E1 E2 µ0 E1 E2 µ0 E1 E2

0.6 1.13 102.77 91.35 2.16 - - -1.33 178.14 138.56 0.07 154.09 105.80
0.7 0.91 116.70 103.74 1.25 112.55 - * - - -0.27 184.80 126.89
0.8 0.75 135.61 120.54 0.9 135.96 114.37 1.59 119.04 - -1.54 281.87 193.53
0.9 0.60 165.71 147.30 0.70 169.04 142.19 0.94 166.72 129.67 * - -

Note : * denotes µ0 does not exist and − implies very low efficiency.

It is envisaged from Table 1 that the proposed estimator ‘T’ is more efficient than the estimators

ȳn and ˆ̄Y for different levels of correlation between the variables (y and x) and (y and z1). The
following point have been noted from the Table 1 as
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1. For moderate to high correlation between y and z1, efficiency increases with respect to ȳn and
ˆ̄Y .

2. When the correlation between y and x is very high i.e, ρyx = 0.9 corresponding to the different
levels of correlation between y and z1 i.e, (ρyz1 = 0.6 to 0.9), the proposed estimator ‘T’ performs

efficiently among ȳn and ˆ̄Y respectively.
3. With different levels of correlation between y and z1 i.e, (ρyz1 = 0.6 to 0.9) and for different

correlation between y and x i.e, (ρyx = 0.2 to 0.9), the PRE of the proposed estimator T increases
except the case when ρyx = 0.7 and 0.8 and ρyz1 = 0.6 to 0.9 where the PRE of the proposed estima-
tor first decreases then increases because the value of µ0 first increases then decreases respectively.

Situation II : Estimation of the population mean Ȳ of the study variable ‘y’ when
the auxiliary variable z2 is negatively correlated with the study variable ‘y’.

This section deals with case II of our problem, where the correlation between study variable ‘y’
and the auxiliary variable z2 is negative. In this case, for estimating the population mean Ȳ at
the current (second) occasion with negatively correlated auxiliary variable z2 at the first (second)
occasion, we suggest the following estimators as

T ∗
u = {ȳu + byz2(u)(Z̄2− z̄2u)}exp

(
z̄2u− Z̄2

z̄2u + Z̄2

)
(6.5)

where byz2(u) is the sample regression coefficient of y and z2 based on the sample size u.

T ∗
m = {ȳm + byx(m)(x̄n− x̄m)}exp

(
x̄n− x̄m
x̄n + x̄m

)
exp

(
z̄2n− Z̄2

z̄2n + Z̄2

)
(6.6)

where byx(m) is the sample regression coefficient of y and x based on the matched sample of size m.
Consider the linear combination of T ∗

u and T
∗
m, we define the following estimator as

T ∗ = φ∗T ∗
u + (1−φ∗)T ∗

m (6.7)

where φ∗ is any suitably chosen scalar.
Using the result from section ‘2’, one can obtain the bias and mean square error of T ∗

u and T
∗
m

respectively, results of which are mentioned in the form of theorems.

Theorem 3. The bias of the proposed estimator T ∗ to the first degree of approximation is

Proof.
B(T ∗) = φ∗B(T ∗

u ) + (1−φ∗)B(T ∗
m) (6.8)

where

B(T ∗
u ) = Ȳ

[(
1

u
− 1

N

)[
ρyz2CyCz2

2
−
C2
z2

8

]
− kyz2

(
1

u
− 1

N

)
C2
z2

2
+

kyz2

(
N −u

u(N − 2)Z̄2

)(
µ003

µ002

− µ012

µ011

)]
(6.9)

and

B(T ∗
m) = Ȳ

[(
1

2

)(
1

n
− 1

N

)
ρyz2CyCz2 −

(
C2
z2

8

)(
1

n
− 1

N

)
−
((

7

8

)
1

n
− 1

m

)
C2
x (6.10)

+

(
1

2

)(
1

n
− 1

m

)
ρyxCyCx +

(
1

4

)(
1

n
− 1

N

)
ρxz2CxCz2+

kyx

{
1

(N − 2)X̄

(
µ210

µ110

− µ300

µ200

)(
N −n
n
− N −m

m

)}]
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where kyx = ρyx
Cy

Cx
, kyz2 = ρyz2

Cy

Cz2
.

Theorem 4. To the first degree of approximation, the MSE of ‘T ∗’ is given by

Proof.

MSE(T ∗) = φ∗2MSE(T ∗
u ) + (1−φ∗)2MSE(T ∗

m) + 2φ(1−φ)Cov(T ∗
u , T

∗
m) (6.11)

where,

MSE(T ∗
u ) = Ȳ 2

(
1

u
− 1

N

)[
C2
y +C2

z2
((1/4) + k2

yz2
− ρyz2) + (1− 2kyz2)ρyz2CyCz2

]
(6.12)

MSE(T ∗
m) = Ȳ 2

[(
1

m
− 1

N

){
C2
y +

(
1

4

)
C2
x + k2

yxC
2
x − ρyxCyCx + kyxC

2
x − 2kyxρyxCyCx

}
+(

1

n
− 1

N

){(
1

4

)
C2
z2
−
(

1

4

)
C2
x − k2

yxC
2
x + ρyxCyCx + ρyz2CyCz2 − kyxC

2
x + 2kyxρyxCyCx

}]
(6.13)

and

Cov(T ∗
u , T

∗
m) =−(Ȳ 2/N)(C2

y + ρyz2CyCz2 − kyz2ρyz2CyCz2 + (1/4)C2
z2
− (1/2)ρyz2C

2
z2

) (6.14)

Theorem 5. Considering Assumption 1, the bias of the proposed estimator ‘T ∗’ reduces to

Proof.

B(T ∗) = φ∗B(T ∗
u ) + (1−φ∗)B(T ∗

m) (6.15)

where

B(T ∗
u ) = Ȳ

[
ρyz2

{(
N −u

u(N − 2)Z̄2

)(
µ003

µ002

− µ012

µ011

)}
−
(

1

u
− 1

N

)(
1

8

)]
(6.16)

and

B(T ∗
m) = Ȳ

[{(
1

n
− 1

N

)(
ρyz2

2
− 1

8

)
−
(

1

n
− 1

m

)(
(
7

8
)− ρyx

2
− ρxz2

4

)}
C2
y+ (6.17)

ρyx

{
1

(N − 2)X̄

(
µ210

µ110

− µ300

µ200

)(
N −n
n
− N −m

m

)}]
Theorem 6. Under Assumption 1, the MSE of T ∗ to the first degree of approximation reduces

to

Proof.

MSE(T ∗) = φ∗2MSE(T ∗
u ) + (1−φ∗)2MSE(T ∗

m) + 2φ(1−φ)Cov(T ∗
u , T

∗
m)

(6.18)

where,

MSE(T ∗
u ) = (1/u− 1/N)[(5/4)− ρ2

yz2
]S2
y , (6.19)

MSE(T ∗
m) = [(1/m)(5/4− ρ2

yx) + (1/n)(ρ2
yx + ρyz2)− (1/N)(5/4 + ρyz2)]S2

y (6.20)

and

Cov(T ∗
u , T

∗
m) =−(S2

y/N)((5/4) + (1/2)ρyz2 − ρ
2
yz2

) (6.21)
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7. Minimum mean squared error of the estimator T ∗

For minimum MSE of T ∗, we partially differentiate equation (46) with respect to the unknown
constant φ∗ and equating it to zero, we get the optimum value of φ∗ as

φ∗
opt =

[MSE(T ∗
m)−Cov(T ∗

u , T
∗
m)]

[MSE(T ∗
u ) +MSE(T ∗

m)− 2Cov(T ∗
u , T

∗
m)]

=
[µnNα1−µ(1−µ)(Nα

′
2 +nα

′
3)]

[µNα1− (1−µ)(µNα
′
2 +nµα

′
5−Nα

′
4)]

(7.1)

Putting the value of φ∗
opt from equation (50) in equation (46) we get the minimized MSE of T ∗ as

min.MSE(T ∗) =
[MSE(T ∗

u )MSE(T ∗
m)−Cov(T ∗

u , T
∗
m)

2
]

[MSE(T ∗
u ) +MSE(T ∗

m)− 2Cov(T ∗
u , T

∗
m)]

=

(
S2
y

nN

)[
µ2δ

′
3 +µδ

′
4 + δ

′
5

µ2δ
′
1 +µδ

′
2 +Nα

′
4

]
(7.2)

where
δ
′
1 = nα

′
2−Nα

′
5, δ

′
2 =Nα1 +Nα

′
2−nα

′
5−Nα

′
4, δ

′
3 = n2α

′2
8 −nNα

′
2α
′
4−n2α

′
4α
′
7,

δ
′
4 =N 2α

′
2α
′
4 +n2(α

′
4α
′
7−α

′2
8 ) +nNα

′
4(α

′
7 +α

′
2−α1),

δ
′
5 =N 2α1α

′
4−N 2α

′
2α
′
4−nNα

′
4α
′
7,

α1 = (5/4)− ρ2
yx, α

′
2 = ρyz2 + ρ2

yx, α
′
3 = ρ2

yz2
+ ρyz2/2, α

′
4 = (5/4)− ρ2

yz2
,

α
′
5 = ρ2

yz2
, α
′
7 = (5/4) + ρyz2α

′
8 = (5/4) + (ρyz2/2)− ρ2

yz2

8. Optimum replacement policy in case of negative correlation between study and
auxiliary variables.

In this section, we will obtain the optimum value of µ (fraction of sample to be drawn afresh at
the second occasion) so that the population mean Ȳ may be estimated with maximum precision.
Differentiating the min.MSE(T ∗) given by equation (52) with respect to µ and equating to zero we
get

µ2(δ
′

2δ
′

3− δ
′

1δ
′

4) +µ(2Nα
′

4δ
′

3− 2δ
′

1δ
′

5) + (Nα
′

4δ
′

4− δ
′

2δ
′

5) = 0

µ2λ
′

1 +µλ
′

2 +λ
′

3 = 0 (8.1)

where λ
′
1 = δ

′
2δ
′
3− δ

′
1δ
′
4, λ

′
2 = 2Nα

′
4δ
′
3− 2δ

′
1δ
′
5, λ

′
3 =Nα

′
4δ
′
4− δ

′
2δ
′
5

Solving equation (52) for µ, we get

µ̂=
−λ′2±

√
(λ
′2
2 − 4λ

′
1λ
′
3)

2λ
′
1

(8.2)

The value of µ̂ exists, if (λ
′2
2 − 4λ

′
1λ
′
3) ≥ 0. For any combinations of correlations (ρyx, ρyz2)) that

satisfy the solution, two values of µ̂ are possible. Substituting the admissible values of µ̂, say µ0,
from equation (53) into (51), we get the optimum value of mean squared error of T ∗, which is given
by

min.MSE(T ∗)opt =

(
S2
y

nN

)
(µ2

0δ
′
3 +µ0δ

′
4 + δ

′
5)

(µ2
0δ
′
1 +µ0δ

′
2 +Nα

′
4)

(8.3)
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Table 2. Optimum values µ0 and percent relative efficiency of T ∗ with respect to ȳn and ˆ̄Y .

ρyx 0.8 0.9
ρyz2 µ0 E∗

1 E∗
2 µ0 E∗

1 E∗
2

-0.70 0.086 131.14 102.00 * - -
-0.72 0.606 132.27 102.88 * - -
-0.74 0.431 131.20 102.04 2.161 97.40 60.77
-0.76 0.909 128.97 100.31 1.626 130.71 81.55
-0.78 0.221 126.15 98.12 3.690 68.37 46.94
-0.80 0.156 123.06 95.72 2.041 140.28 96.32
-0.82 0.109 119.89 93.25 1.281 170.62 117.15
-0.84 0.073 116.73 90.79 0.834 180.53 125.32
-0.86 0.047 113.63 88.38 0.551 184.95 126.98
-0.88 0.027 110.64 86.05 0.365 182.54 125.33
-0.90 0.012 107.77 83.82 0.241 177.82 122.09
-0.92 0.002 105.01 81.67 0.155 172.10 118.16
-0.94 -0.005 102.38 79.63 0.097 166.06 114.01
-0.96 -0.010 99.87 77.68 0.056 160.05 109.89
-0.98 -0.014 97.48 75.81 0.029 154.25 105.91

Note: ∗ denotes µ0 does not exist and − implies very low efficiency.

9. Efficiency comparison
The percent relative efficiencies of the estimators T with respect to (i) ȳn, when there is no

matching, (ii) usual successive sampling estimator, ˆ̄Y = ψȳu + (1−ψ)ȳd′ , when no auxiliary infor-
mation is used at any occasion, where [ȳd′ = ȳm + bmyx(x̄n − x̄m)] have been obtained for different

choices of ρyx, ρyz1 and ρyz2 . Since ȳn and ˆ̄Y are unbiased estimators of the population mean Ȳ ,

the variance of ȳn and the minimum variance of ˆ̄Y [as given in Sukhatme et al.[16]] are given by
equation (29) and (30) in section 6.
From (29), (30) and (54), the percent relative efficiencies of the estimators T ∗ with respect to ȳn
and ˆ̄Y are given by

E∗
1 = PRE(T ∗, ȳn) =

V (ȳn)

min.MSE(T ∗)opt
× 100

=
N(1− f)[µ2

0δ
′
1 +µ0δ

′
2 +Nα

′
4]

µ2
0δ
′
3 +µ0δ

′
4 + δ

′
5

× 100 (9.1)

E∗
2 = PRE(T ∗, ˆ̄Y ) =

V ( ˆ̄Y )

min.MSE(T ∗)opt
× 100

=
N
[
{1 +

√
(1− ρ2

yx)}− 2f
]
(µ2

0δ
′
1 +µ0δ

′
2 +Nα

′
4)

2(µ2
0δ
′
3 +µ0δ

′
4 + δ

′
5)

× 100 (9.2)

For N = 2000, n= 200, and various choices of correlations(ρyx, ρyz2)and using the formulae from
equations (53), (55) and (56) we have computed the optimum values of µ0 and percent relative
efficiencies E∗

1 and E∗
2 . The findings are displayed in Table 2.

It is noticed from Table 2 that for ρyx = 0.8 and ρyz2 =−0.70 to − 0.94, the performance of the

proposed estimator T ∗ is efficient than ȳn while T ∗ is efficient than ˆ̄Y for different values of ρyz2
from −0.70 to − 0.76. For ρyx = 0.8 and ρyz2 =−0.72, the efficiency of the proposed estimator T ∗

over ȳn is maximum, after that the efficiency decreases with increase in the value of ρyz2 .

Further, it is noticed that for ρyx = 0.9, the efficiency of T ∗ over ȳn and ˆ̄Y behaves in the following
manner
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� Efficiency increases with the increase in the value of ρyz2 i.e ρyz2 =−0.80 to −0.84,
� Efficiency is maximum when ρyz2 =−0.86, and
� Efficiency decreases with the increase in the value of ρyz2 i.e. ρyz2 =−0.86 to −0.98.

10. Conclusions
This article deals with the problem of estimating the population mean of the study variable on

current (second) occasion in two-occasion successive sampling under two situations i) when the
auxiliary variable is positively correlated with the study variable and ii) when the auxiliary variable
is negatively correlated with the study variable. Properties of the suggested estimators have been
discussed and the conditions where the suggested estimators are optimum are also obtained. It is
found that the suggested estimator in both cases has shown efficient results when there is high
correlation between study and auxiliary variables. From the empirical results, it can be concluded
that the proposed estimator is more rewarding in the estimation of the population mean of the
study variable at the current occasion in two occasion successive sampling. Finally, our recommen-
dation is to use the proposed estimator by the survey practitioners in practice.
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