
*Corresponding Author Vol. 23 (No. 3) / 224 

International Journal of Thermodynamics (IJoT) Vol. 23 (No. 3), pp. 224-232, 2020 
ISSN 1301-9724 / e-ISSN 2146-1511 doi: 10.5541/ijot.711703 
www.ijoticat.com  Published online: September 01, 2020 

 

 

An Advanced Platform for Thermodynamics Education. 

Part one: Small Density Pure Real Gases  
 

B.I. Sedunov 

 
Russian New University (ROSNOU) 

22 Radio st., Moscow, Russia 

E-mail: sedunov.b@gmail.com 

 

Received 30 March 2020, Accepted 11 August 2020 

 

Abstract 

 

The paper presents an advanced platform for thermodynamics education - the equilibrium pure real gas system, 

which has been deeply investigated experimentally and theoretically by researchers from all over the World. But in 

spite of a huge amount of extra precise experimental data, the nature of real gases and clusters in them is still poorly 

understood. The clusters are considered now as a new state of matter. To study them is both challenging and 

educative. We use a wonderful feature of pure real gases: the chemical potential for all basic particles in a gas is 

universal for all clusters. It permits us to find the monomer fraction density Dm from an experimental pressure 

dependence of the total density. This variable has proven to be the key to properties of clusters and molecular 

interactions. The advanced platform is more informative for thermodynamics education than the widely used ideal 

gas model, which ignores molecular interactions. It provides a new vision of molecular interactions in clusters and 

the entropy in pure real gases. Moving step-by-step from ideal to denser gases students may better understand the 

complex nature of condensation. Here we start from small density gases. 

 

Keywords: real gas; thermophysical properties; clusters; molecular interactions; entropy; chemical potential.  

1.Aims and Scope 

The general thermodynamics is very hard for 

comprehension by students; therefore, for teachers and 

students specific platforms are needed, where the 

thermodynamics laws appear as rather obvious and 

intuitively understandable. The general thermodynamics of 

equilibrium systems benefits from its applications to 

specific platforms, demonstrating its laws and providing a 

further development for its basic principles. Basing on 

different platforms we comprehend the general 

thermodynamics from multiple points of view.  

The real gas is far from being a simple system: it 

consists of multiple and diversified cluster fractions. 

Clusters are aggregates of gaseous particles, bound by 

weak intermolecular forces. Clusters and cluster fractions 

are fundamental elements of a real gas. The molecular 

interactions [1, 2] in real gases obey some special features, 

which prevent from a direct application of the chemical 

bond model to the clusters and cluster fractions. 
The goal of this paper is to demonstrate the unknown 

before relations for the pure real gas platform, which is 

abundant of precise experimental data. The 

thermodynamics of real gases course should follow the 

general thermodynamics study. The computer aided 

analysis of precise experimental thermophysical data for 

pure real gases may provide students a clear and 

understandable introduction to the statistical physics.  
Some bright examples of thermodynamics applications 

to specific platforms, widely used in thermodynamics 

education, are listed down here. These platforms are 

characterized by specific conditions for a system under 

investigation: 

 

Table 1. The platforms and their features useful for 

thermodynamics education 

Platforms The features useful for 

thermodynamics education 

The pure ideal gas 

model 

The Universal gas law;  

The understandable, educative 

statistics.  

The mixture of ideal 

gases 

The Dalton's law for total P and 

partial Pp pressures 

The equilibrium 

chemical system 

The law of Mass action; 

The Boltzmann law for 

equilibrium constants 

The adiabatic 

process 

The constant entropy law 

The Joule-Thomson 

process 

The constant enthalpy law 

The atomic ideal gas The Sackur-Tetrode equation for 

entropy  

The spin 

paramagnetic system 

The Curie-Weiss law 

The semiconductors 

in a thermal 

equilibrium 

The universal Fermi level for 

electron and hole systems 

The vapor-liquid 

equilibrium system 

The Raoult's law,  

The Dalton's law,  

The Henry's law; 

The Gibbs–Duhem relation; 

The Clausius–Clapeyron relation 

The pure fluid at a 

critical point 

The critical opalescence 

phenomenon 
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This list may be proceeded further, but it already 

clearly shows the importance of specific platforms for 

comprehensible thermodynamics education.  

The listed above thermodynamics laws may also help 

to better understand the real gas nature.  

This research provides the next valuable lessons:  

The accumulated in the whole World and available 

from online databases, such as the NIST Webbook [3], 

huge amount of extra precise experimental data on 

thermophysical properties of equilibrium pure real gases 

and denser fluids, may be used for an extraction of still 

unknown molecular interaction and clusters' properties 

from them.  

The clusters' properties extraction from experimental 

data is a very educative process, which requires a new type 

of cluster expansion instead of the virial expansions. 
For pure real gases cognition an advanced system of 

thermodynamics laws may be built. 

To express this system of laws and to use it in the 

educational process an additional set of terms and 

functions should be introduced, as for any new branch of 

science. 

Thermophysical properties of real gases are greately 

determined by clusters, which types and concentrations 

strongly depend on temperature T and molar density D of a 

gas. The cluster physics in gases builds the basis for 

thermodynamics of denser pure fluids. This research 

discovers the continuous transformation of types, 

dimensions and concentrations of clusters in gases basing 

on the interactive computer aided analysis of extra precise 

thermophysical data from the NIST Webbook [3].  

It may  sound strange, but now we understand better 

the galactic structure rather than the clusters in gases. Lynn 

Yarris from Lawrence Berkeley National Laboratory 

named clusters as a new state of matter [4]. An explosion 

of interest to clusters now is stimulated by their utilization 

as seeds for nanoparticles nucleation [5-10]. But small 

interparticle bond energy, as compared to the thermal 

agitation energy, makes the clusters' nature cognition 

difficult. Thermal agitation energy makes the clusters' 

physics cognition difficult.  It might be better to say: 

'clusters are a unknown yet state of matter'.  

The pure real gas consists of cluster fractions with 

different numbers n of basic particles in clusters. At n = 1 

we have the Monomer fraction. In spite of an extra short 

lifetime for clusters, they are free moving particles with 

the Dalton's law for their partial and total pressures. The 

clusters may exist in various isomer forms, with different 

bond energies, as it is shown at the Figure 1. 

 

 

Figure 1. The Monomers and small Cluster isomers in a 

small density pure real gas. 

 

The Figure 1 demonstrates the densely and loosely 

packed isomers of tetramers and trimers, possessing 

different bond energies. The isomers' bond energies may 

be found from the temperature dependence of the 

corresponding series expansion coefficients for potential 

energy density. It is very educative to estimate the isomers' 

bond energies for different gases. 

Multiple earlier attempts to penetrate in the mystery of 

clusters [11-13] could not bring a comprehensive 

knowledge of the cluster nature. The key to clusters' 

properties extraction from precise experimental 

thermophysical data appeared only in 2007 with the 

monomer fraction density (MFD) Dm introduction to the 

thermodynamics terms and functions family [14]. This 

idea had been developed further by the author in 2008 in 

the paper for International Journal of Thermodynamics 

[15].  

The knowledge of the monomer fraction density Dm in 

pure real gases opened the way to a cluster expansion by 

degrees of the monomer fraction density Dm. This new 

type of a cluster expansion has a clear statistical nature, 

corresponds to the Mass action law [16], and for this 

reason may be named as the canonical cluster expansion. 

Basing on the canonical cluster expansion the author has 

developed the interactive computer aided methods for 

thermophysical data analysis [17, 18]. A high precision of 

the NIST Webbook [3] data, given with 12 digits, provides 

a satisfactory solution of the inverse problem [19] for 

hidden clusters' properties cognition.  

2. A new platform for thermodynamics education and 

research 
Pure real gases present an advanced platform for 

thermodynamics education [20] and research as the next 

step from the widely used ideal gas model, which ignores 

molecular interactions, being the most essential factors for 

the cluster and condensed matter physics. While the ideal 

gas model benefits from the molecular simulation 

methods, for the real gas nature cognition and 

comprehension the computer aided analysis of precise 

experimental thermophysical data has proven to be much 

more informative. 

 

2.1. The way to thermodynamics of fluids cognition and 

better comprehension 
We suggest the next strategy for pure fluids' structure 

investigation and teaching: 

 The start from diluted pure real gases; 

 Step-by-step movement from ideal gases through 

real gases to denser fluids; 

 Basing on the precise experimental 

thermophysical data for pure fluids, such as the data from 

the NIST Webbook [3];  

 Basing on the new informative variables, such as 

the monomer fraction density Dm, the density of free 

moving particles Dp = P / RT and the fluid molar potential 

energy U = E(T, P) – E(T,0), where  E(T, P) is the molar 

Internal energy at a pressure P.  
 Basing on the new type of cluster expansion with 

the Monomer fraction density Dm, as an argument for 

series expansions of different thermodynamics functions, 

to extract from precise experimental thermophysical data 

the properties of clusters and cluster fractions and 

understand better the molecular interactions nature.  

 

 

Tetramers Trimers Dimers 

Monomers 
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 The extension of the canonical cluster expansion 

methods for high densities to pave the way to better 

understanding of the gas-to-liquid transformation. 

 Basing on the Cagniard de la Tour [21] and 

Thomas Andrews [22 - 24] conclusions of a continuous 

transformation from gaseous to liquid forms of matter to 

comprehend the supercritical fluids nature. 

 

The earlier attempts [25-27] to understand the clusters' 

nature basing on the virial expansion of the real gas 

pressure P by the total molar density D failed [28]. Now 

we can explain why: the total density, as a sum of partial 

densities of basic particles in different cluster fractions, is 

not a correct physical argument for cluster expansions. 

Only the Monomer fraction density Dm may serve as an 

argument for the cluster expansion to correspond to the 

law of Mass action [16]. It is useful for students to apply 

the canonical cluster expansion for different pure real 

gases. This training may help them to understand better the 

role of the Mass action law in statistical physics. 

2.2. New terms and variables for pure fluids  

The pure fluids structure cognition benefits from new 

terms and variables introduction:  

 Basic particles – the particles of a pure fluid, 

corresponding to its chemical nature. Their introduction 

provides a new point of view on the fluid density D, which 

may be named as the total molar density of basic particles; 

 Monomers – the basic particles, temporarily non 

interacting with other particles; 

 The monomer fraction density [15] Dm – the 

molar density of the monomer fraction; 

 Free moving particles – monomers and clusters; 

 Cluster isomer - the structural modification of 

an n-particle cluster; 

 Chain cluster - the cluster isomer possessing no 

more than 2 bonds for a particle; 

 The virtual cluster - the aggregate created by 

particles collision without their bonding; 

 Partial density Dn and partial pressure Pn of the 

n-particle cluster fraction; 

 The  free moving particles density Dp = P / RT – 

the sum of the monomers' and clusters' partial molar 

densities: Dp = Dm + Ʃ Dn, n = 2,3,...   

 The real gas potential energy U = E(T, P) – 

E(T,0) [17] - the Excess molar Internal energy; 

 The real gas potential enthalpy Hp = H(T, P) – 

H(T,0) = U + P/D - RT; 

 The potential energy density U D - the product 

of molar potential energy by density; 

 The potential enthalpy density Hp D = U D + P 

- RT D; 

 The apparent equilibrium constants for different 

thermodynamics Excess functions series expansions by 

degrees of the monomer fraction density; 

 The cluster bond energy En - the distance from 

the monomers' free movement averaged energy to the 

thermodynamically averaged value of energetic levels in a 

cluster. 

 

2.3. The ideal gas laws applicability for real gases 
As we mentioned before, the clusters now are 

considered as a new, still unknown, state of matter. To 

study their nature and their role in gases is a challenging 

task for the thermodynamics education development. The 

real gas differs from an ideal gas by clusters' influence on 

its thermophysical properties, but may be considered as a 

mixture of ideal cluster fractions.  
The ideal gas laws play an important role in pure real 

gases via the ideal laws for partial pressures of the 

monomer Pm and n-particle cluster fractions Pn: 

Pm = RT Dm ,   (1) 

 

Pn = RT Dn.   (2) 

 

And the ideal gas equation for the total pressure:  

 

P = RT Dp ,   (3) 

 

Dp = Dm + Ʃ Dn, n = 2,3,... (4) 

 

The system of equations (1-4) is obvious, 

understandable, educative, and clearly explains the nature 

of pressure in real gases. 

 

2.4. The Monomer Fraction Density, Dm 

The Chemical Potential G for all basic particles of a 

total gas is the same as for Monomers [15]. It looks like a 

universal Fermi level for free electrons and holes and for 

electrons on the donor and acceptor levels in 

semiconductors. The pressure dependent part of the Gibbs 

energy Gtr, as the translational part of G for a real gas, is 

the same as Gtrm for an ideal gas of Monomers, Figure 2:  

 

Gtr = Gtrm = RT ln (Dm Vq ),  (5) 

 

where Vq = h3NA
4 /(2MRT)3/2 - the molar quantum volume 

[29], which is proportional to the third degree of the 

thermal de Broglie wavelength; h is the Plank’s constant, 

M is the basic particles' molecular mass in kg/mol, NA is 

the Avogadro number, R is the universal gas constant.  

 
 

Figure 2. The translational part of the pure real gas basic 

particles’ chemical potential G independence on the 

structure of clusters.  

 

For the total chemical potential G we have the well-

known thermodynamics law: 

 

∂ G / ∂ P |T = V = 1/D; 

 

Differentiating the Gtr from equation (5) we come to 

the differential equation for Dm [15]: 

 

∂ Dm / ∂ P |T = Dm /(RTD).  (6) 

 

 

Gtr = Gtrn = Gtrm = RT ln (Dm Vq ) 
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The equation (6) looks like the well-known equation 

for fugacity f : 

 

∂ ln (f) / ∂ P |T = 1/(RTD).  (7) 

 

The fugacity f had been introduced in thermodynamics 

by G. N. Lewis [30], but the monomer fraction density Dm 

seems to be much more understandable for students. We 

can define the fugacity as the Monomer fraction partial 

pressure Pm given by the equation (1). 

The equation (6) can be solved numerically very 

precisely, if the initial P1 and the pressure step values ΔPi 

= Pi - P(i-1)  are enough small. The online NIST Webbook 

[3] permits to download the isothermal thermophysical 

properties table for a selected pure gas with any desired 

pressure step value, thus providing a required precision of 

the Dmi values computation. We recommend the next form 

of the equation (6) numerical solution [20]: 

 

Dm i = Dm (i -1) (1+ΔDP i /(2D (i -1) ))/(1-ΔDP i /(2D i)).  (8) 

 

As an initial condition for an extra diluted gas we have: 

Dm 1 = 2 DP 1 - D 1. After Dm i computation we add to the 

thermophysical properties table the Dm i column, which 

may serve as an argument for series expansions of 

thermophysical functions. 

It is difficult to define the monomer fraction density 

microscopically, because the boundary between the 

monomers' free movement and their bound states is vague. 

But the phenomenological approach via equation (6) 

permits to define the monomer fraction density in a real 

gas, and this definition may be used to test and correct the 

molecular simulation models. 

The need in densities, D, Dp and Dm, characterizing the 

pure real gas system, is clearly seen from the Figure 3, 

which shows that in the Carbon dioxide real gas at a 

supercritical temperature and at pressures higher than 20 

bar all three densities differ very much. We use here the 

'bar' unit for pressure, because this unit is close to the 

widely used in books and practice 'atmosphere' unit. 

 
Figure 3. Densities: D, Dp and Dm for CO2 at a 

supercritical temperature, T = 310 K. 

 

The Figure 3 shows the Dp graph going between the D 

and Dm lines. It means that the coefficients for Dp series 

expansion by D and Dm have opposite signs. Indeed, the C2 

(T) coefficient of the Dp series expansion by Dm equals to 

the second virial coefficient B (T) with an opposite sign: 

C2 (T) = - B (T). A large difference between D and Dm 

results in a big difference between virial expansion of Dp 

by degrees of D and canonical expansion of Dp by degrees 

of Dm.  The Figure 3 shows that at the density D near the 

critical density Dcr, which for CO2 is close to 10,6 mol/l, 

the curvature of the D (P) line changes its sign, thus 

reflecting the gas-to-liquid transfer in a supercritical fluid. 

But the Dp (P) and Dm (P) curves are not sensitive to this 

transformation. 

 

2.5. The entropy of the pure molecular real gas  
The pure molecular real gas entropy S may be split on:  

• The pressure independent part for internal 

molecular vibrations and rotations, Sint (T); 

• The pressure dependent part for molecular and 

clusters’ translational movements entropy, Str (T, P) = S(T, 

P) - Sint (T). 

  

From the equation (5) we come to the pressure 

dependent part of entropy Str (T, P) [15]: 

 

Str = Htr / T – R ln(Dm Vq).   (9) 

 

This equation for molecular real gases is the 

generalization of the well-known Sackur-Tetrode equation 

[31-33] for an atomic ideal gas: 

 

S = 2.5 R + R ln(V / Vq). 

 

It is useful for students to apply the equation (9) for 

different pure real gases with known precise 

thermophysical properties. 

 

2.6. The Apparent Equilibrium Constants for n-

particle Complexes 
The impossibility to find the cluster fractions' 

concentrations by direct physical methods forces us to use 

series expansions of experimental thermophysical 

functions to estimate different properties of the cluster 

fractions. Thus we come to a multitude of apparent 

equilibrium constants corresponding to different 

thermophysical functions.  

These apparent equilibrium constants may look very 

strange. So, the coefficients Cn (T) of the Dp series 

expansion by Dm change their sign at some temperatures. 

For example, the dimers' apparent equilibrium constant C2 

(T), which equals to - B(T), changes its sign at the Boyle 

temperature.  

The coefficients Cn (T) correspond to the n-particle 

complexes in agreement with the law of Mass action [16]. 

They may be named as apparent equilibrium constants for 

these complexes. But the n-particle complexes include 

diversified isomer structures of n-particle clusters, shown 

at Figures 1 and 2, which have different bond energies due 

to different numbers of bonds between particles. For this 

reason the temperature dependence of coefficients Cn (T) is 

more complex than the Boltzmann law for chemical 

compounds.  

Moreover, the collisions between monomers and small 

clusters in n-particle complexes do not always result in the 

n-particle cluster formation. Collisions followed by flying 

away of the colliding particles limit the free movement 

volume for them, thus introducing negative terms in the Cn 

(T) values. It explains the sign changes of the Cn (T) values 

at high temperatures. 

 

2.7. The real and virtual clusters 
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Now we consider the structure of the free moving 

particles density Dp = P / RT. The free moving particles 

are monomers [14, 15], clusters [17, 18] and the arising at 

collisions temoparily existing complexes of monomers and 

clusters, which do not result in the clusters formation. 

These complexes may be named as virtual clusters [15], 

Figure 4. They limit the free movement volumes for 

monomers and clusters and manifest themselves through 

the excluded volumes.  

Their contribution in thermophysical properties of 

gases also corresponds to the Mass action law. 

 
 

Figure 4. Real (dark balls) and virtual (light balls) clusters 

in dense gases: orange arrows - the bonds between 

particles in clusters; green arrows - the free moving 

paticles' moment components before collision. 

 

In the chemical media the virtual clusters' contribution 

to the equilibrium constants of compounds is negligible, 

but in real gases the molecular interaction forces are much 

weaker, and the contributions of real and virtual clusters in 

the series expansion coefficients are comparable. Due to 

the virtual clusters existence the second virial and 

canonical coefficients change their sign at the Boyle 

temperature. 

 

3. The canonical cluster expansions 

3.1. The D and Dp canonical expansions by degrees of 

Dm 

The series expansion of Dp by degrees of Dm at a 

constant T may be written in a form: 

 

Dp = Ʃ Cn Dm
n, n = 1, 2, 3,... C1 = 1. (10) 

 

Then, the equations (6) and (10) lead to the series 

expansion for D: 

 

D = Ʃ n Cn Dm
n, n = 1, 2, 3,... C1 = 1. (11) 

 

The system of equations (10, 11) demonstrates an obvious 

relation between coefficients for D and Dp: the factor n 

reflects the number of particles in the n-particle cluster. 

 

The difference D - Dp removes the monomers' contribution 

and thus helps to find the Cn (T) values: 

 

D - Dp = Ʃ (n-1) Cn Dm
n, n = 2, 3,... (12) 

 

We expand in a series the function C2+ = (D - Dp)/ Dm
2. 

The limit of this function at zero Dm value gives us the 

second canonical coefficient C2. The third canonical 

coefficient C3 we find as the zero Dm limit of the function 

C3+ = (C2+ - C2)/2Dm. And so on. The computation of 

these limits requires taking measures against errors in the 

Cn+ values at small Dm. The interactive process of 

coefficients Cn computation permits to estimate and 

minimize the arising errors.  

The Figure 5 shows the temperature dependence of the 

second apparent equilibrium constant C2 (T) for Carbon 

dioxide. And the Figure 6 shows C3 (T). 

 

 
Figure 5. The second apparent equilibrium constant C2 (T) 

for Carbon dioxide changing its sign at T = 722 K due to 

the virtual dimers' contribution. 

 

It is seen that  C2 (T) becomes negative over the Boyle 

point T = 722 K. This change of sign is due to a 

combination of two interaction mechanisms: the attraction 

and repulsion between colliding particles. We do not pay 

attention to this cooperation in chemical reactions because 

the chemical attraction forces are usually much stronger 

than the repulsion forces in gases. But, the investigation of 

aggregates with weak chemical bonding, such as the 

dimers in alkali metal vapors [34], may show the 

repulsions' negative contribution to their equilibrium 

constants. 

 

 
Figure 6. The third apparent equilibrium constant C3 (T) 

for Carbon dioxide (blue line) and 10 C3 (T) (red line). 

 

It is seen that the C3 (T) changes its sign at T = 578 K. 

For many pure real gases the third apparent equilibrium 

constant C3 (T) is almost equal to the double second power 

of the C2 (T): C3 (T) ~ 2 C2 (T)2, Figure 7. Here the 

negative part of C3 (T) may be considered as zero. 
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Figure 7. A comparison of the 2 C2 (T)2 with C3 (T) for 

Carbon dioxide, demonstrating their proximity. 

 

This proximity has a clear physical sense: the trimer 

with two bonds, shown at the Figure 1, may be considered 

as a complex of two dimers, in which the third particle 

may be attached to both ends of the existing dimer. It gives 

the factor 2 in the expression 2 C2 (T)2. The correlation of 

these apparent equilibrium constants tells in favor of the 

canonical cluster expansion, which provides a clear picture 

of small cluster fractions. 

 

To estimate the contributions of different mechanisms 

of molecular interactions in the clusters' properties we 

should not limit our research by the pressure-density-

temperature (PDT) analysis, but to involve also the 

potential energy (PE) analysis [17]. 

 

3.2. Coming to Clusters’ bond parameters via Potential 

Energy 

The pure real gas potential energy [17] presents one of 

Excess thermodynamics functions, which expresses the 

difference between the real and ideal gases' Internal 

energies. Similar Excess thermodynamics functions may 

be introduced for Enthalpy, viscosity, thermal 

conductivity, and so on. They help to discover the pure 

real gas nature. The potential energy canonical cluster 

expansion has the next steps [17]: 

 Molar Potential Energy of a fluid U (T, P) is the 

difference of the Internal Energy E (T, P) and its 

zero pressure value: U (T, P) = E (T, P) - E (T, 0). 

 The Potential Energy density is UD.  

 We expand in a series by Dm a positive function: 

  

W2+ = - UD / Dm
2. 

 

 The series expansion coefficients Wn provide the 

bond parameters and equilibrium constants of clusters 

discovery [17, 35].  

 The coefficients Wn are products of the apparent 

equilibrium constants Cun for the potential energy density 

and the clusters' bond energies En.  

 The cluster bond energy En in Kelvin can be 

found as: 

 

En = - T2 d ln(Wn ) / dT.  (12) 

 

The Figure 8 shows the soft structural transition in the 

Water vapor tetramers from densely packed isomers 

dominating at low temperatures to the loosely packed 

isomers dominating at high temperatures [35, 36]. 

 
Figure 8. The soft structural transition between loosely 

bound isomers dominating at high temperatures and 

densely bound isomers dominating at low temperatures in 

the Water vapor tetramers: green line - tetramers; red line 

- trimers; blue line - dimers. 

The Table 2 shows Water vapor clusters' bond energies 

found by the PE canonical expansion. 

 

Table 2. Water vapor clusters' bond energies, measured in 

kilo Kelvin (kK). 

Clusters Dimers Trimers Tetramers 

n 2 3 4 

En (kK)  at 

T < 330 K 

1,53 3,17 14,95 

En (kK)  at 

T > 400 K 

1,53 3,17 4,9 

 

It is seen that at T > 400 K the clusters bond energies 

are close to (n - 1) E2 that confirms the chain structure of 

clusters with the bonds number Nbn = (n - 1), but at T < 

330 K the tetramers' bond energy is much higher. The 

three-fold growth of the E4 cannot be explained by the 

growing number of bonds between four H2O molecules in 

the tetramer.  

So, this effect tells about a stronger interaction between 

molecules in the Water vapor tetramers. The gases, like the 

Water vapor, with this type of the soft structural transition 

in their cluster fractions are not very multiple. The most of 

gases, such as the Argon, Nitrogen, Carbon Dioxide, do 

not have this type of a soft structural transition and may be 

named as normal. 

 

3.3 The virtual clusters 
The virtual clusters appear in real gases in three forms: 

1. The basic particles repulsion volume, Vex, which limits 

the free movement volume for a basic particle due to its 

collisions with other particles; 

2. The monomer-cluster interaction volume, Vint, which 

should be excluded from the monomer free movement 

volume to avoid the double counting of this volume for 

clusters and for monomers. 

3. The elastic collisions volume Vec = - T d Vex / dT. The 

collisions' elasticity contributes to the potential energy of a 

real gas and changes the corresponding apparent 

equilibrium constant [37]. 

 

The most understandable are virtual dimers in atomic 

gases. All three volumes, responsible for virtual dimers, 

are shown schematically at the Figure 9. 
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Figure 9. Three volumes responsible for virtual dimers in 

atomic real gases: the excluded volume Vex - blue ball; the 

elastic collision volume Vec - yellow sphere; the monomer-

dimer interaction volume Vint - green sphere. 

 

The zones of three volumes are determined by the pair 

interaction energy dependence on the distance d between 

atoms, Figure 10. For simplicity we use here the Lennard-

Jones interaction model potential [38]. For example, the 

excluded volume Vex = 2πNavd3/3. Here Nav is the 

Avogadro number. The change of the factor 4 in a standard 

formula for volume on 2 accounts for two particles 

dividing their common excluded volume. 

 

 
Figure 10. The three distance zones for three volumes 

calculation at a temperature T equal to the maximal depth 

of the potential well: the excluded distance marked by the 

blue horizontal line, starting at a zero distance; the elastic 

collision distance marked by the yellow line; the dimers' 

attraction distance marked by the green line. 

 

From the Figure 10 it is seen that the distance between 

colliding particles depends on the collision energy and the 

elasticity of this dependence determines the elastic 

collision volume Vec = - T d Vex / dT. 

To find the pair interaction bond energy E2  we have to 

account for the monomers elastic collisions contribution 

into total potential energy of a gas. This contribution to W2 

grows with temperature almost linearly:  ΔW2 = RT Vec 

[37]. To correct the W2 (T) from the monomers elastic 

collisions contribution into total potential energy we use 

the corrected function W2cor (T) = W2 (T) + RT Vec and find 

the fitting Vec value with a criterion: the calculated 

temperature dependence of the Vint (T) at the highest 

temperatures in the database should be flat. The Figure 11 

shows the corrected CO2 dimers bond energy with d Vint / 

dT = 0 at T = 1100 K. 

 
 

Figure 11. The corrected CO2 dimers bond energy E2 (T) 

demonstrating the soft transition from the free rotation of 

molecules in dimers at high temperatures to a more 

oriented their position near the triple point 

 

In the noble gases even atomic dimers at low 

temperatures exhibit a no spherical symmetry of their 

bonds due to a quantum character of interatomic forces 

and change their bond energy with temperature, Figure 12, 

towards freezing of the dimer structure near the triple 

point. It should be taken into account at the computer 

simulation of the noble gases' thermophysical properties. 

 

 
 

Figure 12. The pair bond energy E2 (T) in Krypton, 

demonstrating freezing of the dimer structure near the 

triple point temperature. 

The Figure 12 shows that near the triple point 

temperature,  Ttr = 115.775 K, in atomic gas Krypton the 

pair bond energy is three  times larger than at temperatures 

over 500 K [36]. It may be explained as the soft structural 

transition from spherical symmetry of interatomic bonds at 

high temperatures to strongly oriented bonds [37] inherent 

to the solid state of Krypton. 

4. A symmetry between clusters in vapors and pores in 

liquids at a thermal equilibrium 

For many pure fluids the sum of vapor and liquid 

saturation densities has proven to depend linearly on 

temperature, Figure 13. It means the growth of the vapor 

saturation density with temperature is totally compensated 

in the sum by growing volume of pores in the saturated 

liquid. The linear change of the total density may reflect 

the special thermal expansion law for an infinite cluster, 

being free of pores. 
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Figure 13. The linear temperature dependence of the sum 

of the CO2 saturation densities (red line): the vapor 

density (green line); the liquid density (blue line); the 

mirror density, equal to a half of the sum of densities 

(black line), pointing out to the critical density. 

 

The sum of saturation densities may be attributed to the 

density of an infinite cluster, being free from pores. The 

difference between the infinite cluster density and the 

liquid saturation density reflects the effect of pores on the 

liquid saturation density. This effect seems to be equal to 

the vapor saturation density. At the critical temperature Tc 

the critical density Dc equals to a half of the infinite cluster 

critical density. The line corresponding to density, which 

equals to a half of the infinite cluster density is situated 

exactly on equal distances between the saturation densities 

and for this reason may be named as the mirror line. 

So, for many fluids between microscopic structures of 

pores in liquids and clusters in vapors along the saturation 

line may exist a statistical symmetry [39] depicted on the 

Figure 14.  

 

 
 

Figure 14. The statistical symmetry between cluster 

fractions in the vapor (upper picture) and pores fractions 

in the liquid (lower picture) at a vapor-liquid equilibrium. 

 

5. Step-by-step movement from ideal to dense real 

gases 

Moving step-by-step from ideal to denser gases we 

approach to microscopic structure of the condensed matter. 

On this way we have discovered [40] the linear chain 

clusters at the density range D < Dcr / 5. In this range of 

densities the isothermal dependences of the 1/C2+ and 

1/W2+ on Dm are linear for many pure real gases. This 

linearity tells about existence of linear chain clusters with 

no more than two bonds for a particle.  

In the density range over Dcr / 5 and up to Dcr  together 

with linear chain clusters appear large three dimensional 

(3D) clusters [41]. To study characteristics of these 

clusters a special logarithmic expansion method has been 

developed. This method permits the clusters' properties 

estimation for numbers of particles in them up to 1 

thousand. These huge clusters at the critical density and 

supercritical temperature merge into an infinite cluster 

filled with pores. 

The interpretation of these wonderful phenomena will 

be given in the next part of the paper devoted to dense 

gases. 

 

6. Conclusions 

 The unique feature of pure real gases, the 

uniformity of the basic particles’ Chemical Potential for 

clusters and the total gas, provides the clusters' properties 

cognition.  

 The Monomer Fraction Density, as a key variable 

in the Thermodynamics of pure real gases, supports 

discovering of their cluster structure.  

 The Monomer Fraction Density permits the 

Sackur-Tetrode equation generalization to molecular real 

gases. 

 The Potential Energy based analysis of precise 

equilibrium thermophysical data delivers the clusters' 

structural and bond parameters.  

 The temperature dependences of the clusters' 

bond energies reveal the soft structural transitions between 

cluster isomers. 

 All new phenomena in pure real gases make this 

platform interesting for students and motivate them to new 

investigations and discoveries. 

 

Nomenclature 

MFD  Monomer Fraction Density  

D  Molar density of basic particles, mol/l  

P  Pressure, bar 

n Number of particles in the cluster and the order of 

the series expansion term 

Dn Partial molar density of the n-order cluster 

fraction, mol/l  

Dm Monomer fraction density, mol/l  

Pn Partial pressure of the n-order cluster fraction, bar 

Cn (T) Apparent equilibrium n-order cluster formation 

constant, reflecting both attraction and repulsion forces  

Cun (T) Apparent equilibrium n-order cluster formation 

constant, found from potential energy density 

E  Molar internal energy, J/mol  

U Molar potential energy, J/mol 

H  Molar enthalpy, J/mol 

G  Molar Gibbs energy (Chemical potential), J/mol 

Gtr Translational part of the molar Gibbs energy 
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Gint Intramolecular part of the molar Gibbs energy 

S  Molar entropy, J/(mol K) 

Sint Intramolecular rotations and vibrations entropy  

Str Translational part of the entropy, J/(mol K) 

Vi  Volume for a mole of an ideal gas, l/mol  

Vq  Molar quantum volume for basic particles, l/mol  

h  Plank’s constant  

M Molecular weight, kg/mol  

NA   Avogadro number, 1/mol  

R   Universal gas constant, J/(mol K) 

Wn Apparent equilibrium n-order constant for 

potential energy density 

En Bond energy for n-particle cluster, K 

Vex Excluded volume for pair interactions, l/mol 

Vec Pair elastic collision volume, l/mol 

Vint Pair interaction volume in a dimer, l/mol 
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