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ABSTRACT

In this study, in the production of Gd20O3 material which has many usage areas, solution combustion synthesis was used and
the changes in the physical and structural properties of the material were investigated by changing the oxidant/fuel ratio. The
resulting metal oxide powders were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area,
Thermogravimetric-Differential thermal analysis (TG-DTA) and scanning electron microscopy (SEM) analysis and tested in
oxidative coupling of methane. Cubic and monoclinic phases were observed in Gd203 crystal structure at fuel-rich and
stoichiometric conditions, and only cubic phase was determined at fuel-lean conditions. It was determined that the obtained
powders were mesoporous and the highest BET surface area was obtained at stoichiometric oxidant/fuel ratio (18.6 m2/g). It

was determined that the powders were formed from rather small particles (<35 nm) and with layered or stacked structure. The
catalytic performance of Gd203 nanoparticles was found to be dependent on the BET surface area and crystal structure. The
highest Cz yield (8.5%) was obtained at 720°C with the Gd2Os that was synthesized using the equivalence ratio of 0.5.
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1. INTRODUCTION

Gadolinium oxide (Gd.Os) is a rare earth metal oxide that can be used in many areas such as magnetic
storage, microwave absorption, catalysis, cell separation, magnetic resonance imaging, tissue repair and
drug release, and studies are underway to synthesize with appropriate properties according to the area
of use [1]. Gd.0s is generally used as a support structure or as an additive in addition to its use as a
catalyst in oxidation reactions due to its high thermal resistance and high surface alkalinity. For these
reasons, it is important that the gadolinium oxide to be used as support must have a high surface area
and high crystallinity.

In literature, various methods such as sol-gel [2], solution combustion [3], polyol [4], flame pyrolysis
[5], hydrothermal [6] synthesis methods were used for the synthesis of Gd,O3. Amongst these, solution
combustion synthesis is a very practical and low-cost method due to low energy consumption, high
purity product formation and time efficiency [7]. The method is simply based on the exothermic reaction
of the gaseous products released as a result of the rapid heating the aqueous solution of metal nitrate
salts and of the fuel so that the temperature is elevated to allow the desired product to be obtained.

Oxidative coupling of methane (OCM), which produces ethane and ethylene from methane directly, is
a very promising and attractive reaction for both academia and industry. This reaction involves both
methane and oxygen reacting to yield ethane and ethylene generally at high reaction temperatures (600-
900°C) on a catalyst [8, 9]. Na2WO4/Mn/SiO and Li/MgO catalysts were the most investigated catalysts
in the literature and showed high performance at high temperatures (>750°C). However, it was found
that the rare earth metal oxides (La2Os, Sm20s, etc.) showed higher activity and selectivity than these
catalysts at lower temperatures (<700°C) for the OCM reaction [10-12]. Although there are many
articles about the catalytic performance of La,Oz and Sm,Os in the literature, the performance of Gd,O3
was not investigated especially at lower temperatures (<700°C)
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Considering the above-mentioned issues, solution combustion synthesis was used for the direct
preparation of Gd,O3 which can be used as catalyst or support material and the effect of oxidant/fuel
ratio on the material structure and physicochemical properties were investigated in this work. The effect
of oxidant/fuel ratio on the catalytic performance of the materials was evaluated in the oxidative
coupling of methane between 450-750°C.

2. MATERIALS AND METHODS

For the preparation of Gd,O3 by the solution combustion synthesis, the stoichiometric oxidant/fuel ratio
of the structure was determined by using Equation 1, and the amounts of salt and urea were calculated
so that the amount of fuel (urea) to be used was 0.5, 1 and 2 times of the stoichiometric ratio. The
stoichiometric ratio was found to be 5/2 as given in Equation 2 and thus, the amount of stoichiometric
urea (Sigma Aldrich -> 99.5%) was calculated as 2.5 moles per one mole of Gd(NO3);.6H,0 (Sigma
Aldrich-99.9%). The equivalence ratio (¢e) of 0.5 (fuel-rich) and 2 (fuel-lean) mean 2 and 0.5 times the
amount of the stoichiometric amount of urea. For each synthesis, 25 ml of water-dissolved salt and urea
mixture was treated in a pre-heated oven at 500°C for 2 hours. No further heat treatment was applied
during the treatment. The obtained powders were named according to the used equivalence ratio for the
synthesis as the “Gd.Oz-equivalence ratio”.
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The thermal behaviors of each sample solution and obtained powders were investigated with the SEIKO
Il Exstar TG/DTA 6300 device. The analyzes were carried out between 30-950°C with 20°C/min
increment under synthetic air flow of 50 ml/min.

Crystal structures of the obtained samples were determined by XRD analysis. The analyzes were carried
out with a Rigaku D/Max-2200 XRD apparatus between 10-90° under Cu/Ka ray with 1.54 A
wavelength. The Scherrer equation (3) was used to calculate the mean crystallite size.
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d : Mean crystallite size (A)

Mkocu - X-ray wavelength (1,54056 A)

Omax : Scattering angle of maximum intensity peak (Rad)

B : Full width at half maximum intensity of the peak (Rad)

BET surface areas and pore-diameter distributions of the obtained structures were performed with
Quantachrome Nova 3200e Model automatic surface area and pore size analyzer. N, gas was used as
the adsorbate and the analyzes were carried out at -196 ° C with liquid nitrogen between 0-1 relative
partial pressure range using 40 different adsorption and 24 different desorption points. Prior to analysis,
the samples were dried for 3 hours at 300°C under vacuum. The BET surface area and pore-diameter
distribution results were determined by the software of the device.

The morphology of the samples were revealed with QUANTA FEG 450 (FEI) SEM equipment after
coating with Au/Pd alloy. The images were taken under high vacuum and at 30 kV.
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The catalytic performances of the samples for oxidative coupling of methane (OCM) were evaluated
with Microreactor (Hiden Analytical)-GC (Agilent 7890A). Prior to the analysis, 100 mg catalyst sample
was flushed with 60 ml/min N; flow from room temperature to 450°C. The tests were conducted with
the ratio of CH4/O,/N2: 42/14/4 under 36,000 | kg™ h** from 450°C to 750°C with 30°C intervals. The
carbon balances were always within 100%+5. The details about the configuration and calculations could
be found elsewhere.

3. RESULTS AND DISCUSSION
TG/DTA analyzes were performed to investigate the thermal behavior of urea/metal salt mixtures

prepared prior to the synthesis of Gd.Os support structures. In this way, it was determined at which
temperature the mixtures should be burned without leaving any residue.
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Figure 1. TG/DTA results of Gd20s synthesis solutions a) Gd203-2 b) Gd203-1 ¢) Gd203-0,5

The TG/DTA results of the Gd»Os synthesis solutions were given in Figure 1. Similar thermal behavior
was observed for each ratio. The intense endothermic peak at 100°C was due to the water evaporation,
while the endothermic peak at 243°C was due to the loss of crystal water and nitrate decomposition. It
was thought that the exothermic peaks observed between 275-343°C occurred as a result of combustion
and the endothermic peak at 481°C, which was observed with a weight loss of 1.5%, belonged to
decarbonization and dehydroxylation. According to TG/DTA results, the lowest burning temperature
was determined as 500°C without leaving any residues. In the TG/DTA analysis of the powders obtained
after the synthesis, the weight loss with the decreasing equivalence ratio was determined as 4%, 7% and
4%, respectively possibly due to the desorption of adsorbates like moisture and CO,.
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XRD spectra of the samples for the determination of the crystal structures of the materials obtained were
given in Figure 2. It was observed that cubic (JCPDS 43-1014) and monoclinic (JCPDS 43-1015) Gd,O3
formed when the equivalence ratio was 0.5. The main phase was cubic and very low amounts of
monoclinic phase was determined in the case of Gd>0s-1. Only the cubic Gd.Os phase was observed for
Gd»03-2. Similarly, in a study using only an equivalence ratio of 0.5, and combustion at 300°C, the
structure of Gd,O3 was found to contain cubic and monoclinic phases [13]. In another study with an
equivalence ratio of 1 and combustion at 300°C, Gd.Os was found to be amorphous and subjected to
calcination at 800°C [14]. These results revealed that the oxidant/fuel ratio and the processing
temperature are the most important parameters in the direct production of metal oxide materials by the
solution combustion synthesis. The results obtained in this work showed that the production of well-
crystallized Gd,Os was possible even at low amounts of urea use by using appropriate combustion
temperature. When the crystallite sizes of the structures were examined (Table 1), it was determined
that the crystallite sizes increased with the decreasing equivalence ratio. The decrease in equivalence
ratio means an increase in fuel amount, more heat was released during combustion and led to the
sintering of structures.
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Figure 2. XRD spectra of Gd203 samples
Table 1. BET surface area, total pore volume and mean pore size of Gd203 samples
Sample Crystallite Size BET surface area Total pore Mean pore size
P (nm) (m?/g) volume (ml/g) (nm)
Gd203-0,5 20.5 (31,74 12.6 0.07 5.9
Gd20s-1 18.8 18.6 0.083 6.7
Gd20s-2 13.4 5.9 0.019 3.9

1 Monoclinic phase
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Figure 3. N2 adsorption-desorption isotherms of Gd2Os samples

The N adsorption-desorption isotherms of the Gd.O3; samples were given in Figure 3, while the BET
surface area, pore volume and mean pore size results were given in Table 1. The isotherms obtained
were Type 4 according to the IUPAC classification generally obtained for mesoporous (5-50 nm)
structures [15]. The BET surface area results showed that the surface area increased with an increasing
equivalence ratio and then decreased by almost 3 times. The pore volume and pore diameter showed a
similar trend. The highest BET surface area was obtained when the equality ratio was 1 (18.6 m?/g). The
reduction of BET surface area in Gd>03-0.5 was thought to be due to the phase change.

SEM images of the samples were given in Figure 4. It was observed that the structure Gd,O3-2 formed
in superimposed layers (Figure 4a) and these structures composed of small (<35 nm) crystals. For
Gd,03-1 (Figure 4b), it could be seen that the macro-pores formed and the layers become more
pronounced. Macro-pores were still evident on Gd»0s-0.5 (Figure 4c), but the structure composed of
nanoparticle stacks.

Figure 4. SEM images of Gd203 samples a) Gd203-2 b) Gd20s-1 ¢) Gd203-0,5

169



Ozdemir/ Eskisehir Technical Univ. J. of Sci. and Tech. A — Appl. Sci. and Eng. 21 (1) — 2020

The catalytic performances of Gd,Os; samples in oxidative coupling of methane between 450-750°C
were given in Figure 5. Methane conversion was very low (<3%) at 450°C and 480°C for Gd203-0.5
and Gd»Os-1. However, the coupling reaction took place at 510°C and the methane conversion and C»
selectivity increased greatly at this temperature. The reaction initiated at 540°C for Gd.03-2. The
methane conversion and C. selectivity increased with increasing temperature for all samples. The
methane conversion, C, selectivity, C,H4/C.Hs ratio and C; yield were found always higher than the
other samples at all temperatures for Gd>03-0.5. While the methane conversions were close for Gd,Os-
1 and Gd;0s-2, C; selectivity of Gd.O3-2 was higher than Gd»O3-1 between 540-750°C. Similar trends
were observed for C,H4/C;Hg ratio and C; yield. No correlation could be found between crystallite size
and catalytic activity or selectivity. However, in the literature, it was shown that the increase in BET
surface area of Li/MgO catalyst decreases the C, selectivity [16]. In this work the BET surface area of
Gd,03-1 was higher than that of Gd,O3-2 and the crystal structure of these materials were mainly cubic
Gd,0s. Thus, it could be concluded that the higher C; selectivity of Gd>0s-2 compared to Gd>0s-1 was
mainly due to the lower BET surface area of Gd.Os-2. However, the C; selectivity results obtained with
Gd»03-0.5 suggested that the BET surface area was not the only parameter affected the selectivity of the
Gd,0O3 catalysts because the surface area of Gd,Os3-1 was higher than that of Gd,O3-2. Thus, the higher
performance of Gd.Os-2 was attributed to the presence of both cubic and monoclinic crystal structures
in the sample. Similar results were observed for Sm,Os catalysts in the literature which supported the
obtained conclusion [17]. Additionally, the presence of two phase seem to be beneficial for the
dehydrogenation of C;Hgas could be seen from the results. It is interesting to note that, the bulk density
of the materials followed the order of Gd;0s-1 < Gd,03-2 < Gd203-0.5 which was similar to the C»
selectivity order. Therefore, it could be said that the catalyst bed length might also have an effect on C»
selectivity. Because, the shorter the length of the bed, the C, products reaches the exit quicker, and
decreasing the possibility of transformation into COx products.
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Figure 5. OCM performances of Gd203 samples
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It is not appropriate to directly compare the catalyst performances with different works due to the usage
of different reaction conditions. However, Gd»03-0.5 showed the highest C, yield (8.5%) at 720°C,
which is higher than many rare earth oxide catalysts (like Sm,O3 and Gd.0s) [18-21]. Additionally, the
C. yield was higher than the well-known 4Li/MgO but lower than 2Mn/5Na;WO4/SiO; and La,0s
catalysts at close reaction conditions [19, 22].

4. CONCLUSIONS

In this work Gd,O3 materials were synthesized via solution combustion synthesis method and the effect
of oxidant/fuel ratio on the structure and catalytic performance for OCM reaction was investigated. It
was observed that it was possible to obtain well crystallized Gd,Os; metal oxide structures by using
appropriate oxidant/fuel ratio and ignition temperature. The obtained phases were cubic and monoclinic
when the equivalence ratio decreased to the ratio of 2. The main phase was cubic for the equivalence
ratio of 0.5 and 1. All of the materials synthesized were mesoporous. SEM images showed that the
materials composed of layers or stacks. The catalytic performance of Gd,Os nanoparticles were found
to be dependent on the BET surface area and crystal structure. The catalyst bed length might also have
an effect on C; selectivity. Although lower BET surface area enhanced the C; selectivity, the presence
of both cubic and monoclinic phases greatly increased the C; selectivity and yield of the Gd,Os catalyst.
The highest C; yield was obtained at 720°C with Gd203-0.5 (8.5%).
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