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Abstract. The F v+1 � �2F v�1 = 0 structure (� � 3) have been studied by
Kim J. B. [14]. Later, Srivastava S.K studied on the complete lifts of (1; 1)
tensor �eld F satisfying structure F v+1 � �2F v�1 = 0 and extended in Mn

to cotangent bundle. This paper consists of two main sections. In the �rst
part, we �nd the integrability conditions by calculating Nijenhuis tensors of
the complete and horizontal lifts of F v+1 � �2F v�1 = 0: Later, we get the
results of Tachibana operators applied to vector and covector �elds according
to the complete and horizontal lifts of F

�
(� + 1) ; �2 (� � 1)

�
-structure and

the conditions of almost holomor�c vector �elds in cotangent bundle T �(Mn).
Finally, we have studied the purity conditions of Sasakian metric with respect
to the lifts of F v+1 � �2F v�1 = 0�structure. In the second part, all results
obtained in the �rst section were investigated according to the complete and
horizontal lifts of the F v+1��2F v�1 = 0 structure in tangent bundle T (Mn).

1. Introduction

The investigation for the integrability of tensorial structures on manifolds and
extension to the tangent or cotangent bundle, whereas the de�ning tensor �eld
satis�es a polynomial identity has been an actively discussed research topic in the
last 50 years, initiated by the fundamental works of Kentaro Yano and his collab-
orators, see for example [25]. Later, a lot of authors studied on the topics of the
bundle, Riemannian manifolds and F structure too [1, 2, 3, 4, 5, 10, 12, 13, 16, 23].
There are a lot of structures in tangent and cotangent bundle. One of them is
the F

�
(� + 1) ; �2 (� � 1)

�
-structure (� � 3) have been studied by Kim J. B. [14].
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Later, Srivastava S.K studied on the complete lifts of (1; 1) tensor �eld F satisfying
structure F v+1��2F v�1 = 0 and extended inMn to cotangent bundle [21]. In this
context, a di¤erentiable structure F 2v+4+F 2 = 0; (F 6= 0; v 6= 0) studied by K.K.
Dube [11] and Upadhyay and Gupta have obtained some integrability conditions of
F (K;�(K � 2))�structure, satisfying FK + FK�2 = 0;(F is a tensor �eld of type
(1; 1)) [24].
This paper consists of two main sections. In the �rst part, we �nd the integrabil-

ity conditions by calculating Nijenhuis tensors of the complete and horizontal lifts
of F

�
(� + 1) ; �2 (� � 1)

�
-structure. Later, we get the results of Tachibana opera-

tors applied to vector and covector �elds according to the complete and horizontal
lifts of F �+1��2F ��1 = 0 structure and the conditions of almost holomor�c vector
�elds in cotangent bundle T �(Mn). Finally, we have studied the purity conditions
of Sasakian metric with respect to the lifts of F �+1��2F ��1 = 0 structure. In the
second part, all results obtained in the �rst section were investigated according to
the complete and horizontal lifts of the F

�
(� + 1) ; �2 (� � 1)

�
-structure in tangent

bundle T (Mn).
Let Mn be a di¤erentiable manifold of class C1 and of dimension n and let

T �(Mn) denote the cotangent bundle of M . Then T �(Mn) is also a di¤erentiable
manifold of class C1 and dimension 2n.
The following are notations and conventions that will be used in this paper.

(1) =rs(Mn) denotes the set of the tensor �elds C1 and of type (r; s) on Mn.
Similarly, =rs(T �(Mn)) denotes the set of such tensor �elds in T �(Mn).

(2) The map � is the projection of T �(Mn) onto Mn.
(3) Vector �elds in Mn are denoted by X, Y , Z,...and Lie di¤erentiation by

LX .The Lie product of vector �elds X and Y is denoted by [X;Y ].
(4) Su¢ xes a,b,c,...,h,i,j... take the values 1 to n and �{ = i + n. Su¢ xes

A,B,C,...take the values 1 to 2n:

If A is point in Mn, then (��)�1(A) : Mn �! T �(Mn) is �ber over A. Any
point p 2 (��)�1(A) is denoted by the ordered pair (A; pA), where p is 1�form in
Mn and pA is the value of p at A. Let U be a coordinate neighborhood in Mn such
that A 2 U . Then U induces a coordinate neighborhood (��)�1(U) in T �(Mn) and
p 2 ��1(A).

1.1. The complete lift of F �+1 � �2F ��1 = 0 on cotangent bundle. Let Mn

be an n-dimensional connected di¤erentiable manifold of class C1. Let there be
given in Mn, a (1; 1) tensor �eld F of class C1 satisfying [14,21]

F �+1 � �2F ��1 = 0; (1)

where � is non zero complex number. Also

rank (F ) =
1

2

�
rank F �+1 + dim Mn

�
(2)

= (a cons tan t every where on Mn) (3)
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Let the operators l� and m� be de�ned as

l�def (F=�)
��1

;m� = I � (F=�)��1 ; (4)

where I denotes the identity operator on Mn. Then the operators I� and m�

applied to the tangent space at a point of the manifold be complementary projection
operators.
Let Fhi be the component of F at A in the coordinate neighbourhood U of M

n.
Then the complete lift FC of F is also a tensor �eld of type (1; 1) in T �(Mn) whose
components ~FAB in (��)�1(U) :Mn �! T �(Mn) are given by [17]

~Fhi = F
h
i ; (5)

~Fh�{ = 0; (6)
~F
�h
i = pa[@F

a
h =@x

i � @F ai =@xh] (7)

and
~F
�h
�{ = F

i
h; (8)

where (x1; x2; x3; :::; xn) are coordinates of A in U and pA has components
(p1; p2; p3; :::pn). Thus we can write

FC = ( ~FAB ) =

�
Fhi 0

pa(@iF
a
h � @hF ai ) F ih

�
; (9)

where @i = @=@xi.
If we put

@iF
a
h � @hF ai = 2@[iF ah ]; (10)

then the equation (9) can be written as

FC = ( ~FAB ) =

�
Fhi 0

2pa@[iF
a
h ] F ih

�
(11)

(FC)2 = (FC)(FC) =

�
Fhi F

i
j 0

Lhj F ji F
i
h

�
: (12)

Squaring (12) again we get [17]

(FC)4 =

�
Fhi F

i
j 0

Lhj F ji F
i
h

� �
Fhi F

i
j 0

Lhj F ji F
i
h

�
;

=

�
Fhi F

i
jF

k
l 0

F jkF
k
l Lhj + F

j
i F

i
hLjl F lkF

k
j F

j
i F

i
h

�
:

(FC)6 = (FC)4(FC)2 =

 
Fhi F

i
jF

j
kF

k
l F

l
mF

m
n 0

Qhn FnmF
m
l F

l
kF

k
j F

j
i F

i
h

!
(13)

(FC)7 = (FC)6(FC) =

�
��2Fnp 0

��2ps@[pF sh ] ��2F ph

�
: (14)
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Thus it follows that
(F �+1)C � �2(F ��1)C = 0 (15)

Thus, we get the complete lift of F �+1 � �2F ��1 = 0�structure on the cotangent
bundle.

1.2. Horizontal lift of the structure F �+1 � �2F ��1 = 0 on cotangent bun-
dle. Let F;G be two tensor �eld of type (1; 1) on the manifoldMn. If FH denotes
the horizontal lift of F , we have [17,18,25]

FHGH +GHFH = (FG+GF )H . (16)

Taking F and G identical, we get

(FH)2 = (F 2)H . (17)

Thus, multiplying both sides by FH and making use of the same (16), we get

(FH)3 = (F 3)H : (18)

Thus it follows that

(FH)4 = (F 4)H , (FH)5 = (F 5)H . (19)

Thus,
(F �+1)H � �2(F ��1)H = 0. (20)

In view of (17), we can write (FH)�+1 � �2(FH)��1 = 0.
Thus, we get the horizontal lift of F �+1��2F ��1 = 0�structure on the cotangent

bundle.

Proposition 1. Let Mn be a Riemannian manifold with metric g, r be the Levi-
Civita connection and R be the Riemannian curvature tensor. Then the Lie bracket
of the cotangent bundle T �(Mn) of Mn satis�es the following

i) [!v; �v] = 0; (21)

ii)
�
XH ; !v

�
= (rX!)v;

iii)
�
XH ; Y H

�
= [X;Y ]

H
+ R (X;Y ) = [X;Y ]

H
+ (pR (X;Y ))

v

for all X;Y 2 =10 (Mn) and !; � 2 =01 (Mn) : (See [25] p. 238, p. 277 for more
details).

2. Main Results

2.1. The Nijenhuis tensors of F
�
(� + 1) ; �2 (� � 1)

�
-structure on cotangent

bundle.

De�nition 2. Let F be a tensor �eld of type (1; 1) satisfying F �+1 � �2F ��1 = 0
in Mn: The Nijenhuis tensor of a (1; 1) tensor �eld F of Mn is given by

NF = [FX;FY ]� F [X;FY ]� F [FX; Y ] + F 2 [X;Y ] (22)
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for any X;Y 2 =10(Mn) [6, 19, 22]. The condition of NF (X;Y ) = N(X;Y ) = 0 is
essential to integrability condition in these structures.

The Nijenhuis tensor NF is de�ned local coordinates by

Nk
ij@k = (F

s
i @

k
sF

k
j � F lj@lF ki � @iF ljF kl + @jF si F ks )@k;

where X = @i; Y = @j ; F 2 =11(Mn).

Proposition 3. If X, Y 2 =10(Mn), !, � 2 =01(Mn) and F;G 2 =11(Mn), then [25]

[!v; �v] = 0, [!v; F ] = (! � F )v, [F; G] = [F;G], (23)

[XC ; !v] = (LX!)
v, [XC ; F ] = (LXF ), [XC ; Y C ] = [X;Y ]C ,

where ! � F is a 1�form de�ned by (! � F )(Z) = !(FZ) for any Z 2 =10(Mn) and
LX the Lie derivative in direction of X.

Theorem 4. The Nijenhuis tensor N(F�+1)C(F�+1)C
�
XC ; !v

�
of the complete lift

of F �+1 vanishes if the Lie derivative of the tensor �eld F ��1 with respect to X is
zero and F is an almost ��structure on M (see [19] p.46).

Proof. In consequence of De�nition 2 the Nijenhuis tensor of F �+1 is given by

N(F�+1)C(F�+1)C
�
XC ; !v

�
= [

�
F �+1

�C
XC ;

�
F �+1

�C
!v]�

�
F �+1

�C
[
�
F �+1

�C
XC ; !v]

�
�
F �+1

�C
[XC ;

�
F �+1

�C
!V ] +

�
F �+1

�C �
F �+1

�C �
XC ; !v

�
= �4f

h�
F ��1X

�C
+ LXF

��1;
�
! � F ��1

�vi
�
�
F ��1

�C
[
�
F ��1X

�C
+ LXF

��1; !v]

�
�
F ��1

�C
[XC ;

�
! � F ��1

�v
] +
�
F 2��2

�C
(LX!)

vg
= �4f(L(F��1X)

�
! � F ��1

�
)v �

��
! � F ��1

�
�
�
LXF

��1��v
�
�
(LF��1X!) �

�
F ��1

��v � (�! � �LXF ��1��v � F ��1)v
�
��
LX

�
! � F ��1

��
�
�
F ��1

��v
+
�
(LX!) �

�
F 2��2

��vg
If the lie derivatives of the tensor �eld F ��1 with respect to X is zero, then the

equation takes the form

= �4f! �
�
LF��1XF

��1�v � ��! � LXF ��1�F ��1�vg
Let F be almost ��structure on M then F 2 = �2I , where I is unit tensor �eld.
So F ��1 = �2I and we get

N(F�+1)C(F�+1)C
�
XC ; !v

�
= 0

The theorem is proved. �
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Theorem 5. The Nijenhuis tensor N(F�+1)C(F�+1)C

�
!V ; �V

�
of the complete lift

of F �+1 vanishes.

Proof. Because [!V ; �V ] = 0 and ! � F ��1 2 =01(Mn) on T �(Mn), the Nijenhuis
tensor N(!V ; �V ) for the complete lift of F �+1 is vanishes. �
2.2. Tachibana operators applied to vector and covector �elds according
to lifts of F

�
(� + 1) ; �2 (� � 1)

�
-structure on cotangent bundle.

De�nition 6. Let ' 2 =11(Mn), and =(Mn) =
P1

r;s=0 =rs(Mn) be a tensor algebra

over R: A map �' jr+si0 :
�
=(Mn) ! =(Mn) is called as Tachibana operator or

�'operator on M
n if

a) �' is R�linear,

b) �' :
�
=(Mn)! =rs+1(Mn) for all r and s,

c) �'(K
C

 L) = (�'K)
 L+K 
 �'L for all K;L 2

�
=(Mn),

d) �'XY = �(LY ')X for all X;Y 2 =10(Mn); where LY is the Lie derivative
in direction of Y (see [7, 9, 15]),
e)

(�'X�)Y = (d({Y �))('X)� (d({Y (�o')))X + �((LY ')X)

= �X({Y �)�X({'Y �) + �((LY ')X)

for all � 2 =01(Mn) and X;Y 2 =10(Mn), where {Y � = �(Y ) = �
C

 Y;

�
=rs(Mn) the

module of all pure tensor �elds of type (r; s) on Mn with respect to the a¢ nor

�eld,
C

 is a tensor product with a contraction C [6, 8, 19](see [22] for applied to

pure tensor �eld).

Remark 7. If r = s = 0; then from c); d) and e) of De�nition 6 we have �'X({Y �) =
�X({Y �)�X({'Y �) for {Y � 2 =00(Mn); which is not well-de�ned �'�operator. Dif-
ferent choices of Y and � leading to same function f = {Y � do get the same values.

Consider Mn = R2 with standard coordinates x; y. Let ' =
�
0 1
1 0

�
. Consider

the function f = 1: This may be written in many di¤erent ways as {Y �. Indeed
taking � = dx, we may choose Y = @

@x
or Y = @

@x
+ x @

@y
. Now the right-hand

side of �'X({Y �) = �X({Y �) � X({'Y �) is (�X)1 � 0 = 0 in the �rst case, and
(�X)1 � Xx = �Xx in the second case. For X = @

@x
; the latter expression is

�1 6= 0. Therefore, we put r + s > 0 [19].
Remark 8. From d) of De�nition 6 we have

�'XY = ['X; Y ]� '[X;Y ]: (24)

By virtue of
[fX; gY ] = fg[X;Y ] + f(Xg)Y � g(Y f)X (25)
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for any f; g 2 =00(Mn), we see that �'XY is linear in X, but not Y [19].

Theorem 9. Let
�
F �+1

�C
be a tensor �eld of type (1; 1) on T � (Mn). If the

Tachibana operator �(F�+1)C applied to vector and covector �elds according to the

structure
�
F �+1

�C � �2 �F ��1�C = 0 de�ned by (15) on T � (Mn), then we get the
following results.

i) �(F�+1)CXCY C = ��2f
��
LY F

��1�X�C +  �LY �LXF ��1���  �L[Y;X]F ��1�g;
ii) �(F�+1)CXC!v = ��2f� (LF��1X!)

v
+
�
! �

�
LXF

��1��v + �(LX!) � F ��1�g;
iii) �(F�+1)C!VX

C = ��2
�
!
�
LXF

��1��v ;
iv) �(F�+1)C!V �

v = 0;

where the complete lifts XC ; Y C 2 =10 (T � (Mn)) of X;Y 2 =10 (M) and the vertical
lift !v; �v 2 =10 (T � (Mn)) of !; � 2 =01 (M) are given, respectively.
Proof. i)

�(F�+1)CXCY C = �(LY C

�
F �+1

�C
)XC

= �LY C

�
F �+1

�C
XC +

�
F �+1

�C
LY CXC

= ��2[Y C ;
�
F ��1X

�C
]� �2

�
Y C ; LXF

��1�
+�2(F ��1 [Y;X])C + �2

�
L[Y;X]

�
F ��1)

= ��2f
��
LY F

��1�X�C +  �LY �LXF ��1���  �L[Y;X]F ��1�g
ii)

�(F�+1)CXC!v = �(L!V
�
F �+1

�C
)XC

= �L!V
�
F �+1

�C
XC +

�
F �+1

�C
L!VX

C

= ��2([!v;
�
F ��1X

�C
+ 

�
LXF

��1�])� �2 �F ��1�C (LX!)v
= ��2f� (LF��1X!)

v
+
�
! �

�
LXF

��1��v + �(LX!) � F ��1�g
iii)

�(F�+1)C!VX
C = �(LXC

�
F �+1

�C
)!V

= �LXC

�
F �+1

�C
!V +

�
F �+1

�C
LXC!V

= ��2
�
LX

�
! � F ��1

��V
+ �2

�
(LX!) � F ��1

�V
= ��2

�
!
�
LXF

��1��V
iv)

�(F�+1)C!V �
v = �(L�V

�
F �+1

�C
)!v

= �L�V
�
F �+1

�C
!V +

�
F �+1

�C
L�V !

v
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= ��2L�V
�
! � F ��1

�v
= 0

�

Proposition 10. The complete lift Y C is an holomor�c vector �eld with respect
to the structure

�
F �+1

�C � �2 �F ��1�C = 0, if LY F ��1 = 0.
Proof. i)

(LY C

�
F �+1

�C
)XC = LY C

�
F �+1

�C
XC �

�
F �+1

�C
LY CXC

= �2
��
LY F

��1�X�C + �2 �F ��1 (LYX)�C
+�2

�
LY
�
LXF

��1��� �2 �F ��1 (LYX)�C
��2

�
L[Y;X]F

��1�
= �2f

��
LY F

��1�X�C +  �LY �LXF ��1��
�
�
L[Y;X]F

��1�g
ii)

(LY C

�
F �+1

�C
)!v = LY C

�
F �+1

�C
!v �

�
F �+1

�C
LY C!v

= �2LY
�
! � F ��1

�v � �2 �(LY !) � F ��1�v
= �2

�
!
�
LY F

��1��v
where Y 2 =10 (M) and LY is the Lie derivative in direction of Y: �

2.3. The purity conditions of Sasakian metric with respect to (F
�+1

)C on
T �(Mn). Let F be an a¢ nor �eld on Mn, i.e. F 2 =11(Mn): A tensor �eld t of
(r; s) is called pure tensor �eld with respect to F if

t(FX1; X2; :::; Xs;
1

�;
2

�; :::;
r

�) = t(X1; FX2; :::; Xs;
1

�;
2

�; :::;
r

�)

:::

:::

:::

= t(X1; X2; :::; FXs;
1

�;
2

�; :::;
r

�)

= t(X1; X2; :::; Xs;
0
F
1

�;
2

�; :::;
r

�)

= t(X1; X2; :::; Xs;
1

�;
0
F
2

�; :::;
r

�)

:::

:::

:::



SOME NOTES ON LIFTS OF THE F
�
(� + 1) ; �2 (� � 1)

�
-STRUCTURE ON BUNDLES 249

= t(X1; X2; :::; Xs;
1

�;
2

�; :::;
0
F
r

�)

for any X1; X2; :::; Xs 2 =10(Mn) and
1

�;
2

�; :::;
r

� 2 =01(Mn); where
0
F is the adjoint

operator of F de�ned by

(
0
F�)(X) = �(FX) = (�oF )(X)

De�nition 11. A Sasakian metric Sg is de�ned on T �(Mn) by the three equations
[20]

Sg(!v; �v) = (g�1(!; �))v = g�1(!; �)o�; (26)
Sg(!v; Y H) = 0; (27)

Sg(XH ; Y H) = (g(X;Y ))v = g(X;Y ) � �: (28)

For each x 2 Mn the scalar product g�1 = (gij) is de�ned on the cotangent
space ��1(x) = T �x (M

n) by

g�1(!; �) = gij!i�j ; (29)

where X;Y 2 =10(Mn) and !; � 2 =01(Mn). Since any tensor �eld of type (0; 2) on
T �(Mn) is completely determined by its action on vector �elds of type XH and !v

(see [25], p.280), it follows that Sg is completely determined by equations (26), (27)
and (28).

Theorem 12. Let (T �(Mn);S g) be the cotangent bundle equipped with Sasakian
metric Sg and a tensor �eld (F �+1)C of type (1; 1) de�ned by (15) on T � (Mn).
Sasakian metric Sg is pure with respect to (F �+1)C if F ��1 = �2I and rF ��1 = 0.
(I =identity tensor �eld of type (1; 1))

Proof. We put

S( ~X; ~Y ) =S g((F �+1)C ~X; ~Y )�S g( ~X; (F �+1)C ~Y ):
If S( ~X; ~Y ) = 0; for all vector �elds ~X and ~Y which are of the form !v; �v or

XH ; Y H ; then S = 0: By virtue of (F �+1)C � �2(F ��1)C = 0 and (26),(27), (28),
we get
i)

S (!v; �v) = Sg(
�
F �+1

�C
!v; �v)�S g(!v;

�
F �+1

�C
�v);

= Sg(�2
�
F ��1

�C
!v; �v)�S g(!v; �2

�
F ��1

�C
�v);

= �2fSg(
�
! � F ��1

�v
; �v)�S g(!v;

�
� � F ��1

�v
)g;

= �2f
�
g�1

��
! � F ��1

�
; �
��v � �g�1 �!; �� � F ��1���vg:

ii)

S
�
XH ; �v

�
= Sg(

�
F �+1

�C
XH ; �v)�S g(XH ;

�
F �+1

�C
�v);

= Sg(�2
�
F ��1

�C
XH ; �v)�S g(XH ;

�
F ��1

�C
�v);
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= �2 (Sg(
�
F ��1X

�H
; �v)) + �2 (Sg((p

�
rF ��1

�
X
)v; �v));

= �2(g�1((p
�
rF ��1

�
X
); �))v;

where rXF + F (rX)�rFX = [rF ]X (see [25] p. 279).
iii)

S
�
XH ; Y H

�
= Sg(

�
F �+1

�C
XH ; Y H)�S g(XH ;

�
F �+1

�C
Y H)

= �2 fSg(
�
F ��1X

�H
+ (

�
rF ��1

�
X
); Y H)

�Sg(XH ;
�
F ��1Y

�H
+ (

�
rF ��1

�
Y
))g

= �2 f Sg(
�
F ��1X

�H
; Y H) +S g((p(

�
rF ��1

�
X
))v; Y H)

�Sg(XH ;
�
F ��1Y

�H
)�S g(XH ; (p(

�
rF ��1

�
Y
))v)g

= �2f
�
g
��
F ��1X

�
; Y
��v � �g �X; �F ��1Y ���vg

where FCXH = (FX)H+([rF ]X) for all XH 2 =10(T �(Mn)), FC 2 =11(T �(Mn))
and [rF ]X 2 =11(Mn) (see [25], p.279). �

2.4. The structure (F �+1)H � �r(F ��1)H = 0 on cotangent bundle. In this
section, we �nd the integrability conditions by calculating Nijenhuis tensors of
the horizontal lifts of F �+1 � �rF ��1 = 0 structure. Later, we get the results of
Tachibana operators applied to vector and covector �elds according to the horizontal
lifts of the structure F �+1 � �rF ��1 = 0 in cotangent bundle T �(Mn). Finally, we
have studied the purity conditions of Sasakian metric with respect to the lifts of
F �+1 � �rF ��1 = 0 structure.

Theorem 13. The Nijenhuis tensors of
�
F �+1

�H
and F ��1 denote by ~N and

N , respectively. Thus, taking account of the de�nition of the Nijenhuis tensor, the
formulas (21) stated in Proposition 1 and the structure

�
F �+1

�H��2 �F ��1�H = 0,
we �nd the following results of computation.

i) ~N(F�+1)H(F�+1)H
�
XH ; Y H

�
= �4f(NF��1F��1 (X;Y ))

H

+fR
�
F ��1X;F ��1Y

�
�R

�
F ��1X;Y

�
F ��1

�R
�
X;F ��1Y

�
F ��1 +R (X;Y )

�
F ��1

�2gg;
ii) ~N(F�+1)H(F�+1)H

�
XH ; !V

�
= �4f

�
!
�
rF��1XF

��1��v
�
��
!
�
rXF ��1

��
F ��1

�vg;
iii) ~N(F�+1)H(F�+1)H (!

v; �v) = 0:

Proof. The Nijenhuis tensor N(XH ; Y H) for the horizontal lift of F �+1 is given by
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i)

~N(F�+1)H(F�+1)H
�
XH ; Y H

�
= [

�
F �+1

�H
XH ;

�
F �+1

�H
Y H ]�

�
F �+1

�H
[
�
F �+1

�H
XH ; Y H ]

�
�
F �+1

�H
[XH ;

�
F �+1

�H
Y H ] +

�
F �+1

�H �
F �+1

�H �
XH ; Y H

�
= �4f

�
F ��1X + F ��1Y

�H � R �F ��1X;F ��1Y �
�
�
F ��1

�H
(
�
F ��1X;Y

�H
+ R

�
F ��1X;Y

�
)

�
�
F ��1

�H
(
�
X;F ��1Y

�H
+ R

�
X;F ��1Y

�
)

+(
�
F ��1

�2
[X;Y ])H + R (X;Y )

�
F ��1

�2g
= �4f(NF��1F��1 (X;Y ))

H
+ fR

�
F ��1X;F ��1Y

�
�R

�
F ��1X;Y

�
F ��1 �R

�
X;F ��1Y

�
F ��1 +R (X;Y )

�
F ��1

�2gg:
Let us suppose that the curvature tensor R of r satis�es

R
�
F ��1X;F ��1Y

�
�R

�
F ��1X;Y

�
F ��1�R

�
X;F ��1Y

�
F ��1+R (X;Y )

�
F ��1

�2
= 0

and the Nijenhuis tensor of the F ��1 is zero. So, we get

~N(F�+1)H(F�+1)H
�
XH ; Y H

�
= 0:

ii)

~N(F�+1)H(F�+1)H
�
XH ; !v

�
= [

�
F �+1

�H
XH ;

�
F �+1

�H
!V ]�

�
F �+1

�H
[
�
F �+1

�H
XH ; !v]

�
�
F �+1

�H
[XH ;

�
F �+1

�H
!v] +

�
F �+1

�H �
F �+1

�H �
XH ; !v

�
= �4f[

�
F ��1X

�H
+
�
! � F ��1

�v
]�
�
F ��1

�H
[
�
F ��1X

�H
; !v]

�
�
F ��1

�
[XH ;

�
! � F ��1

�v
] + (

�
F ��1

�2
)H (rX!)vg

= �4f
�
rF��1X

�
! � F ��1

��v � �(rF��1X!)F
��1�v

�
��
rX

�
! � F ��1

��
F ��1

�v
+ ((rX!)

�
F ��1

�2
)vg

= �4f
�
!
�
rF��1XF

��1��v � ��! �rXF ��1��F ��1�vg:
We now suppose rF ��1 = 0, then we see ~N(F�+1)H(F�+1)H

�
XH ; !v

�
= 0.

iii)

~N(F�+1)(F�+1) (!
v; �v)

=
��
F �+1

�
!v; (F �+1)�v

�
�
�
F �+1

� �
(F �+1)!v; �v

�
�
�
F �+1

� �
!v;
�
F �+1

�
�v
�
+
�
F �+1

� �
F �+1

�
[!v; �v]

= �4f[
�
! � F ��1

�v
;
�
� � F ��1

�v
]� F ��1[

�
! � F ��1

�v
; �v]
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�
�
F ��1

�
[!v;

�
� � F ��1

�v
] +
�
F ��1

�2
[!v; �v] = 0:

Because [!v; �v] = 0 and ! � F ��1 2 =01(Mn) on T �(Mn), the Nijenhuis tensor
~N(F�+1)H ;(F�+1)H (!

v; �v) of the horizontal lift F �+1 vanishes. �

Proposition 14. Let (F �+1)H be a tensor �eld of type (1; 1) on T �(Mn). If
the Tachibana operator �(F�+1)H applied to vector and covector �elds according to
horizontal lifts of F �+1 de�ned by (20) on T �(Mn), then we get the following results.

i) �(F�+1)HXHY H = �2f�((LY F ��1)X)H � (pR(Y; F ��1X))v

+((pR(Y;X))F ��1)vg;

ii) �(F�+1)HXH!v = �2f(rF��1X!)
v � ((rX!) � F ��1)vg;

iii) �(F�+1)H!VX
H = ��2(! � (rXF ��1))v;

iv) �(F�+1)H!V �
v = 0;

where horizontal lifts XH ; Y H 2 =10(T �(Mn)) of X;Y 2 =10(Mn) and the vertical
lift !v; �v 2 =10(T �(Mn)) of !; � 2 =01(Mn) are given, respectively.

Proof. i)

�(F�+1)HXHY H = �(LY H (F �+1)H)XH

= �LY H (F �+1)HXH + (F �+1)HLY HXH

= �2f�((LY F ��1)X)H � (pR(Y; F ��1X))v

+((pR(Y;X))F ��1)vg
ii)

�(F�+1)HXH!v = �(L!V (F �+1)H)XH

= �L!V (F �+1)HXH + (F �+1)HL!VX
H

= ��2L!V (F ��1X)H � �2(F ��1)H(rX!)v

= �2f(rF��1X!)
V � ((rX!) � F ��1)V g;

iii)

�(F�+1)H!VX
H = �(LXH (F �+1)H)!v

= ��2(rX(! � F ��1))v + �2((rX!) � F ��1)v

= ��2(! � (rXF ��1))v

iv)

�(F�+1)H!V �
v = �(L�V (F �+1)H)!v
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= �L�V (F �+1)H!v + (F �+1)HL�V !v

= 0

�

Proposition 15. The horizontal lift Y H is an holomor�c vector �eld with respect
to the structure

�
F �+1

�H � �2 �F ��1�H = 0; If LY F ��1 = 0 and R �Y; F ��1X� =
�R (Y;X)F ��1:

Proof. i)

(LY H

�
F �+1

�H
)XH = LY H

�
F �+1

�H
XH �

�
F �+1

�H
LY HXH

= �2(
�
Y; F ��1X

�H
+ R

�
Y; F ��1X

�
)

��2(
�
F ��1 [Y;X]

�H
+ �R (Y;X)F ��1)

= �2f
��
LY F

��1�X�H + fR �Y; F ��1X�
�R (Y;X)F ��1gg

ii)

(LXH

�
F �+1

�H
)!v = LXH

�
F �+1

�H
!v �

�
F �+1

�H
LXH!v

= �2
�
rX

�
! � F ��1

��v � �2 �(rX!)F ��1�v
= �2f

�
rX

�
! � F ��1

��v � �(rX!)F ��1�vg
�

Theorem 16. Let (T �(Mn);S g) be the cotangent bundle equipped with Sasakian
metric Sg and a tensor �eld (F �+1) of type (1; 1) de�ned by (1). Sasakian metric
Sg is pure with respect to (F �+1)H if F ��1 = �2I. (I=Identity tensor �eld of type
(1; 1)):

Proof. We put

S( ~X; ~Y ) =S g((F �+1)H ~X; ~Y )�S g( ~X; (F �+1)H ~Y ):
If S( ~X; ~Y ) = 0; for all vector �elds ~X and ~Y which are of the form !v; �v or

XH ; Y H ; then S = 0: By virtue of (F �+1)H � �2(F ��1)H = 0 and (26),(27), (28),
we get
i)

S (!v; �v) = Sg(
�
F �+1

�H
!v; �v)�S g(!v;

�
F �+1

�H
�v)

= �2fSg(
�
! � F ��1

�v
; �v)�S g(!v;

�
� � F ��1

�v
)g

= �2f
�
g�1(

�
! � F ��1

�
; �
�
)v �

�
g�1

�
!;
�
� � F ��1

���vg
ii)

S
�
XH ; �v

�
= Sg(

�
F �+1

�H
XH ; �v)�S g(XH ;

�
F �+1

�H
�v)
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= �2fSg(
�
F ��1X

�H
; �v)�S g(XH ;

�
! � F ��1

�v
)

= 0

iii)

S
�
XH ; Y H

�
= Sg(

�
F �+1

�H
XH ; Y H)�S g(XH ;

�
F �+1

�H
Y H)

= �2fSg(
�
F ��1X

�H
; Y H)�S g(XH ;

�
F ��1Y

�H
)g

= �2f
�
g
��
F ��1X

�
; Y
��v � �g �X; �F ��1Y ���vg

We now suppose F ��1 = �2I, then we get Sg = 0. So, Sg is pure with respect
to (F �+1)H . �

2.5. The structure (F �+1)C��2(F ��1)C = 0 on tangent bundle T (Mn). Let
Mn be an n-dimensional connected di¤erentiable manifold of class C1. Let there
be given in Mn, a (1; 1) tensor �eld F of class C1 satisfying [14,21]

F �+1 � �2F ��1 = 0; (30)

where � is non zero complex number. Also rank (F )

=
1

2

�
rank F �+1 + dim Mn

�
= r (a cons tan t every where on Mn)

Let the operators l� and m� be de�ned as

l�def (F=�)
��1

;m� = I � (F=�)��1 ;

where I denotes the identity operator on Mn. Then the operators I� and m�

applied to the tangent space at a point of the manifold be complementary projection
operators.
Let Fhi be the component of F at A in the coordinate neighbourhood U of M

n.
Then the complete lift FC of F is also a tensor �eld of type (1; 1) in T (Mn) whose
components ~FAB in ��1(U) :Mn �! T (Mn) are given by [25]

FC =

�
Fhi 0
@Fhi Fhi

�
: (31)

Let F;G 2 =11 (Mn) then we have

(FG)
C
= FCGC : (32)

Putting F = G we obtain �
F 2
�C
=
�
FC
�2
: (33)

Putting G = F 2 in (32) and making use of (33) we get�
F 3
�C
=
�
FC
�3
: (34)
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Continuing the above process of replacing G in equation (32) by some higher degree
of F we obtain �

F �+1
�C
=
�
FC
��+1

: (35)
Taking complete lift on both sides of equation (30) we get�

F �+1
�C � �2(F ��1)C = 0 (36)

which in view of the equation (35) gives�
FC
��+1 � �2 �FC���1 = 0: (37)

The complete lift of a F �+1 � �2F ��1 = 0 structure also has F �+1 � �2F ��1 = 0
structure in tangent bundle.

Lemma 17. Let X and Y be any vector �elds on a Riemannian manifold (Mn; g),
we have [25] �

XH ; Y H
�
= [X;Y ]

H � (R (X;Y )u)v ;�
XH ; Y v

�
= (rXY )v ;

[Xv; Y v] = 0;

where R is the Riemannian curvature tensor of g de�ned by

R (X;Y ) = [rX ;rY ]�r[X;Y ]:

In particular, we have the vertical spray uv and the horizontal spray uH on
T (Mn) de�ned by

uV = ui (@i)
v
= ui@i; u

H = ui (@i)
H
= ui�i;

where �i = @i � uj�sji@s: uv is also called the canonical or Liouville vector �eld on
T (Mn).

Theorem 18. The Nijenhuis tensor N(F�+1)C(F�+1)C
�
XC ; Y C

�
of the complete lift

of F �+1 vanishes if the Nijenhuis tensor of the F ��1 is zero.

Proof. In consequence of De�nition 2 the Nijenhuis tensor of
�
F �+1

�C
is given by

N(F�+1)C(F�+1)C
�
XC ; Y C

�
= [

�
F �+1

�C
XC ;

�
F �+1

�C
Y C ]�

�
F �+1

�C
[
�
F �+1

�C
XC ; Y C ]

�
�
F �+1

�C
[XC ;

�
F �+1

�C
Y C ] +

�
F �+1

�C �
F �+1

�C �
XC ; Y C

�
= �4f[

�
F ��1X

�C
;
�
F ��1Y

�C
]�
�
F ��1

�C
[
�
F ��1X

�C
; Y C ]

�
�
F ��1

�C
[XC ;

�
F ��1Y

�C
] +
�
F ��1

�C �
F ��1

�C �
XC ; Y C

�
g

= �4f
�
F ��1X;F ��1Y

�
� F ��1

�
F ��1X;Y

�
�F ��1

�
X;F ��1Y

�
+ F ��1F ��1 [X;Y ]gC

= �4NF��1F��1 (X;Y )
C
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�
Theorem 19. The Nijenhuis tensor N(F�+1)C(F�+1)C

�
XC ; Y V

�
of the complete

lift of F �+1 vanishes if the Nijenhius tensor F ��1 is zero.

Proof.

N(F�+1)C(F�+1)C
�
XC ; Y v

�
= [

�
F �+1

�C
XC ;

�
F �+1

�C
Y v]�

�
F �+1

�C
[
�
F �+1

�C
XC ; Y v]

�
�
F �+1

�C
[XC ;

�
F �+1

�C
Y v] +

�
F �+1

�C �
F �+1

�C �
XC ; Y v

�
= �4f[

�
F ��1X

�C
;
�
F ��1Y

�v
]�
�
F ��1

�C
[
�
F ��1X

�C
; Y v]

�
�
F ��1

�C
[XC ;

�
F ��1Y

�v
] +
�
F ��1

�C �
F ��1

�C
[X;Y ]

vg
= �4f

�
F ��1X;F ��1Y

�v � �F ��1 �F ��1X;Y ��v
�
�
F ��1

�
X;F ��1Y

��v � �F ��1F ��1 [X;Y ]�vg
= �4NF��1F��1 (X;Y )

v

�
Theorem 20. The Nijenhuis tensor N(F�+1)C(F�+1)C (X

v; Y v) of the complete lift
of F �+1 vanishes.

Proof. Because [Xv; Y v] = 0 and F ��1X 2 =10(Mn), easily we get the Nijenhuis
tensor N(F�+1)C(F�+1)C (X

v; Y v) = 0. �

2.6. The purity conditions of Sasakian metric with respect to (F �+1)C on
T (Mn).

De�nition 21. The Sasaki metric Sg is a (positive de�nite) Riemannian metric
on the tangent bundle T (Mn) which is derived from the given Riemannian metric
on M as follows:

Sg
�
XH ; Y H

�
= g (X;Y ) ; (38)

Sg
�
XH ; Y v

�
= Sg

�
Xv; Y H

�
= 0;

Sg (Xv; Y v) = g (X;Y )

for all X;Y 2 =10 (Mn) [20].

Theorem 22. The Sasaki metric Sg is pure with respect to
�
F �+1

�C
if rF ��1 = 0

and F ��1 = �2I , where I=¬dentity tensor �eld of type (1; 1).

Proof. S( eX; eY ) =S g(�F �+1�C eX; eY ) �S g( eX; �F �+1�C eY ) if S( eX; eY ) = 0 for all
vector �elds eX and eY which are of the form Xv; Y v or XH ; Y H then S = 0.
i)

S (Xv; Y v) = Sg(
�
F �+1

�C
Xv; Y v)�S g(Xv;

�
F �+1

�C
Y v)
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= �2fSg(
�
F ��1X

�v
; Y v)�S g(Xv;

�
F ��1Y

�v
)g

= �2f
�
g
�
F ��1X;Y

��v � �g �X;F ��1Y ��vg
ii)

S
�
Xv; Y H

�
= Sg(

�
F �+1

�C
Xv; Y H)�S g(Xv;

�
F �+1

�C
Y H)

= ��2 Sg(Xv;
�
F ��1Y

�H
+
�
rF ��1

�
Y H)

= ��2 Sg(Xv;
���
rF ��1

�
u
�
Y
�v
)

= ��2( g
�
X;
��
rF ��1

�
u
�
Y
�v
)

iii)

S
�
XH ; Y H

�
= Sg(

�
F �+1

�C
XH ; Y H)�S g(XH ;

�
F �+1

�C
Y H)

= �2 Sg(
�
F ��1

�C
XH ; Y H)� �2 Sg(XH ;

�
F ��1

�C
Y H)

= �2 Sg(
�
F ��1X

�H
+
�
rF ��1

�
XH ; Y H)

��2 Sg(XH ;
�
F ��1Y

�H
+
�
rF ��1

�
Y H)

= �2fg
��
F ��1X

�
; Y
�v � g �X; �F ��1Y ��vg

We now suppose rF ��1 = 0 and F ��1 = �2I, then we get Sg = 0. So, Sg is
pure with respect to (F �+1)C . �

Theorem 23. Let (F �+1)C be a tensor �eld of type (1; 1) on T (Mn). If the
Tachibana operator �(F�+1)C applied to vector �elds according to complete lifts of
F �+1 de�ned by (36) on T (Mn), then we get the following results.

i) �(F�+1)CXCY C = ��2
��
LY F

��1�X�C ;
ii) �(F�+1)CXCY v = ��2

��
LY F

��1�X�v ;
iii) �(F�+1)CXV Y C = ��2

��
LY F

��1�X�v ;
iv) �(F�+1)CXvY v = 0;

where X;Y 2 =10 (M), the complete lifts XC ; Y C 2 =10 (T (M)) and the vertical
lift Xv; Y v 2 =10 (T (M)).

Proof. i)

�(F�+1)CXCY C = �(LY C

�
F �+1

�C
)XC

= �2f�LY C

�
F ��1X

�C
+
�
F ��1

�C
LY CXCg

= ��2
��
LY F

��1�X�C
ii)

�(F�+1)CXCY v = �(LY V

�
F �+1

�C
)XC
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= �LY V

�
F �+1

�C
XC +

�
F �+1

�C
LY VXC

= �2f�LY V

�
F ��1X

�C
+
�
F ��1

�C
LY VXCg

= ��2
��
LY F

��1�X�v
iii)

�(F�+1)CXvY C = �(LY C

�
F �+1

�C
)Xv

= �LY C

�
F �+1

�C
Xv +

�
F �+1

�C
LY CXv

= �2f�LY C

�
F ��1X

�v
+
�
F ��1

�C
LY CXvg

= ��2
��
LY F

��1�X�v
iv)

�(F�+1)CXvY v = �(LY V

�
F �+1

�C
)Xv

= �LY V

�
F �+1

�C
Xv +

�
F �+1

�C
LY VXv

= 0

�

Theorem 24. The complete lift Y C is an holomor�c vector �eld with respect to
the structure

�
F �+1

�C � �2 �F ��1�C = 0; If LY F ��1 = 0.
Proof. i)

(LY C

�
F �+1

�C
)XC = LY C

�
F �+1

�C
XC �

�
F �+1

�C
LY CXC

= �2fLY C

�
F ��1X

�C � �F ��1�C LY CXCg

= �2
��
LY F

��1�X�C
ii)

(LY C

�
F �+1

�C
)Xv = LY C

�
F �+1

�C
Xv �

�
F �+1

�C
LY CXv

= �2fLY C

�
F ��1X

�v � �F ��1�C LY CXvg
= �2

��
LY F

��1�X�v
�

2.7. The structure
�
F �+1

�H � �2 �F ��1�H = 0 on tangent bundle T (Mn).
Let Fhi be the component of F at A in the coordinate neighbourhood U of Mn.
Then the horizontal lift FH of F is also a tensor �eld of type (1; 1) in T (Mn) whose
components ~FAB in ��1(U) :Mn �! T (Mn) are given by [25]

FH = FC � (rF ) =
�

Fhi 0
��ht F ti + �tiFht Fhi

�
: (39)
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Let F , G be two tensor �elds of type (1; 1) on the manifold M . If FH denotes the
horizontal lift of F , we have

(FG)H = FHGH (40)

Taking F and G identical, we get

(FH)2 = (F 2)H (41)

Multiplying both sides by FH and making use of the same (41), we get

(FH)3 = (F 3)H :

Thus it follows that
(FH)�+1 = (F �+1)H (42)

Taking horizontal lift on both sides of equation F �+1 � �2F ��1 = 0 we get
(F �+1)H � �2(F ��1)H = 0 (43)

In view of (42), we can write

(FH)�+1 � �2
�
FH
���1

= 0. (44)

Thus the horizontal lift of F �+1��2F ��1 = 0 structure also has F �+1��2F ��1 = 0
structure in tangent bundle T (Mn).

Theorem 25. The Nijenhuis tensor N(F�+1)H(F�+1)H
�
XH ; Y H

�
of the horizontal

lift of F �+1 vanishes if the Nijenhuis tensor of the F ��1 is zero and

f�(R̂
�
F ��1X;F ��1Y

�
u) + (F ��1(R̂

�
F ��1X;Y

�
u))

+
�
F ��1

�
R
�
X;F ��1Y

�
u
��
� (
�
F ��1

�2
(R̂ (X;Y )u))gv = 0

Proof.

N(F�+1)H(F�+1)H
�
XH ; Y H

�
= [

�
F �+1

�H
XH ;

�
F �+1

�H
Y H ]

�
�
F �+1

�H
[
�
F �+1

�H
XH ; Y H ]

�
�
F �+1

�H
[XH ;

�
F �+1

�H
Y H ]

+
�
F �+1

�H �
F �+1

�H �
XH ; Y H

�
= �4f(

�
F ��1X;F ��1Y

�
�
�
F ��1

� �
F ��1X;Y

�
�
�
F ��1

� �
X;F ��1Y

�
�
�
F ��1

� �
F ��1

�
[X;Y ])H

�(R̂
�
F ��1X;F ��1Y

�
u)v + (F ��1(R̂

�
F ��1X;Y

�
u))v

+(F ��1(R̂
�
X;F ��1Y

�
u))v � (

�
F ��1

�2
(R̂ (X;Y ))u)vg

= �4f(NF��1F��1 (X;Y ))
H � (R̂

�
F ��1X;F ��1Y

�
u)v
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+(F ��1(R̂
�
F ��1X;Y

�
u))v + (F ��1(R̂

�
X;F ��1Y

�
u))v

�(
�
F ��1

�2
(R̂ (X;Y )u))vg:

�
IfNF��1F��1 (X;Y ) = 0 and f�R̂

�
F ��1X;F ��1Y

�
u+(F ��1(R̂

�
F ��1X;Y

�
u))+

(F ��1(R̂
�
X;F ��1Y

�
u))� (

�
F ��1

�2
(R̂ (X;Y )u))gv = 0;

then we get N(F�+1)H(F�+1)H
�
XH ; Y H

�
= 0. The theorem is proved.

Where R̂ denotes the curvature tensor of the a¢ ne connection r̂ de�ned by r̂XY =
rYX + [X;Y ] (see [25] p.88-89).

Theorem 26. The Nijenhuis tensor N(F�+1)H(F�+1)H
�
XH ; Y v

�
of the horizontal

lift of F �+1 vanishes if the Nijenhuis tensor of the F ��1 is zero and rF ��1 = 0.
Proof.

N(F�+1)H(F�+1)H
�
XH ; Y V

�
= [

�
F �+1

�H
XH ;

�
F �+1

�H
Y v]

�
�
F �+1

�H
[
�
F �+1

�H
XH ; Y v]

�
�
F �+1

�H
[XH ;

�
F �+1

�H
Y v]

+
�
F �+1

�H �
F �+1

�H �
XH ; Y v

�
= �4f

�
F ��1X;F ��1Y

�v � �F ��1 �F ��1X;Y ��v
�
�
F ��1

�
X;F ��1Y

��v
+ (
�
F ��1

�2
[X;Y ])v

+
�
rF��1Y F

��1X
�v � �F ��1 �rY F ��1X��v

�
�
F ��1 (rF��1YX)

�v
+ (
�
F ��1

�2rYX)vg
= �4f(NF��1F��1 (X;Y ))

v
+
�
rF��1Y F

��1�X
�
�
F ��1

��
rY F ��1

�
X
��vg

�
Theorem 27. The Nijenhuis tensor N(F�+1)H(F�+1)H (X

v; Y v) of the horizontal
lift of F �+1 vanishes.

Proof. Because [Xv; Y v] = 0 for X;Y 2 M , we get N(F�+1)H(F�+1)H (X
v; Y v) =

0. �
Theorem 28. The Sasakian metric Sg is pure with respect to

�
F �+1

�H
if F ��1 =

�2I, where I =¬dentity tensor �eld of type (1; 1).

Proof. S( eX; eY ) =S g(�F �+1�H eX; eY ) �S g( eX; �F �+1�H eY ) if S( eX; eY ) = 0 for all
vector �elds eX and eY which are of the form Xv; Y v or XH ; Y H then S = 0.
i)

S (Xv; Y v) = Sg(
�
F �+1

�H
Xv; Y v)�S g(Xv;

�
F �+1

�H
Y v)
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= �2fSg(
�
F ��1X

�v
; Y v)�S g(Xv;

�
F ��1Y

�v
)g

= �2f
�
g
�
F ��1X;Y

��v � �g �X;F ��1Y ��vg
ii)

S
�
Xv; Y H

�
= Sg(

�
F �+1

�H
Xv; Y H)�S g(Xv;

�
F �+1

�H
Y H)

= ��2 Sg(Xv;
�
F ��1Y

�H
)

= 0

iii)

S
�
XH ; Y H

�
= Sg(

�
F �+1

�H
XH ; Y H)�S g(XH ;

�
F �+1

�H
Y H)

= �2 f(Sg
�
F ��1X

�H
; Y H)�S g(XH ;

�
F ��1Y

�H
)g

= �2 f
�
g
�
F ��1X

�
; Y
�v � (g(X; �F ��1Y �H))vg

�

Theorem 29. Let (F �+1)H be a tensor �eld of type (1; 1) on T (Mn). If the
Tachibana operator �(F�+1)H applied to vector �elds according to horizontal lifts of
F �+1 de�ned by (43) on T (Mn), then we get the following results.

i) �(F�+1)HXHY H = ��2f�
��
LY F

��1�X�H + (R̂ �Y; F ��1X�u)v
�(F ��1(R̂ (Y;X)u))vg;

ii) �(F�+1)HXHY v = �2f�
��
LY F

��1�X�v + ��rY F ��1�X�vg;
iii) �(F�+1)HXvY H = �2f�

��
LY F

��1�X�v � (rF��1XY )
v

+
�
F ��1 (rXY )

�vg;
iv) �(F�+1)HXvY v = 0;

where X;Y 2 =10 (M), the horizontal lifts XH ; Y H 2 =10 (T (Mn)) and the ver-
tical lift Xv; Y v 2 =10 (T (Mn))

Proof. i)

�(F�+1)HXHY H = �(LY H

�
F �+1

�H
)XH

= ��2
�
Y; F ��1X

�H
+ �2R̂

�
Y; F ��1X

�
+�2

�
F ��1 [Y;X]

�H � �2 �F ��1�H (R̂ (Y;X)u)v
= ��2f�

��
LY F

��1�X�H + (R̂ �Y; F ��1X�u)v
�(F ��1(R̂ (Y;X)u))vg

ii)

�(F�+1)HXHY V = �(LY V

�
F �+1

�H
)XH
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= ��2
�
Y; F ��1X

�V
+ �2

�
rY F ��1X

�V
+�2

�
F ��1 [Y;X]

�v � �2 �F ��1 (rYX)�v
= �2f�

��
LY F

��1�X�v + ��rY F ��1�X�vg
iii)

�(F�+1)HXV Y H = �(LY H

�
F �+1

�H
)XV

= �2
�
Y; F ��1X

�v � �2 (rF��1XY )
v

+�2
�
F ��1 [Y;X]

�H
+ �2

�
F ��1 (rXY )

�v
= �2f�

��
LY F

��1�X�v � (rF��1XY )
v
+
�
F ��1 (rXY )

�vg
iv)

�(F�+1)HXV Y v = �(LY V

�
F �+1

�H
)Xv

= ��2LY v

�
F ��1X

�v
+ �2

�
F ��1

�H
LY vXv

= 0

�

Theorem 30. The horizontal lift Y H is an holomor�c vector �eld with respect to�
F �+1

�H
, if If LY F ��1 = 0 and F ��1 = �

2I for Y 2M .

Proof. i)

(LY H

�
F �+1

�H
)XH = LY H

�
F �+1

�H
XH �

�
F �+1

�H
LY HXH

= �2
�
Y; F ��1X

�H � �2R̂ �Y; F ��1X�
��2

�
F ��1 [Y;X]

�H
+ �2

�
F ��1

�H
(R̂ (Y;X)u)v

= �2f
��
LY F

��1�X�H � (R̂ �Y; F ��1X�u)v
+(F ��1(R̂ (Y;X)u))vg

ii)

(LY H

�
F �+1

�H
)Xv = LY H

�
F �+1X

�v � �F �+1�H LY HXv

= �2
�
Y; F ��1X

�v � �2 (rF��1XY )
v � �2

�
F ��1 [Y;X]

�v
��2

�
F ��1 (rXY )

�v
= �2f

��
LY F

��1�X�H + (rF��1XY )
v �

�
F ��1 (rXY )

�vg
�
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