

RESEARCH ARTICLE

# Statistical cluster point and statistical limit point sets of subsequences of a given sequence

Harry I. Miller, Leila Miller-Van Wieren\*

Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, 71000, Bosnia-Herzegovina

## Abstract

J.A. Fridy [Statistical limit points, Proc. Amer. Math. Soc., 1993] considered statistical cluster points and statistical limit points of a given sequence x. Here we show that almost all subsequences of x have the same statistical cluster point set as x. Also, we show an analogous result for the statistical limit points of x.

### Mathematics Subject Classification (2010). 40D25, 40G99, 28A12

Keywords. sequences, subsequences, statistical cluster points, statistical limit points

### 1. Introduction

Fridy [1] has proven that  $\Gamma_x$ , the set of statistical cluster points of  $x = (x_n)$ , is always a closed set and  $\Gamma_x$  is non-empty if x is bounded. However  $\Lambda_x$ , the set of statistical limit points of x, need not be closed. In [2] H.I. Miller studied statistical convergence and relations between statistical convergence of a sequence x and statistical convergence of the subsequences of x. In particular, in [2], it is shown that if L is the statistical limit of x, then almost all subsequences of x have L as their statistical limit. Here we combine two notions, statistical cluster points and subsequences, showing that  $\Gamma_x$  is equal to the statistical cluster point set of almost all subsequences of x. This is a continuation of the results in [3] that also combine statistical cluster points and subsequences. Namely, in [3] it is shown that if  $\Gamma_x \neq \emptyset$  and F is a non-empty closed subset of  $\Gamma_x$ , then there exists a subsequence y of x such that  $\Gamma_y = F$ . Additionally we show that  $\Lambda_x$  is equal to the statistical limit point set of almost all subsequences of x. This is a continuation of the results in [4] that also combine statistical limit points and subsequences.

### 2. Preliminaries

If  $t \in (0, 1]$ , then t has a unique binary expansion  $t = \sum_{n=1}^{\infty} \frac{e_n}{2^n}$ ,  $e_n \in \{0, 1\}$ , with infinitely many ones. Next if  $x = (x_n)$  is a sequence of reals, for each  $t \in (0, 1]$ , let x(t) denote the subsequence of x obtained by the following rule:  $x_n$  is in the subsequence if and only if  $e_n = 1$ . Clearly the mapping  $t \to x(t)$  is a one-to-one onto mapping between (0, 1] and the collection of all subsequences of x.

<sup>\*</sup>Corresponding Author.

Email addresses: himiller@hotmail.com (H.I. Miller), lmiller@ius.edu.ba (L.M. Wieren)

Received: 10.07.2016; Accepted: 06.10.2016

If K is a subset of the positive integers N, then following Fridy [1],  $K_n$  denotes the set  $\{k \in K : k \leq n\}$  and  $|K_n|$  denotes the number of elements in  $K_n$ . The natural density of K (see [5]) is given by  $\delta(K) = \lim_{n \to \infty} n^{-1} |K_n|$ , provided this limit exists. In the case that  $\delta(K) = 0$  we say that K is thin, and otherwise we say that K is non-thin.

Statistical convergence of a sequence is defined as follows.

We say that L is the statistical limit of the sequence x, if for every  $\epsilon > 0$ ,

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |x_k - L| \ge \epsilon\}| = 0.$$

Statistical convergence and its connection to subsequences is studied in [2].

Statistical limit points and statistical cluster points of a sequence x are defined as follows.

We say that a number  $\lambda$  is a statistical limit point of a sequence of reals  $x = (x_n)$  if  $\lim_{k\to\infty} x_{n_k} = \lambda$  for some non-thin subsequence of  $(x_n)$ .

We say that a number  $\gamma$  is a statistical cluster point of a sequence of reals  $(x_n)$  if for every  $\epsilon > 0$  the set  $\{k \in N : |x_k - \gamma| < \epsilon\}$  is non-thin.

In [1], given a sequence x, three sets are considered.  $L_x$ , the set of limit points of x;  $\Lambda_x$ , the set of statistical limit points of x, and  $\Gamma_x$ , the set of statistical cluster points of x. Also, if x is bounded, then  $\Gamma_x$  is closed and non-empty.

In this paper we want to examine,  $\Gamma_x$  and its relation to  $\Gamma_{x(t)}$ . Additionally we also consider  $\Lambda_x$  and its relation to  $\Lambda_{x(t)}$ .

# 3. Results

Our main result is the following.

**Theorem 3.1.** If  $x = (x_n)$  is a bounded sequence, then  $\Gamma_x = \Gamma_{x(t)}$  for almost all  $t \in (0, 1]$  (in the sense of Lebesgue measure).

**Proof.** Since  $\Gamma_x$  is closed, it is either finite or separable, i.e. there is a countable subset of  $\Gamma_x$ ,  $\{l_n : n \in N\}$  such that its closure is  $\Gamma_x$ . We consider only the second case, the proof in the first case is much simpler.

First we show that  $\Gamma_x \subseteq \Gamma_{x(t)}$  for almost all t. It is sufficient to show that  $m(B_n) = 1$  for  $n = 1, 2, \ldots$  where  $B_n = \{t \in (0, 1] : l_n \in \Gamma_{x(t)}\}$ . This is true since in that case m(B) = 1 for  $B = \bigcap_{n=1}^{\infty} B_n$  and then  $\{l_n : n \in N\} \subseteq \Gamma_{x(t)}$  for all  $t \in B$  and consequently  $\Gamma_x \subseteq \Gamma_{x(t)}$  for all  $t \in B$ .

Since  $l_n \in \Gamma_x$ , then for every  $\epsilon > 0$ ,  $\{k \in N : |x_k - l_n| < \epsilon\}$  is non-thin. If  $\epsilon = \frac{1}{j}$  we can denote the above set by  $\{k_1^j, k_2^j, k_3^j, \ldots\}$ . Then, since it is non-thin there exists  $\delta_j > 0$  such that

$$\frac{1}{p}|\{i:k_i^j \le p\}| > \delta_j$$

for infinitely many p. We can assume that  $p = k_M^j$  for infinitely many sufficiently large M. Now for each j, by the Law of Large Numbers, the limiting frequency of  $x_{k_i^j}$   $i = 1, 2, \ldots$  among the sequence x(t) is  $\frac{1}{2}$  for almost all  $t \in (0, 1]$ , i.e. if  $t = \sum_{m=1}^{\infty} \frac{e_m}{2^m}$ , then  $\lim_{m\to\infty} \frac{1}{m} \sum_{i=1}^m t_{k_i}^j = \frac{1}{2}$  for almost all  $t \in (0, 1]$ . That is,  $m(D_j) = 1$ , where

$$D_j = \{t \in (0,1] : \lim_{m \to \infty} \frac{1}{m} \sum_{i=1}^m t_{k_i}^j = \frac{1}{2}\}$$
(3.1)

for all j. Hence if  $D = \bigcap_{j=1}^{\infty} D_j$ , m(D) = 1. Now we will check that  $l_n$  is a statistical cluster point for each t in D.

To see this we will show that  $\{i \in N : |x(t)_i - l_n| < \frac{1}{j}\}$  is non-thin for every  $j \in N$  and every  $t \in D_j$ .

Consider the earlier mentioned  $p = k_M^j$  for M large enough. Then the number of such  $i \leq p$ , with  $|x_i - l_n| < \frac{1}{j}$  is greater than  $p\delta_j$ . Now take  $t \in D_j$ . By (3.1),  $\lim_{m\to\infty} \frac{1}{m} \sum_{i=1}^m t_{k_i}^j = \frac{1}{2}$ . So for large M,  $p = k_M^j$ , we have

$$\frac{1}{p}|\{i \le p : |x(t)_i - l_n| < \frac{1}{j}\}| > \frac{\delta_j}{4},$$

i.e. this holds for infinitely many p, i.e.  $\{i \in N : |x(t)_i - l_n| < \frac{1}{j}\}$  is non-thin for every  $j \in N$  and every  $t \in D_j$ . Hence  $l_n$  is a statistical cluster point for every  $t \in D$ . This completes the proof that  $\Gamma_x \subseteq \Gamma_{x(t)}$  for almost all t.

Next we show that  $\Gamma_{x(t)} \subseteq \Gamma_x$  for almost all t. We will show that this inclusion holds for all normal  $t \in (0, 1]$ , i.e. for all  $t = \sum_{n=1}^{\infty} \frac{e_n}{2^n}$  for which  $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n e_i = \frac{1}{2}$ . It is well known that almost all  $t \in (0, 1]$  are normal (see [5]).

Suppose that l is a statistical cluster point of x(t) for some normal t. Then for any  $\epsilon > 0$ ,  $\{i : |(x(t))_i - l| < \epsilon\}$  is non-thin, i.e. there exists  $\delta_{\epsilon} > 0$  such that

$$\frac{1}{n}|i \le n : |(x(t))_i - l| < \epsilon| > 2\delta_{\epsilon}$$

for infinitely many n. This implies that

$$\frac{1}{n}|i \le n: |x_i - l| < \epsilon| > \frac{1}{2}\delta_{\epsilon}$$

for infinitely many n, and hence l is a statistical cluster point of x. Therefore  $\Gamma_{x(t)} \subseteq \Gamma_x$ for all normal t, and consequently for almost all  $t \in (0, 1]$ . Therefore we conclude that  $\Gamma_{x(t)} = \Gamma_x$  for almost all  $t \in (0, 1]$ .

Next, we will prove an analogous result for the set of statistical limit points of x and its subsequences. The set  $\Lambda_x$  is not necessarily closed (see [4]). However the following useful theorem was proved by Kostyrko, Mačaj, Šalat and Strauch [4].

**Theorem 3.2.** For every bounded sequence x, the set  $\Lambda_x$  is an  $F_{\sigma}$ -set in R.

In the proof of the above theorem, the authors show that

$$\Lambda_x = \bigcup_{j=1}^{\infty} \Lambda(x, \frac{1}{j})$$

where  $\Lambda(x, \frac{1}{j}) = \{l, \exists k_i, i = 1, 2..., \lim_{i \to \infty} x_{k_i} = l, \overline{\delta}(\{k_i\}) \geq \frac{1}{j}\}$  where  $\overline{\delta}$  denotes the upper statistical density (i.e.  $\overline{\delta}(\{k_i\}) = \limsup_{i \to \infty} \frac{i}{k_i}$ ) and  $\Lambda(x, \frac{1}{j})$  is closed for all j.

Here is our second result.

**Theorem 3.3.** If  $x = (x_n)$  is a bounded sequence, then  $\Lambda_x = \Lambda_{x(t)}$  for almost all  $t \in (0, 1]$  (in the sense of Lebesgue measure).

**Proof.** We proceed in a similar manner as in the proof of Theorem 3.1.

First we show that  $\Lambda_x \subseteq \Lambda_{x(t)}$  for almost all t.

As mentioned earlier,  $\Lambda_x = \bigcup_{j=1}^{\infty} T_j$ , where

$$T_j = \Lambda(x, \frac{1}{j}) = \{l, \exists k_i, i = 1, 2 \dots, \lim_{i \to \infty} x_{k_i} = l, \overline{\delta}(\{k_i\}) \ge \frac{1}{j}\}.$$

Suppose  $j \in N$  is fixed. Using the above notation (from [4]),  $T_j$  is closed and separable so there exists a set  $\{l_{ij} : i \in N\}$  such that its closure is  $T_j$ . Let  $i \in N$ . If  $l = l_{ij}$ , then by the Law of Large Numbers,  $l \in \Lambda(x(t), \frac{1}{4j})$ , for all  $t \in B_{ij}$ , where  $m(B_{ij}) = 1$ . Let  $B_j = \bigcap_{i=1}^{\infty} B_{ij}$ . Then  $m(B_j) = 1$ . Hence  $\{l_{ij} : i \in N\} \subseteq \Lambda(x(t), \frac{1}{4j})$  for every  $t \in B_j$ . Now since  $T_j$  and  $\Lambda(x(t), \frac{1}{4j})$  are both closed we get that  $T_j \subseteq \Lambda(x(t), \frac{1}{4j})$  for every  $t \in B_j$ . Therefore  $\Lambda_x = \bigcup_{j=1}^{\infty} T_j \subseteq \bigcup_{j=1}^{\infty} \Lambda(x(t), \frac{1}{4j}) = \Lambda_{x(t)}$  for all  $t \in \bigcap_{j=1}^{\infty} B_j$ . Since  $m(\bigcap_{j=1}^{\infty} B_j) = 1$ , we have shown that  $\Lambda_x \subseteq \Lambda_{x(t)}$  for almost all t.

Next we show that  $\Lambda_{x(t)} \subseteq \Lambda_x$  for almost all t. Again we show that this inclusion holds for all normal  $t \in (0, 1]$ . Suppose that l is a statistical limit point of x(t) for some normal t. Then x(t) has a non-thin subsequence that converges to l (in the normal sense). It is easy to see that this subsequence  $x(t)_i = x_{k_i}$  is then also a non-thin subsequence of x and therefore l is also a statistical limit point of x. This completes the proof.

### 4. Concluding remarks

We mentioned that  $m(\nu) = 1$ , where  $\nu$  is the set of normal numbers in (0, 1]. However  $\nu$  is a set of first Baire category. In light of this we suspect that a category analogue of our Theorem 3.1 is not true.

Also, one could examine possible analogues of our results using permutations rather than subsequences.

#### References

- [1] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc. 118 1187–1192, 1993.
- [2] H.I. Miller, Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (5) 1811–1819, 1995.
- [3] H.I. Miller and L. Miller-Van Wieren, Some statistical cluster point theorems, Hacet. J. Math. Stat. 44 (6) 1405–1409, 2015.
- [4] P. Kostyrko, M. Mačaj, T. Šalat, and O. Strauch, On statistical limit points, Proc. Amer. Math. Soc. 129 (9), 2647–2654, 2000.
- [5] J.C. Oxtoby, Measure and Category: A survey of the analogies between topological and measure spaces. Second edition, Springer-Verlag, New York-Berlin, 1980.