
Universal Journal of Mathematics and Applications, 4 (1) (2021) 33-40
Research paper

Universal Journal of Mathematics and Applications
Journal Homepage: www.dergipark.gov.tr/ujma

ISSN 2619-9653
DOI: https://doi.org/10.32323/ujma.711881

Stability Behaviour in Functional Differential Equations of the
Neutral Type
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Abstract

In this study, we examine the behavior of solutions of the neutral functional differential
equations. Using a suitable real root of the corresponding characteristic equation, the
asymptotic behavior of the solutions and the stability of the trivial solution are explained.
Three examples are also provided to illustrate our results.

1. Introduction and Preliminaries

This paper aims to describe the stability behaviour of the solutions of the neutral-type linear functional differential equations

d
dt

[
x(t)−

∫ 0

−1
x(t− τ(θ))dq(θ)

]
=
∫ 0

−1
x(t− r(θ))dv(θ), t ≥ 0 (1.1)

where x(t)∈R, r(θ) and τ(θ) are nonnegative real continuous functions in [−1,0], and v(θ) and q(θ) are real functions of bounded variation
in [−1,0]. Riemann-Stieltjes integrals are used. It is assumed that v and q are non-constant in [−1,0]. Consider the value R = max{‖τ‖,‖r‖},
where ‖τ‖= max{τ(θ) :−1≤ θ ≤ 0} and ‖r‖= max{r(θ) :−1≤ θ ≤ 0}. The initial condition for (1.1) is determined by a function

x(t) = φ(t), −R≤ t ≤ 0. (1.2)

A solution of (1.1) refers to a continuous function x : [−R,+∞)→ R satisfying (1.2), such that

x(t)−
∫ 0

−1
x(t− τ(θ))dq(θ)

is differentiable in [0,+∞) and satisfies (1.1) for every t ≥ 0.

For a solution of (1.1) in the form x(t) = eλ t for t ∈ R, λ represents a root of the characteristic equation

λ

(
1−

∫ 0

−1
e−λτ(θ)dq(θ)

)
=
∫ 0

−1
e−λ r(θ)dv(θ). (1.3)

Additionally, this is applied to the relevant class of differential - difference equation

d
dt

[
x(t)−

m

∑
j=1

b jx(t− τ j)

]
=

m

∑
j=1

a jx(t− r j),
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where j = 1, ...,m, a j,b j ∈ R and τ j,r j ∈ (0,∞). As it is well-known, this equation can be obtained from (1.1), under the assumption that
q(θ) and v(θ) are step functions with a number m of jump points (See, [5], [12], [22], [26] and references therein). Furthermore, the equation
(1.1) for τ(θ) = r(θ) =−rθ (r > 0) and θ ∈ [−1,0] is reduced to the class of the equation

d
dt

[
x(t)−

∫ 0

−1
x(t +θ)dq(θ)

]
=
∫ 0

−1
x(t +θ)dv(θ), (1.4)

where q(θ) = q(θ/r) is atomic at zero, and v(θ) = v(θ/r). The authors in [23] and [25] obtained behavior and stability analysis of the
solutions of the equation (1.4). In this article, we examine the stability of equation (1.1), which is more general than equation (1.4). In other
words, we make preference relying on equation (1.1) considering the chance to understand the impact of the delays on the stability behaviour
of the neutral functional differential equations more clearly. One may look at the references [2], [7], [17], [19]- [21], [27] for a special case
of equation (1.1)

x
′
(t) =

∫ 0

−1
x(t− r(θ))dv(θ).

In addition, the references [4] and [11] may also be reviewed.
Ferreira and Pedro [6] established the oscillatory criteria of the equation (1.1). However, the article in [6] has no information about asymptotic
behavior and exponential estimate of solutions. In this article, we obtain the stability analysis of the solutions of the equation (1.1). Namely,
we obtained the asymptotic behavior of the solutions and then we created a useful exponential estimate for these solutions and finally provided
a stability criterion in this article which is different from the article in [6]. These results are obtained with a real root of the characteristic
equation. For this purpose, the applied techniques are generated from a mix of methods used in the references [12], [13], [22]- [25], [27].
Examples are also given in this article.
The stability theory of the delay and the differential equations of neutral type in recent two decades has received widespread attention, as one
can see through the textbooks [1], [3], [8]- [10], [14], [15], [18] and the references therein. Additionally, there are equations similar to (1.1)
in the book by Kolmanovskii and Nosov [9].
Throughout this paper, V (q) and V (v) are denoted for the total variation function of q and v, respectively, defined in the interval [−1,0]. Note
that the functions V (q) and V (v) are greater than zero in the interval [−1,0]. Moreover, it must be noted that V (q) and V (v) are not identically
zero in the interval [−1,0]. The reader should know about both theories of the bounded variation functions and the Riemann-Stieltjes
integrations. It is assumed that the reader knows the theory of Riemann-Stieltjes integration and the theory of functions of bounded variation
(see [8], [16]).
Finally, in this section, we will give three well-known definitions of stability (see, for example, [9]). The trivial solution of (1.1) is defined as
stable if for every ε > 0, there exists a number `= `(ε) such that, for any initial function φ with

‖φ‖= max
−R≤t≤0

|φ(t)|< `

the solution x of (1.1)-(1.2) satisfies

|x(t)|< ε, for all t ∈ [−R,∞).

In another case, the trivial solution of (1.1) is considered to be unstable. Provided that it is stable in the above-mentioned concept, the trivial
solution of (1.1) is also considered asymptotically stable, and additionally, there exists a number `0 > 0 such that, for any initial function φ

with ‖φ‖< `0, the solution x of (1.1)-(1.2) satisfies

lim
t→∞

x(t) = 0.

2. Statement of the Main Results and Comments

Theorem 2.1. We assume that λ0 ∈ R is a root of characteristic equation (1.3) with the property

µ(λ0) =
∫ 0

−1
e−λ0τ(θ) (1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)< 1. (2.1)

Set

β (λ0) =
∫ 0

−1
e−λ0τ(θ)(λ0τ(θ)−1)dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ). (2.2)

Then, for any function φ ∈C([−R,0],R), the solution x of (1.1)-(1.2) satisfies

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;φ)

1+β (λ0)
, (2.3)

where

L(λ0;φ) =φ(0)−
∫ 0

−1

[
φ(−τ(θ))−λ0e−λ0τ(θ)

∫ 0

−τ(θ)
e−λ0u

φ(u)du
]

dq(θ)+
∫ 0

−1
e−λ0r(θ)

[∫ 0

−r(θ)
e−λ0u

φ(u)du
]

dv(θ).

Note: Property (2.1) guarantees that 1+β (λ0)> 0.
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Proof. Property (2.1) implies 0 < µ(λ0)< 1. From (2.2) we obtain

|β (λ0)|=
∣∣∣∣λ0

∫ 0

−1
e−λ0τ(θ)

τ(θ)dq(θ)−
∫ 0

−1
e−λ0τ(θ)dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ)

∣∣∣∣
≤|λ0|

∫ 0

−1
e−λ0τ(θ)

τ(θ)dV (q)(θ)+
∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ).

In this case, |β (λ0)| ≤ µ(λ0) is satisfied, so |β (λ0)|< 1. Then 1+β (λ0)> 0 is the outcome.

Let us define y(t) = e−λ0tx(t), t ∈ [−R,∞). Then, by considering that λ0 is a real root of characteristic equation (1.3), for every t ≥ 0, we
obtain [

x(t)−
∫ 0

−1
x(t− τ(θ))dq(θ)

]′
−
∫ 0

−1
x(t− r(θ))dv(θ)

= eλ0t

{[
y(t)−

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)

]′
+λ0

[
y(t)−

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)

]
−
∫ 0

−1
e−λ0r(θ)y(t− r(θ))dv(θ)

}

= eλ0t

{[
y(t)−

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)

]′
+

[
λ0

∫ 0

−1
e−λ0τ(θ)dq(θ)+

∫ 0

−1
e−λ0r(θ)dv(θ)

]
y(t)

−λ0

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)−

∫ 0

−1
e−λ0r(θ)y(t− r(θ))dv(θ)

}

= eλ0t

{[
y(t)−

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)

]′
+λ0

∫ 0

−1
e−λ0τ(θ)[y(t)− y(t− τ(θ))]dq(θ)+

∫ 0

−1
e−λ0r(θ)[y(t)− y(t− r(θ))]dv(θ)

}
.

Hence, x satisfies (1.1) for all t ≥ 0, it follows that y satisfies

[
y(t)−

∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ)

]′
=−λ0

∫ 0

−1
e−λ0τ(θ)[y(t)− y(t− τ(θ))]dq(θ)−

∫ 0

−1
e−λ0r(θ)[y(t)− y(t− r(θ))]dv(θ).

(2.4)

And then, the initial condition (1.2) becomes

y(t) = e−λ0t
φ(t), t ∈ [−R,0]. (2.5)

When equation (2.4) is integrated from 0 to t, the following equation is obtained

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ) = y(0)−

∫ 0

−1
e−λ0τ(θ)y(−τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t

0
[y(s)− y(s− τ(θ))]ds

)
dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(∫ t

0
[y(s)− y(s− r(θ))]ds

)
dv(θ)

=φ(0)−
∫ 0

−1
φ(−τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
y(u)du

)
dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
y(u)du

)
dv(θ)+λ0

∫ 0

−1
e−λ0τ(θ)

(∫ 0

−τ(θ)
y(u)du

)
dq(θ)+

∫ 0

−1
e−λ0r(θ)

(∫ 0

−r(θ)
y(u)du

)
dv(θ)

=−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
y(u)du

)
dq(θ)−

∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
y(u)du

)
dv(θ)+L(λ0;φ).

Here, L(λ0;φ) is given in Theorem 2.1. So that the following equation (2.6) is obtained

y(t)−
∫ 0

−1
e−λ0τ(θ)y(t− τ(θ))dq(θ) =−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
y(u)du

)
dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
y(u)du

)
dv(θ)+L(λ0;φ), t ≥ 0.

(2.6)

This equation is equivalent to equation (1.1). Now, let us define following expression:

z(t) = y(t)− L(λ0;φ)

1+β (λ0)
, t ≥−R.

If this definition applied to equation (2.6), we obtain

z(t)−
∫ 0

−1
e−λ0τ(θ)z(t− τ(θ))dq(θ) =−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
z(u)du

)
dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
z(u)du

)
dv(θ), t ≥ 0.

(2.7)



36 Universal Journal of Mathematics and Applications

Moreover, the following expression is obtained when the initial condition (2.5) is obtained

z(t) = e−λ0t
φ(t)− L(λ0;φ)

1+β (λ0)
, t ∈ [−R,0]. (2.8)

Here, β (λ0) is given by expression (2.2).

From the definitions of y and z, we have

lim
t→∞

z(t) = 0. (2.9)

We will prove the statement (2.9) later. We define,

M(λ0;φ) = max
t∈[−R,0]

∣∣∣∣e−λ0t
φ(t)− L(λ0;φ)

1+β (λ0)

∣∣∣∣ . (2.10)

In this case, from (2.8), the following expression is obtained:

|z(t)| ≤M(λ0;φ), −R≤ t ≤ 0. (2.11)

Now, let us show that the following inequality is satisfied in the interval [−R,∞)

|z(t)| ≤M(λ0;φ). (2.12)

Consider an arbitrary number ε > 0. We claim that

|z(t)|< M(λ0;φ)+ ε, for t ≥−R. (2.13)

Let us assume that inequality (2.13) is not satisfied. In this case, because of (2.11), there exist a point t0 > 0 such that

|z(t)|< M(λ0;φ)+ ε, −R≤ t < t0 and |z(t0)|= M(λ0;φ)+ ε.

Since µ(λ0)< 1, from equation (2.7) we obtain

M(λ0;φ)+ ε = |z(t0)|=

∣∣∣∣∣
∫ 0

−1
e−λ0τ(θ)z(t0− τ(θ))dq(θ)−λ0

∫ 0

−1
e−λ0τ(θ)

(∫ t0

t0−τ(θ)
z(u)du

)
dq(θ)

−
∫ 0

−1
e−λ0r(θ)

(∫ t0

t0−r(θ)
z(u)du

)
dv(θ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ 0

−1
e−λ0τ(θ)z(t0− τ(θ))dq(θ)

∣∣∣∣∣+ |λ0|

∣∣∣∣∣
∫ 0

−1
e−λ0τ(θ)

(∫ t0

t0−τ(θ)
z(u)du

)
dq(θ)

∣∣∣∣∣
+

∣∣∣∣∣
∫ 0

−1
e−λ0r(θ)

(∫ t0

t0−r(θ)
z(u)du

)
dv(θ)

∣∣∣∣∣
≤
∫ 0

−1
e−λ0τ(θ)|z(t0− τ(θ))|dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

(∫ t0

t0−τ(θ)
|z(u)|du

)
dV (q)(θ)

+
∫ 0

−1
e−λ0r(θ)

(∫ t0

t0−r(θ)
|z(u)|du

)
dV (v)(θ)

≤ [M(λ0;φ)+ ε]

{∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

τ(θ)dV (q)(θ)+
∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

= [M(λ0;φ)+ ε]

{∫ 0

−1
e−λ0τ(θ)(1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}
= [M(λ0;φ)+ ε]µ(λ0)< [M(λ0;φ)+ ε] ,

which is a contradiction. So, inequality (2.13) must be true. Therefore, inequality (2.12) must also be true. Now, by virtue of (2.12), from
(2.7) we obtain for t ≥ 0

|z(t)| ≤

∣∣∣∣∣
∫ 0

−1
e−λ0τ(θ)z(t− τ(θ))dq(θ)

∣∣∣∣∣+ |λ0|

∣∣∣∣∣
∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
z(u)du

)
dq(θ)

∣∣∣∣∣+
∣∣∣∣∣
∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
z(u)du

)
dv(θ)

∣∣∣∣∣
≤
∫ 0

−1
e−λ0τ(θ)|z(t− τ(θ))|dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

(∫ t

t−τ(θ)
|z(u)|du

)
dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)

(∫ t

t−r(θ)
|z(u)|du

)
dV (v)(θ)

≤M(λ0;φ)

{∫ 0

−1
e−λ0τ(θ)dV (q)(θ)+ |λ0|

∫ 0

−1
e−λ0τ(θ)

τ(θ)dV (q)(θ)+
∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}

=M(λ0;φ)

{∫ 0

−1
e−λ0τ(θ)(1+ |λ0|τ(θ))dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}
.
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Due to the definition of µ(λ0), we have

|z(t)| ≤ µ(λ0)M(λ0;φ), ∀t ≥ 0. (2.14)

Using inequalities (2.12) and (2.14), by the induction method we can easily show

|z(t)| ≤ (µ(λ0))
nM(λ0;φ), t ≥ nR−R (n = 0,1,2, ...). (2.15)

Here, due to limn→∞ (µ(λ0))
n = 0, from inequality (2.15) limt→∞ z(t) = 0 is obtained, that is, (2.9) is true. Hence, Theorem 2.1 is proven at

all.

A root of characteristic equation (1.3) is λ = 0 if and only if the following expressions hold:∫ 0

−1
dv(θ) = 0 and

∫ 0

−1
dV (q)(θ)+

∫ 0

−1
r(θ)dV (v)(θ)< 1

or

v(0) = v(−1) and V (q)(0)−V (q)(−1)+
∫ 0

−1
r(θ)dV (v)(θ)< 1. (2.16)

So, an application of Theorem 2.1 with λ = 0 leads to the following corollary.

Corollary 2.2. Let us satisfy the conditions of (2.16). In this case, for any φ ∈C([−R,0],R), the solution x of equation (1.1)-(1.2) is given
as follows:

lim
t→∞

x(t) =
φ(0)−

∫ 0
−1 φ (−τ(θ))dq(θ)+

∫ 0
−1

[∫ 0
−r(θ) φ(u)du

]
dv(θ)

1−q(0)+q(−1)+
∫ 0
−1 r(θ)dv(θ)

.

Note: Because of the second condition of (2.16), 1−q(0)+q(−1)+
∫ 0
−1 r(θ)dv(θ)> 0 holds.

Theorem 2.3. Let λ0 be a real root of the characteristic equation (1.3), and the condition (2.1) is provided for λ0. Let us consider β (λ0) in
Theorem 2.1. Then, for any φ ∈C([−R,0],R), the solution x of (1.1)-(1.2) satisfies

|x(t)| ≤
[
(1+µ(λ0))

2

1+β (λ0)
+µ(λ0)

]
N(λ0;φ)eλ0t , ∀t ≥ 0

where

N(λ0;φ) = max
t∈[−R,0]

∣∣∣e−λ0t
φ(t)

∣∣∣ . (2.17)

Moreover, the trivial solution of equation (1.1) is stable if λ = 0, asymptotically stable if λ0 < 0 and unstable if λ0 > 0.

Proof. Let y and z be defined as in the proof of Theorem 2.1, i.e.

z(t) = y(t)− L(λ0;φ)

1+β (λ0)
, t ≥−R,

where L(λ0;φ)) and M(λ0;φ) are defined as in Theorem 2.1. Then, we can express the following for t ≥ 0

y(t)≤ |L(λ0;φ)|
1+β (λ0)

+µ(λ0)M(λ0;φ). (2.18)

From the definition of L(λ0;φ) we get

L(λ0;φ) =φ(0)−
∫ 0

−1

[
eλ0τ(θ)

φ (−τ(θ))−λ0

∫ 0

−τ(θ)
e−λ0u

φ(u)du
]

e−λ0τ(θ)dq(θ)+
∫ 0

−1
e−λ0r(θ)

[∫ 0

−r(θ)
e−λ0u

φ(u)du
]

dv(θ)

≤|φ(0)|+
∫ 0

−1

[∣∣∣eλ0τ(θ)
φ(−τ(θ))

∣∣∣+ |λ0|
∫ 0

−τ(θ)

∣∣∣e−λ0u
φ(u)

∣∣∣du
]
e−λ0τ(θ)dV (q)(θ)

+
∫ 0

−1
e−λ0r(θ)

[∫ 0

−r(θ)

∣∣∣e−λ0u
φ(u)

∣∣∣du
]

dV (v)(θ)

≤

{
1+

∫ 0

−1

[
1+ |λ0|τ(θ)

]
e−λ0τ(θ)dV (q)(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dV (v)(θ)

}
N(λ0;φ)

=(1+µ(λ0))N(λ0;φ).

Furthermore, by the definition of µ(λ0;φ), we obtain

M(λ0;φ) = max
t∈[−R,0]

∣∣∣∣e−λ0t
φ(t)− L(λ0;φ)

1+β (λ0)

∣∣∣∣≤ max
t∈[−R,0]

∣∣∣e−λ0t
φ(t)

∣∣∣+ |L(λ0;φ)|
1+β (λ0)

=N(λ0;φ)+
|L(λ0;φ)|
1+β (λ0)

≤ N(λ0;φ)+
(1+µ(λ0))N(λ0;φ)

1+β (λ0)

=

(
1+

1+µ(λ0)

1+β (λ0)

)
N(λ0;φ).
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So, from (2.18) we get

|y(t)| ≤ (1+µ(λ0))N(λ0;φ)

1+β (λ0)
+µ(λ0)

(
1+

1+µ(λ0)

1+β (λ0)

)
N(λ0;φ)

=

[
(1+µ(λ0))

2

1+β (λ0)
+µ(λ0)

]
N(λ0;φ).

Finally, by the definition of y, we obtain

|x(t)| ≤

[
(1+µ(λ0))

2

1+β (λ0)
+µ(λ0)

]
N(λ0;φ)eλ0t (2.19)

for all t ≥ 0. So, the proof of the first part of the theorem is completed. Now let us show the stability criterion of the theorem.

Assume that λ0 ≤ 0, and let φ ∈ ([−R,0],R) be an arbitrary initial function. Then, from inequality (2.19) we get

|x(t)| ≤
[
(1+µ(λ0))

2

1+β (λ0)
+µ(λ0)

]
N(λ0;φ), ∀t ≥ 0.

Because (1+µ(λ0))
2

1+β (λ0)
> 1, we obtain

|x(t)| ≤

[
(1+µ(λ0))

2

1+β (λ0)
+µ(λ0)

]
N(λ0;φ), ∀t ≥−R.

So, the trivial solution of equation (1.1) is stable. For λ0 < 0, it is clear that, from inequality (2.19) it follows that

lim
t→∞

x(t) = 0.

Thus, the trivial solution is asymptotically stable. Finally, let λ0 > 0. We want to show that this solution is unstable. Let us assume that it is
stable. Then, there is a number δ > 0 such that, for each φ ∈C([−R,0],R) with ‖φ‖< δ , the solution x of (1.1)-(1.2) satisfies

|x(t)|< 1, t ≥−R.

Given the following,

φ0(t) = eλ0t , t ∈ [−R,0].

We see that φ0 ∈C([−R,0],R). From the definition of L(λ0;φ) we obtain

L(λ0;φ0)≡φ0(0)−
∫ 0

−1

[
φ0 (−τ(θ))−λ0e−λ0τ(θ)

∫ 0

−τ(θ)
e−λ0u

φ0(u)du
]

dq(θ)+
∫ 0

−1
e−λ0r(θ)

[∫ 0

−r(θ)
e−λ0u

φ0(u)du
]

dv(θ)

=1−
∫ 0

−1

[
e−λ0τ(θ)−λ0e−λ0τ(θ)

∫ 0

−τ(θ)
e−λ0ueλ0udu

]
dq(θ)+

∫ 0

−1
e−λ0r(θ)

[∫ 0

−r(θ)
e−λ0ueλ0udu

]
dv(θ)

=1−
∫ 0

−1
e−λ0τ(θ) [1−λ0τ(θ)]dq(θ)+

∫ 0

−1
e−λ0r(θ)r(θ)dv(θ)

=1+β (λ0)> 0.

Now, we select a number δ0 with 0 < δ0 < δ and let

φ =
δ0

‖φ0‖
φ0,

where it is clear that φ ∈C([−R,0],R) and ‖φ‖= δ0 < δ . So, we obtain

lim
t→∞

[
e−λ0tx(t)

]
=

L(λ0;φ)

1+β (λ0)
=

(δ0/‖φ0‖)L(λ0;φ0)

1+β (λ0)
=

δ0

‖φ0‖
> 0.

However, due to λ0 > 0, we get

lim
t→∞

[
e−λ0tx(t)

]
= 0.

We reach a contradiction, and hence Theorem 2.3 is proven.
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3. Examples

Example 3.1. Let τ(θ) =− θ

4 , r(θ) = θ 2

2 , q(θ) =− θ 2

5 and v(θ) = 3θ 2

5 . In this case, the characteristic equation (1.3) is obtained as follows:

λ

(
1−

∫ 0

−1
exp
(

λθ

4

)
d
(
− θ 2

5

))
=
∫ 0

−1
exp
(
− λθ 2

2

)
d
(3θ 2

5

)
. (3.1)

It is seen that λ0 ∼=−1,03 is a root of equation (3.1). Here, this root is one of the roots of (3.1) that we obtain with the MATLAB program.
Thus, the condition of Theorem 2.3 is satisfied by using the root λ0 =−1,03. Namely, because the functions q and v are monotonous in
[−1,0], from expression (2.1) we obtain

µ(−1,03) =
∫ 0

−1
e−

1,03θ

4

(
1+ |−1,03|

(
− θ

4

))
dV
(
− θ 2

5

)
+
∫ 0

−1
e

1,03θ2
2

(
θ 2

2

)
dV
(3θ 2

5

)
≤ max
−1≤θ≤0

∣∣∣∣∣e− 1,03θ

4

(
1− 1,03θ

4

)∣∣∣∣∣∣∣∣− 1
5

∣∣∣+ max
−1≤θ≤0

∣∣∣∣∣e 1,03θ2
2

(
θ 2

2

)∣∣∣∣∣∣∣∣35 ∣∣∣
=

1
5

e
1,03

4

(
1+

1,03
4

)
+

3
5

e
1,03

2

2
∼= 0,83 < 1.

Since λ0 =−1,03 < 0, the solution x(t)≡ 0 is asymptotically stable.

Example 3.2. Let τ(θ) = θ 2, r(θ) =− θ

2 , q(θ) =− θ 2

4 and v(θ) = 4θ 3. In this case, the characteristic equation (1.3) is obtained as follows:

λ

(
1−

∫ 0

−1
exp(−λθ

2)d
(
− θ 2

4

))
=
∫ 0

−1
exp
(

λθ

2

)
d(4θ

3). (3.2)

We see λ0 ∼= 2,08745 is a root of equation (3.2). Here, this root is one of the roots of (3.2) that we obtain with the MATLAB program. Thus,
the condition of Theorem 2.3 is satisfied for the root. Namely, because the functions q and v are monotonous in [−1,0], from (2.1) we obtain

µ(2,08745) =
∫ 0

−1
e−2,08745θ 2

(
1+2,08745θ

2
)

dV
(
− θ 2

4

)
+
∫ 0

−1
e

2,08745θ

2

(
− θ

2

)
dV
(

4θ
3
)

≤ max
−1≤θ≤0

∣∣∣∣∣e−2,08745θ 2
(

1+2,08745θ
2
)∣∣∣∣∣14 + max

−1≤θ≤0

∣∣∣∣∣e 2,08745θ

2

(
− θ

2

)∣∣∣∣∣4
=e0(1+0)

1
4
+

e−
2,08745

2

2
4 = 0,954 < 1.

Since λ0 > 0, the solution x(t)≡ 0 is unstable.

Example 3.3. Let τ(θ) = −2θ , r(θ) = − θ

2 , v(θ) = θ 2+θ

2 and q(θ) = θ

4 . In this case, the characteristic equation (1.3) is obtained as
follows:

λ

(
1−

∫ 0

−1
exp(2λθ)d

(
θ

4

))
=
∫ 0

−1
exp
(

λθ

2

)
d
(

θ 2 +θ

2

)
. (3.3)

We see λ0 = 0 is a root of equation (3.3). The following expressions is satisfied since the function v(θ) is decreasing in the interval [−1,− 1
2 ]

and increasing in the interval [− 1
2 ,0], whereas q(θ) is also increasing in the interval [−1,0]:

µ(0) =
∫ 0

−1
dV
(

θ

4

)
+
∫ 0

−1

(
−θ

2

)
dV

(
θ 2 +θ

2

)

=
∫ 0

−1

1
4

dV (θ)+
∫ − 1

2

−1

(
−θ

2

)
dV

(
θ 2 +θ

2

)
+
∫ 0

− 1
2

(
− θ

2

)
dV

(
θ 2 +θ

2

)

≤1
4
+ max
−1≤θ≤0

{(
−θ

2

)}
1
2

[∫ − 1
2

−1
dV
(

θ
2 +θ

)
+
∫ 0

− 1
2

dV
(

θ
2 +θ

)]

=
1
4
+

1
4

(∣∣∣∣−1
4

∣∣∣∣+ ∣∣∣∣14
∣∣∣∣
)

=
1
4
+

1
4

1
2
=

3
8

<1.

Hence, the solution x(t)≡ 0 is stable for the root λ0 = 0.
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4. Conclusions

In this study, firstly, a basic asymptotic result for the solution of the equation (1.1) is proved. Secondly, we obtained a useful exponential
boundary for solutions and the stability of trivial solutions were shown. These results were obtained using a suitable real root for the
characteristic equation. Namely, this real root played an important role in establishing the results of the article. Finally, three examples were
given for stability.
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