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Highlights

* The paper focuses on defining a new metric space, hamely extended G,-metric space.
« The notion of generalized Geraghty type ®@-berinde contraction mapping is proposed.
+ Eventually an application is presented to emphasize the main result.
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1. INTRODUCTION

Over the past few centuries, fixed point theory has been one of the increasingly significant fields of research
in nonlinear functional analysis. Mustafa and Sims [1] initiated the idea of G-metric spaces, which is
subsequently studied and proposed to acquire various types of fixed point theorems, see [2-7]. Based on
the ideas of G-metric spaces (GMS) and b-metric spaces, Aghajani et al. examined the conception of Gp-
metric spaces (GoMS). Furthermore, in the sense of Gp-metric spaces, Zand and Nezhad [8] presented
several fixed-point theorems related to GMS and partial metric spaces. Currently, some Geraghty kind
contraction theorems have been explored in different metric spaces, see [9-12].

In this article, we reveal the new sort of contraction in the context of extended Gy-metric spaces (EG,MS),
namely generalized geraghty type ®-berinde contraction (GGT®B contraction). We also provide an
application for proving an existence result for a fredholm integral equation to illustrate the effectiveness of
the research being done.

2. PRELIMINARIES

Bakhtin [13] brought the idea of b-metric space in 1989 and then it was utilized broadly by Czerwik [14]
and the rest.
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Definition 2.1. Let M is a non-empty set and s > 1 be a real number. A function d,: M x M — [0, «0) is a
b-metric on M if for all p, ¥, ¥ € M, it fulfills:

(1) d,(p, %) =0ifand only if p = &;
@ dy(. 0 = dp(® B
@) dp(p, ¥) <s[dp (B, V) + dp(¥, K)].
The pair (M, d}) is named a b-metric space.
To the other side, there is a metric called p-metric space, was introduced by Parvaneh [15].

Definition 2.2. Let M is a nonempty set. A function 71; M x M — [0, o) is a p-metric if there exists a
strictly increasing continuous function (abbreviated SIC function hereafter) Q : [0, ) — [0, o) with £ <
Q) for £ € [0, o0) such that for all p, ¥, ¥ € M, it fulfills:

(1) d,(p, ) =0ifand only if = &;

(2) dp(p, ®) = dp(K B);

(3) dy(p, &) < 0d, (3. ¥) + dy (7, R)].
The pair (M, d,,) is named a p-metric space, or an extended b-metric space.

In the year 2006, Zead Mustafa et al. [16] implemented the definition of G-metric space.
Definition 2.3. Let M is a non-empty setand G: M x M x M — [0, o) fulfills:

(Gl) G(p, & V)=0ifp=K=V;
(G2) G(p, p, k) >0forall p, ¥ e M with p # K;
(G3) G(p, p, ¥) <G(p, &, V) forall p, &, V e M with & # V;
(G4) G, & ¥)=G(p, V,&K)=G(V, & p)=..., [symmetry in all three variables]
(G5) G(p, & ¥)< G(p, 4, 3) + G(3, &, ¥) forall , & ¥, 3 e M.
Then the pair (M, G) is called a GMS.

The framework of GyMS is described below as a generality of GMS and b-metric space.

Definition 2.3. [17] Let M is a non-empty set and s > 1 be a real number. Assume that
Gp: M xM xM — [0, o) fulfills:
(Gvl) Gp(p, &%, V)=0ifp=%k=¥;
(Gv2) Gp(p, p, &) >0 forall p, & e M with p # K;
(Gb3) Gy (P, B, ¥) < G, (p, &, ¥) for all p, &, ¥ € M with & # ¥;
(Gvd) Gp(p, &, V) = Gp(p, ¥, &) = Gp(¥, &, p) =. .., [symmetry in all three variables]
(Gv5) Gp(p, &, ¥) <s[Gp(p, 4, 3) + Gp(3, & ¥)] forall p, &, ¥, 3 € M.
Then the pair (M, Gy) is called a G,MS.

Jleli and Samet [18] have implemented a new form of contraction called ®-contraction, that is relied on the
subsequent class of supplementary functions
0:={0]0: (0, ) — (1, ) fulfills (@1) — (O}

where

(©®,) 6 is non-decreasing;

(®,) For every sequence {s, } c (0, ), lim 8(s,) =1 & lim s, = 0%;
oo™,

s4 !

(®3) There exists q € (0,1) and [ € (0, oo] such that lir51+
S—

(®4) 0 is continuous.
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Many authors used this idea to yield fixed-point theorems; see, for instance, [19-22].
Definition 2.5. [23] Let ¥ represent the functions y : [0, ) — [0, o) so that v is continuous and y(#) =0
< $=0.

Definition 2.6. [23] Let @ signify the functions ¢ : [0, ©) — [0, ) SO that ¢ is non-decreasing, continuous
and o) =0 £ =0.

In [24], the specific class of functions were implemented by Zead Mustafa et al. as follows.

Definition 2.7. Let (M, #) be an extended rectangular b-metric space with nontrivial function Q (i.e.,
Q%) # %) and F represents the class of all functions n : [0, «0) — [0, Q~1(1)).

3. MAIN RESULTS

We commence this section, by presenting our first and significant definition.

Definition 3.1. Let M is a non-empty set and € : [0, ) — [0, =) be a SIC function with £ < Q) for all
£> 0 and Q(0) = 0. We say that a function G, : M x M x M — [0, ) is called an EGpM if it fulfills:
Gpl) Go(. & V)=0ifp=k=7;
(Gp2) Gp(p, p, %) >O0forall p, & e M with p # &
(Gp3) Gp(P, p, &) < Gp(p, & ¥) for all p, &, ¥ € M with & # ¥;
(Gpd) Gp(p, & ¥) =Gp(P, ¥, %) = Gp(V, &, p) = . . ., [symmetry in all three variables]
(Gy5) Gp(P, & ¥) < Q[Gy(p, 3, 3) + Gp(3, &, ¥)] for all for all p, %, ¥, 3 € M.

Then (M,Gyp) is called an extended Gy,-metric space or simply EG,MS.
Remark 3.2. Notice that each EG,MS is a GoMS with Q) = st, s > 1.

Example 3.3. Let (M,Gp) be a GpMS and € : [0, o) — [0, o) be a SIC function so that £ < &(*) and &(0) =
0. Let Gy (p, &, ¥) = &(Gy(p, &, ¥)). Obviously, for all & € M and for three distinct points p, &, # ¢ M that
vary from 3, we acquire

Gp (. & V) = E(Go(p, & ¥))

< & (sGu(p, 4, A) + sGu(d, &, ¥))
€ (s5(Gu(p, 4, 3)) + s&(Gu(a, &, ¥)))
(sGp(p, 4, 3) + sGp(3, &, 7).

IA

Therefore (M, Gy,) is an EG,MS with Q(f) = &(st).

Example 3.4. Let G,(p, K, ¥) = tanh(Gp(p, &, ¥)), where Gy is a Gy-metric space defined by
Go(p, ¥, ¥) = % (Ip - ®| + K- ¥| +|p - #)? with M = R and s = 2. We will now show that Gy, is an EG,MS

with Q%) = 2 tanh (20%).

Evidently, conditions (G,1)-( Gp4) of Definition 3.1 are satisfied. For every p, &, ¥ € M, the following
holds:

Gp(D, % #) = tanh (Gu(p, &, 7))
tanh (2[Gu(p, 3, 3) + Gn(3, K, ¥)])
_ 2tanh (Gp(533) + Gp(BE¥))
"~ 1 +tanh 2(Gp(333) + GpGiY))

IA
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2 tanh (Gp(p, 3, 3)) + Gu(3, K, ¥))

2 tanh (20 tanh (Gu(p, 3, 3) + 20 tanh (Gu(3, ¥, ¥))
2 tanh(20 Gy (§, 3, 3) + 20 Gp (3, &, ¥)).

Hence condition (G,5) of Definition 3.1 is satisfied. Therefore G, is an EG,M on M.

n INIA

Proposition 3.5. Let (M, Gp,) be an EG,MS then for each p, &, ¥ € M, we have

1) IfG,(p, % ¥)=0,thenp =& =¥,

2) Gp(p, & ®) < Q(2Gp(K, B, p))-

Proof.

1) Let p#&K =¥ then 0 = G,(p, ®, ¥) >Gp(p, p, ®) > 0, which is impossible. Further,
0=Gp(p, % ¥)>Gp(K, K, ¥) >0, when p =& and & # ¥.

2) G\k’)(ﬁvﬁv ’IT(,) = ’C’b’(\i\fv f)’ ﬁ) .
AGR 5.0)+ GG 5. A
ﬁ[Gb(ﬁ’ f)v f)) + Gb(ﬁ’ f)v f))] = ﬁ(ZGb(ﬁ! f)v f)))

n IA

Definition 3.6. Let (M,G,) be an EGyMS. Let {a,,} be a sequence in M. Then one can assert that
1) {a,} is G,-Cauchy, if li{n Gp(ap, am,a;) =0.
n,m,l -co

2) {a,}is G,-convergent, if _lim Gp(a,, am a) =0.

We are now presenting the following propositions.
Proposition 3.7. Let (M,Gp) be an EGp,MS. The preceding are then equivalent:

(i) The sequence {a,,} is G,-Cauchy:

(i) For every € >0, 3 ny € N such that Gy, (ay,, aym.am) < €, Vm,n = n,.

Proof. (i) = (ii). In (1) of Definition 3.6, we put | = m.

(ii) = (i) Let e > 0 and choose ((2¢1) = Z. By (ii), 3 ny € N such that Gy (a,, anm, am) < €, for all

m,n = ng. Thus
G;(aniamial) Sﬁ[@(aniamiam) + G;(amiamial)]

<0(2€1) = f <¢, Vm,n,l>n,.
Proposition 3.8. Let (M,G,) be an EG,MS. The preceding are then equivalent:
(i) {a, }is Gy-convergent to a;
(ii) Gp(a,,ap,a) > 0as n — +oo;
(iii) Gp(ap, a,a) > 0 as n — +oo.

Proof. (i) = (ii) when m = n.
(ii) = (iii). Let € > 0 and choose Q(2¢1) = E. By (ii), 3 ny € N such that G, (a,, a,,a) < €1, for all

n > ny. Then by (2) of Proposition 3.5, we have

G;(anva' a) = ﬁ[ZEb(an’ Ap,s a)]
< 0Q2e1) = Z <e,Vm,n,l>n,.
(iii) = (i). Let € > 0 and choose Q(2¢,) = Z. By (iii), we get Gp(an.a,a) < e, for all n > n,,
where ny € N.
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Gp(ay,am, a) - Q[Gy(ay,a, a) + Gp(a, ay,, a)l
< 0(2e1) = Z <e Vmmn=n,.
Definition 3.9. We say that (M, Gy,) is G,-complete if every G,-Cauchy sequence is Gy,-convergent.

Definition 3.10. Let (M, Gy,) be an EG,MS with nontrivial function Q. A mapping T : M — M is called a
GGTOB contraction on M, if there exists ne Fg, 0€0, § €A, pe P, y eV and L >0 such that for all p,
K, ¥ € M, it satisfies

0(Q(Gy (TP, TR, T))) < 8(p(M(B, &, ¥)))0(M(B, &, 7)) C@FM) + | N(p, %, ¥) — w(M(B, & #) (1)
where
M@, % ¥) = max{ Gy (, & ¥), Gy (B, TP, TP), Gp, (K, TK, TK), Gp, (¥, TV, T)}
and

N(p, %, ¥) = min G, (, TK, TK), Gy, (K, T, T#), Gy, (7, TP, TP)}.

Theorem 3.11. Let (M, <,Gp) be a complete ordered EG,MS and T : M — M is a GGT®B contraction.
If T is an increasing mapping (1.M) with respect to < such that there exists a comparable element ay e M
with ay < Tag, then T has a fixed point in M.

Proof. Let ay € M be arbitrary and a,, = T"a,. Beyond lack of generality, we presume now that a,, #
an+1, V1 € N. Since ag < Tay and T is an I.M, we attain by induction that

ao %Tao <T2a0 %...Tnao <

We will now attempt to prove that lim Gy (a,,an+1,an+1) = 0.Asof a, < a,,4 for every n € N. By
n —oo
inequality (1), we have

0(Gb(an, ans1,@n41)) = 0(Go(Tan-1,Tay, Tay))
< 8(0" (G (Tan1, Tay, Tay )
< 8(0(M(an-1,an, 3, )))O0M(ap_1,an, @y ))"Co@n-1:an.an))
+ LN(@y-1,0n,a2) = v(M(@n-1, a0, a,)) 2)
where

lV[(an—l »Qn, An ) =
max{ Gb (an—l » A, An )' Gb (an—l ) Tan—l ) Tan—l ): Gb (an ’ Tan ’ Tan ): Gb (an ’ Tan 4 Tan )}

and
N(an_l,an,an) = min{C;(an_l,Tan,Tan ), f};(an,Tan,Tan ),G;(an,Tan,Tan)} =0.

If max { G\l;(an—l ,An, Ay ), G;(an yAny1,Apgr )} = t-;';(an ,Gn+1,An41 ). Then by Equation (2), we
acquire

e(FC“/b (@n,ani1,0n41)) < 6((9((}; (an, Ans1,Aner )))9(6]; (@n,Ans1,n41 ))n(GTJ(an_l /an an))

-y (C;(an, An+1An+1 ))
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~—1

— (1) —_
< 9(Gb(an:an+1:an+1 )) - \V(Gb(an'an+1'an+1 )) (3)

<0 (G;(an »n+15 Ant1 )),

which is a contradiction. Hence, max{ Gy, (@p,_1, @n, @), Gp (@, Gt 1, Ani1)} = Gp(@n_1, Gy, ay). Again
from the conditions of ¢ and v, and from inequality (2), we find that

G(C'b (an » A1, Aptq )) < e((}; (an—lr an, an))n(cb(an_l'an'an)) -V (CT) (an—ll Qan, an))

—_— n Gv(an— ;an:an) n Gv(an_ JAn—1,0p— )
< (G (-2 @n-1,an1)) (Go s ) (G (@nn—s n o))

Gp H{lz ~( i—1,i,a;)
< e(Gb(aO; a4, al)) ln(Gb aj—1,ai,a; )

We get by definition of 1 that n(¢) < 0'(1) < 1, V £ € [0, ). Hence

n —~
lim i=II}(Gb(ai—1rairai)) =0
which yields
lim 8(Gp(an,ans1,ane1)) =1 ice, TILIIEO Go(an, A1, @ner) = 0. (4)

n —wo
Now, we will demonstrate that a,, # a,, for n # m. Suppose that a,, = a,, for some n > m, thus
we have a,,,; =Ta, =Ta, = a,+,. By proceeding with this procedure, we observe that a,,,, =

am+i forall k € N. Then from inequality (1), we obtain

G(Eb(am Ami1) Gmy1)) = G(Eb(an ) Ant1,An+1))
< (0" @@, Ans1,ans1)))
< 3(@(M(an-1, an, 32)))0(M(an-1, ap, ap))"(Co@n-senan)
+ LN(ap-1,an,a,) — ‘I’(C; (an-1,an, an)) )
< (8(max{Gp (an-1, an, @n), Gy (@n , A1, Ans1)})) 1Co(an-vanan)),
If max{ Gy, (@n-1, @n, @n), Gp(an, @ni1,an41)} = Gp(an, anyr, aner)- Then
0(Go(@n, ams1,ams1)) < 0(Gp(@n, ansr ) Anyq )N @n-ranan)) -y, (G; (@n, an+1) an+1))
<90 (C;(an »Ong1, Ayt ))

which is impossible. If max{ G, (a,_1,an, @), Gp (@n, Ans1 > Ans1 )} = Gp(@n_1, an, ay), then the
inequality above implies that

e(G'/b (@m,Ams1,Gme1)) < B(G/b (an—1,an, an))
< O(M(ay—y, an_1, Ay_q))"Gb@n-2an-1,an-1))

< O(max{ i:};(an—ZI an-1, an—l)' G;(an—ll an, an)}) (6)
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< Q(FG;)(am »Ams1) Ame1))
a contradiction. Hence a,, # a,, forn # m.

The following step is to affirm that {a,, } is G-Cauchy sequence. Conversely, claim that there is an € > 0
where we can consider two subsequences {a,, }and {a,, }of {a,}, so that n; is the least factor where

n; > m; >iand Gg(ami,ani,ani) > e @)
This implies
Gp (ami' An;—2, ani—z): Eg(ami, An;—1 ani—l) <e (8)
From (7) and (Gy,5), we get
€< (T{)(ami, An;» ani)
= ﬁ[@g(ami, Oni—1 A1) + Gp(@n—1, anyy an,)].
Taking upper limiti — oo and applying Equation (4), the latter inequality becomes
070 < lim sup Gy (@m;» Gn,—1, an;—1)- 9)

joo0

Consider

0 (ﬁz (@g(ami, A1, ani_l))) < 8(@M(am;—1, An;—2, An;—2)))
O(M(am—1, Ang—2s ani_z))“@(“mi‘l ng-z ng=2))
L N(am;—1, an;—2) @ny—2) - W M(am—1, @ni—2) ani—2))
where
M(@m;—1, Ang—2) An—2)) =
max{ Gy (am;—1, an;~2) @n;—2), Go (@m-1) Amyp @), Go ( Any—2) Ani—1, ani—1), Go(Ani—2) Gny—2, A1)}
< max{ ﬁ[f}; (ami_l, A, ami)

+ G;(ami' ani—Z' ani—Z)]' C;(ami—b ami! ami)' G;(ani—b ani—lr ani—l)r G;(' aTli—Z' ani—lr ani—l)}
and

N(ami—li ani—Z' ani—Z) = mln{G; (ami—lr ani—li ani—l)r G;(ani—Z' ani—l' ani—l)' G;(l aTLi—Zl amil ami)}-

Taking upper limiti — oo in the latter two equations, we get

lim sup M(ami_l,ani_z,ani_z) < O(e) (10)
i-»oo
and
lim sup N(ami_l,ani_z, ani_z) = 0. (1)

i—oo0
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Thus, we have

1< 0@ (©)= 0@ @ (&)

~2 . —_
< 0(@2" (tim sup Gy (@, @n—1,@n 1))

1>

< 0(lim sup M(ami_l,ani_z, ani_z))n(Gb(ami—Lani—Zvani—z »

i-ow0

<o@ ()T @< 8@ (o),

which is wrong. Appropriately {a, } is a G,-Cauchy sequence in X. The sequence {a,} is therefore G-
converges to some a e Mie., lim Gp(a,,a,,a) = 0. Now, we demonstrate that a is a fixed point of
n,m —oo

T. Assume that Ta # a. So it follows that a,, differs from both Ta and a for sufficiently large n and
a, < a.Therefore,

0Cp(an+1,Ta,Ta)) < 3(0(M(an,a,@))0(M(an, a,@)"C@ 4 — y (Fi(a,,a,0))

~ Gp (an ,a,a)
< G(M(an,a, a))n(Gb ¢ aa)

= o(max{ Gp(a,,a a),Gy(a,, Ta,,Ta,),Gy(a, Ta, Ta), Gy (a, Ta, Ta) })1Colanaa),
Thus

0(Gp(a,Ta,Ta)) < lim inf 6(Gy(a,41,Ta, Ta)) < 0(G,(lim infa,,,Ta, Ta))
n—-oo n—oo

< 0(lim sup (max{ G, (a,,a, a),Gy(a,, Ta,,Ta,),Gy(a, Ta, Ta), G, (a, Ta, Ta)}))lir;rlljolép (G (an ,a,0))

n—-oo

limsup n(Gp(an,a.a))

< 0(Gy(a, Ta, Ta)) n-e

— =1 —
< 0(Gp(a,Ta, Ta))? @ < 0(Gy(a, Ta, Ta)), a contradiction. Therefore ‘a’ is a fixed point of T .

By selecting 0 < n(G,(p, %, %)) = r < Q~1(1) in Theorem 3.11, the corollary we acquire is as follows:

Corollary 3.12. Theorem 3.11 remains true, if we supplant the supposition, by the following (Apart from
maintaining the other hypotheses)

00 (G (T, TR, T9))) < 8(o(M(5, &, 9))OM(B, K )+ LN, & V) —w(M@,& 7))  (12)
forsome 0 e®, 6 el ¢ed,yeW, L>0and forall comparable elements p, K, ¥ € M.
Taking L = 0 in Corollary 3.12, we have a corollary below.

Corollary 3.13. Theorem 3.11 remains true, if we supplant the supposition, by the following (Apart from
maintaining the other hypotheses)

0(Q%(Gp (T3, TR, T))) < 3(p(M(B, &, )))0(M(B, &, 7)" — y(M(B, &, 7)) (13)
forsome 0 €©,8 € A, @ € @, e ¥ and for all comparable elements p, K, ¥ € M.
Further by putting ¢(¥) =4 in Corollary 3.13, we have the preceeding corollary as a result of Theorem 3.11.

Corollary 3.14. Let (M, <, Gp,) be a complete ordered EG,MS and T : M — M be an .M with respect to
< such that there exists a comparable element 5, € X with p, < Tp,. Suppose that
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0(02 (G (TP TR, T))) < 3(M(p, K, ¥)0(M(B, K, ¥)" — w(M(B, &, 7)) (14)
for some 6 € ©,8 € A, Y € ¥ and for all comparable elements p, K, ¥ € M, where
M3, %, %) = max{ G, (®,% ¥, Gy (p, Tp, T), Gp (K, Tk, TK), Gy, (7, Tv, T#)}.
Then T has a fixed point in M.
Another version of Corollary 3.14 is the Corollary we mention below.

Corollary 3.15. Let (M, <, Gp,) be a complete ordered EG,MS and T : M — M is an an 1.M with respect
to < such that there exists a comparable element p, € M with p, < Tp,. Suppose that
0(Q? (G (TP, TR TY)) < O(M(p, K )" — w(M(, K, 7)) (15)

for some 6 € 0,y € ¥ and for all comparable elements p, K, ¥ € M, where

M@, % %) = max{ Gy, (®, % ¥), Gy (D, Tp, TP), Gp (K, Tk, TK), Gy, (7, Tv, T#)}. Then T has a fixed point in
M.

4. EXISTENCE THEOREM FOR SOLUTIONS OF A FREDHOLM INTEGRAL EQUATION

Let M = C(]0, 1], R) the set of all continuous real valued functions defined on [0, 1]. We perform partial
order for M <given by p < K © p(¥) <K(*), V £ € [0, 1]. The metric G is defined as

1
GBRT) = 3 SUP](Iﬁ(’é) - K®[ + k(@) - v®| + [p(H) — ¥®D.

3 te[0,1

Let € : [0,00) - [0,00) be SIC function with £ < &%) and G, (p, %, ¥) = S(SG(,E),K \7)). Consider the
fredholm integral equations

PO = f® + [, 1(£5p(©)ds sel0], (16)

where a(t) is an unknown solution, t (%, s, p(s)) is called a smooth function. Presume that the conditions
below hold:

(i) The mapping T : C[0, 1] — C[0, 1] defined by Tp(¥) = f(¥) + [, t(% s B(s))ds is a continuous
mappingand t:[0,1] x [0, 1] x R — R.

(i) 0 : [0, o) — [1, o) with 0) <%, v £> 0.

(iii) If p < Kthent(}, s, p(s)) <t s, K(s)), V %, s € [0, 1].
(iv) Forall p,% ¥ e M and for all £ € [0, 1]

§@)+ ¢ (1 s5®) - (ks ®(©)|d9) < 1+ 63 — RODI"

Under assertions (i)-(iv), the Equation (16) has a solution in ™M, where M = C([0,1], R). Consider

1
2+ £ (5(o0® - TR®)) < £+ €| [ s.59) - (ks K@)|d)
0

3
< 1+[6(p(® — K@DI" =1+ (6(56(, K1)

< 1+ (0CEG6E R
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= 1+ e(ﬁg@,’ﬁ,’ﬁ))r <1+ (0(M@pR®))
where M(p, %, &) = max{ G, (5, ¥, %), Gy (D, TP, TP), Gp (K, TK, TK), G, (¥, TK, TK)}. Thus
2+ §2(&(TpH) - TR(®)) < 1+ O(MPRR))
2M(p, %K) + 1 2M@(B, %K) + 1

M@, % %) + 1 M@, % %) + 1

OM®x, ﬁ)))r - (ZMM(EPRK%):E 1) M; KR+ 1

1+ (0(M@p,% %)) +

= 0GR - G2 e
<2+ (0(M@p, %)) - ‘;—i
This yields
M(p, K, &)

§? (E(Tf)(t) - T'I'?(t))) < (6(M@p,%®)) - MG RD+ 1

Hence by taking w(£) = i and 0l = &, we acquire that
9(@'2 (Go (1, TR, Tiz))) < 02 (Gp(Tp, TR, TR))
- 92(5( 6(T5, %, T%))
= Q%€ (ITp(®) — TR(D))
©OMGE R D) — ¥(ME,RD).

Therefore all the assumptions of Corollary 3.15 are fulfilled and we deduce the existence of p € ™M such
that p = T(p).

IA

5. RESULTS AND DISCUSSION

Throughout this study, we introduced the class of EG,MS as an extension of G,MS, and demonstrated fixed
point theorem with GGT®B contraction on complete ordered EG,MS. We also acquired some different
generalizations of the Banach contraction theory by broadening Jleli and Samet's result, Berinde and
Geraghty in [25, 26]. Analyzing the current literature in the light of the newly established EG,MS would
be quite interesting.
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