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1. Introduction 

As a mixture of solid and liquid particles, particulate 

matter (PM) may be originated from natural sources such 

as windblown dust, anthropogenic sources like 

agricultural and industrial activities, fossil fuel 

combustion. Since PMs are of vital significance in 

respect to air quality phenomenon, estimation and 

forecast of it enables decision-makers to take precautions. 

Bayesian Maximum Entropy (BME) [1, 2, 3, 4, 5, 6] is 

a nonlinear geostatistical approach. In this method, 

Bayesian conditionalization and entropy maximization 

are combined to generate spatiotemporal mapping. When 

compared to other methods, it is seen that the confidence 

levels provided by BME are narrow. Moreover, error 

variances are used as performance criteria of results [7]. 

BME is the only approach which uses not only raw 

data but also auxiliary data (soft data) in a spatiotemporal 

mapping. In other words, different kinds of information 

are merged [8]. BME realizes gaining, interpreting and 

processing of information in three stages. 

BME is employed for estimation and prediction of 

different kinds of variables, such as ozone [9], soil 

moisture [10], rainfall [11], soil salinity [12], sea surface 

temperature [13] and wind [14]. 

Although distribution of PM is valuable individually 

for air quality management purposes, it is also associated 

with climatological conditions, agricultural activities, 

industries, residential heating types, topographical 

features and populations. There are many PM studies in 

Turkey. Some inventory and estimation studies of PM10 

can be seen below. Alyuz and Alp [15] prepared an 

emission inventory of primary air pollutants for Turkey 

investigating in 7 main categories and 53 sub-sectors. It 

was stated that the calculated PM emission value for the 

year 2010 was 48.853 t and PM emissions were mainly 

emitted from the mineral, metallurgical, pulp and paper 

industries. Furthermore, Saharan dust was the most 

significant source of PM in Turkey [16]. Güler ve İşçi 

[17] used a Fuzzy C-Auto Regressive Model (FCARM) 

and Autoregressive Model (AR) to reflect the regional 

behavior of weekly PM10 concentrations. Results showed 

that the former model provided better prediction 

accuracy. Ozel ve Cakmakyapan [18] developed a new 

approach which was based on gamma-Poisson process in 
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order to predict PM10 concentrations in Central Anatolia 

Region by using PM10 data from 24 air quality 

monitoring stations for the years between 2007 and 2013. 

In this study, daily average PM10 concentration was found 

as 148 𝜇g/m3. Im et al. [19] investigated high winter-time 

PM10 values using a high resolution the WRF/CMAQ 

(Weather and Forecasting Model/Community Modelling 

Air Quality Model) mesoscale model system. Calculated 

PM10 levels by the model underestimated the 

observations with an average of 10% at the sampling 

station. Şahin et al. [20] proposed the cellular neural 

network (CNN) method in order to modeling air 

pollutants such as PM10 concentrations in İstanbul. 

Meteorological parameters were used for model inputs. 

Results of the CNN were compared to statistical 

persistence method (PER) results and it was seen that the 

CNN and PER outputs were correlated with observations 

via statistical performance indices. Results indicated that 

the CNN was more accurate than the PER. Karaca [21] 

developed a classification method in order to categorize 

air zones. Geographic Information System (GIS)-based 

interpolation method and statistical analysis were used in 

order to generate PM10 pollution profiles for Turkey. 

There are also many international studies about 

modeling, analyzing and forecasting of PM10 values in 

the literature. For instance, chemistry-transport models 

(CTMs) [22, 23], ensemble models with bias-correction 

techniques [24] and with machine learning algorithms 

[25], stepwise regression and wavelet analysis [26], 

universal kriging, land use regression method [27] were 

implemented in order to forecast PM10 levels. Other 

studies which used BME in prediction are given below. 

Christakos and Serre [28] analyzed PM distributions in 

North Carolina by the BME mapping method. Because 

one of the most significant phenomena was assessing the 

uncertainty for each of space/time pollution maps in a 

stochastic pollutant analysis, standard deviations of BME 

errors were used as a measure of uncertainty. Besides, 

standard deviations were zero at monitoring stations 

while they took higher values at regions away from these 

stations [28]. Results of the study indicated that the PM10 

maps showed clear variability. Another PM study was 

realized by Christakos and Serre [29]. They modeled 

space/time distribution of PM10 for a six-year period and 

optimized its monitoring network for Thailand. In the 

north of the city, there was a district seasonal fluctuation 

of PM10 values between December and February where 

this kind of fluctuation in the South Thailand was not 

seen. Residential exposure of ambient ozone and PM10 

values were estimated using BME method at multiple 

time scales by Yu et al. [30]. The same study was carried 

out with simple kriging and all results were compared. 

According to results, the usage of soft data enhanced the 

accuracy of the forecast. Fernando et al. [31] used a 

stochastic NN model based on neural network called 

EnviNNet and CMAQ to predict PM in Phoenix. It was 

found that EnviNNet predicted PM10 concentrations 

better than the CMAQ. Akita et al. [32] proposed a 

moving window-BME (MWBME) method in order to 

forecast PM2.5 concentrations. In the study, the results 

were compared to the stationary kriging (SK) and moving 

window kriging (MWK). It was seen that MWBME had a 

good capability to catch the highest correlation between 

observations and forecast results. PM2.5 values in United 

States were estimated using a Land Use Regression 

Model (LUR) and BME by Beckerman et al. [33] and it 

was seen that the hybrid model gave more accurate 

results than each of other models. 

In this study, daily average PM10 data from 145 air 

quality monitoring stations of Ministry of Environment 

and Urbanization of Turkey have been used. Either 

annual or seasonal estimations have been realized. Zero 

and constant-local mean (simple and ordinary kriging) 

are chosen in the last stage of BME. 

In all estimations, Bayesian Maximum Entropy 

Graphical Users Interface (BMEGUI) has been used [see 

34]. 

 

2. Materials and Methods 

2.1 Materials 

2.1.1 Study site description 

Turkey is a country between 260 − 450𝐸  meridians 

and 360 − 420𝑁 parallels as seen in Figure 1 (a) and it 

covers a 783.562 km2 area. However, maximum and 

minimum estimation points are taken as 450 for the east, 

250  for the west, 42.10  for the north and 360  for the 

south to in order to include all stations. For instance, the 

spatial location of Çanakkale Gökçeada station is 

between 25.910 𝑊  and 40.190 𝑆 . Figure 1 (b) shows 

regions of Turkey.  
 

2.1.2. Data description 
 

In this study, the data between the years 2012 and 

2016 have been utilized. Means and standard deviations 

of the data with Gaussian distribution were used as soft 

data. The data was taken from the web site of Turkey 

Ministry of Environment and Urban Planning for each 

station. 

Both annual and seasonal estimations have been 

realized. In the annual estimation, 0.250, 0.50, 10 and 1.50 

are used as spatial lags where ne week, two weeks and 

one month are taken as temporal lags. Zero and constant-

local mean are chosen as kriging methods. Table 1 shows 

the study matrix for the annual prediction. 

Map of stations are given in Figure 2 (a) and the data 

points after the kriging of BME approach is given in 

Figure 2 (b).  
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Figure 1. (a) Turkey latitude and longitude map (b) Turkey 

regions map 

Table 1. Study matrix for the annual prediction 
 

Spatial Lag Temporal Lag Local Mean 

0.250 

0.50 

10 

1.50 

1 week 

2 weeks 

1 month 

Zero (Simple kriging) 

Constant (Ordinary 

kriging) 

 

 
Figure 2. (a) The stations of the data (b) The data points after 

the kriging of BME approach 

2.2 Method 

2.2.1 The Bayesian Maximum Entropy (BME) Method 

Space-time interpolation techniques do not consider 

secondary variables related to primary variables via 

empirical law while they explain raw data with cross-

correlation between primary and secondary variables. 

However, empirical laws and soft data can be regarded 

for by BME [11]. This is a special property of BME.  

Bayesian Maximum Entropy (BME) [1, 2, 3, 4, 5, 6] is 

a nonlinear geostatistical approach. It realizes 

spatiotemporal analysis and uses spatiotemporal domains. 

During processing of the data, physical rules, 

experiences, theories, high order space/time moments, 

outputs of models etc. are incorporated to the process.  

In modern geostatistics, data sets  consist of two 

basis categories as seen below [35].  
 

                      (1) 
 

where  and  show hard and soft data, 

respectively. In relation to hard data, specificatory 

knowledge for the points  is  
 

                               (2) 
 

Specificatory knowledge base (  contains single-valued 

measurements  in space/time. Regarding 

to the soft data, the specificatory knowledge for the 

remaining points  is given as 
 

                            (3) 
 

Figure 3 shows a framework of BME approach. 

A spatiotemporal analysis begins with general 

knowledge base  . At the prior stage, the joint 

probability density function  is calculated via 

general knowledge and maximum entropy theory is 

applied [36].  

At the meta-prior stage, hard and soft data and 

specificatory knowledge base 𝑆 are considered.  

At the posterior stage,  and are integrated to the 

mapping process [35]. 

 
Figure 3. A conceptual framework of the BME approach. 



 

 

 

BME posterior probability density function  is 

as follows [4, 35] 
 

 

   (4) 
 

 

where  is available all physical knowledge and 

 is a normalization parameter. 

In this study, because it minimizes mean squared 

estimation errors, the conditional mean estimation is 

used.  

As a rule, uncertainty measurements are given with 

variances of forecast errors [37, 38]. The variance of 

BME posterior pdf can be taken as a measure of a 

forecast error. Because this value is equivalent to the 

variance of a forecast error , it is used as 

performance criteria. 

For Gaussian posterior pdf, the probability of  

which changes between the interval 

 is 95% [7]. 

3. Results  

Figure 4 a to f shows histograms and summary 

statistics for daily mean PM10 concentrations. From Figure 

4(a) to 4(f), it is easily seen that daily mean PM10 

concentrations are right-skewed series, namely; there is a 

density of low PM10 concentrations. 

3.1. Annual prediction of PM10 
 

Regarding the study matrix, PM10 concentrations were 

predicted and the best results are obtained with a 1.50-

spatial range and 1-week-temporal range and constant 

local mean. In Figure 5 (a) and (b), the mean PM10 

concentrations and error variance map can be seen, 

respectively.  

Figure 5. (a) Predicted mean PM10 values map (b) Error 

variance map. 

From Figure 5 (a), the spatial variability can be seen. 

According to the national air quality index, the national 

limit value of PM10 for the year 2017 is 70 g/m3. Even 

though the mean PM10 concentration of Turkey is 

approximately 56 g/m3, it is apparent that there are 

some regions which have PM10 concentrations that are 

beyond the national limit. Especially in the Southeastern 

Anatolia Region, high PM10 concentrations are 

prominent.  The cities with high PM10 concentration are 

Aydın, Afyon, Zonguldak, Kastamonu, Sinop, Adana, 

Samsun, Ordu, Giresun, Şanlıurfa, Diyarbakır, Batman, 

Muş, Siirt, Ağrı, Kars, Hakkâri and Iğdır. Some former 

studies [39, 40, 16, 41] have remarked that usage of the 

fossil fuels for heating is relatively low in Southeastern 

Anatolia Region because winter temperatures in the 

region are not higher than Central and Eastern Anatolia 

Region. PM10 concentrations of the Southeastern Anatolia 

Region increase in spring, summer and autumn seasons 

due to desert dusts transported from North Africa, Arabia 

and Syria. Because this region is close to desert areas, on 

the transition path of mesoscale cyclones and located in 

Western winds zones due to its geographical location, 

desert dusts are the most important source of air 

pollution. Furthermore, the reason of high PM10 

concentrations in the Black Sea Region may be explained 

with dry atmospheric conditions and thick inversion level 

near the ground surface of the Marmara Region as 

specified by Baltaci [41]. In addition, a thick dust layer 

transported from Libya and transportation of sea spray 

causes high PM10 concentrations in some cities in the 

Aegean Region [41, 42].  

From Figure 5 (b), it can be said that error variance 

values of the areas which have higher PM10 

concentrations are prominently low when compared to 

other areas with higher error variances. It is thought that, 

the reason of high error variance values may be due to the 

lack of air quality monitoring stations and/or available 

data in those areas. 

 

3.2. Seasonal prediction of PM10 

Seasonal PM10 concentrations were predicted for all 

seasons, and best results were obtained with a 10-spatial 

range and 1-week-temporal range and for constant local 

mean for each of them. Figure 6 shows predicted mean 

PM10 concentration maps and error variance maps for 

spring, summer, autumn and winter seasons. 

 

Figure 4. Histograms of daily mean PM10 concentrations (a) 

for all years (b) for spring seasons (c) for summer seasons (d) 

for autumn seasons (e) for winter seasons (f) Summary statistics 
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Figure 5. (a) Predicted mean PM10 values map (b) Error 

variance map 
 

(a)  

 

(b)  

 
(c)  

 

(d)  

 
(e)  

 

(f)  

 

(g)  

 

(h)  

 
Figure 6. (a) Predicted mean PM10 values map for spring 

seasons (b) Error variance map for spring seasons (c) Predicted 

mean PM10 values map for summer seasons (d) Error variance 

map for summer seasons (e) Predicted mean PM10 values map 

for autumn seasons (f) Error variance map for autumn seasons 

(g) Predicted mean PM10 values map for winter seasons (h) 

Error variance map for winter seasons 

For spring seasons, it can be said that average PM10 

concentrations are between 24.1 g/m3 and 75.3 g/m3 as 

seen in the Figure 4 (f). The stations which have PM10 

concentrations more than 70 g/m3 are Muş, Kütahya, 

Tekirdağ-Merkez, Bitlis, Yalova, Manisa, Denizli-

Bayramyeri, Kırklareli, İstanbul-Aksaray, Kocaeli-

Kandıra and Bursa. As seen from Figure 6 (a), Eastern 

and Central Black Sea Region are associated well with 

PM10 concentrations whereas there are high PM10 

concentrations in Marmara, Aegean and Southeastern 

Regions. Besides, the cities which have the lowest-PM10 

concentrations are Bingöl, Adana, Tunceli, Erzurum and 

Ardahan.  

For summer seasons, it is determined from the Figure 

4 (f) that average PM10 concentrationsare between 25 

g/m3 and 72.9 g/m3. The stations with PM10 

concentrations larger than 70 g/m3 are Manisa, Muş, 

Siirt, Niğde, Hakkâri, Bayburt, Kayseri-Hürriyet, Mardin, 

Ankara-Cebeci, Trabzon-Meydan, Balıkesir, İzmir, 

Tekirdağ, İstanbul, Denizli, Kocaeli, Karaman, Aksaray, 

Osmaniye, Kahramanmaraş, Gaziantep, Elazığ, Erzincan, 

Diyarbakır, Batman and Iğdır. In Figure 6 (c), it is clearly 

seen that there is a distinctive variability. While relatively 

high PM10 concentrations are appeared in the south and 

central part of the country, the north of the country has 

quite low PM10 concentrations. From this figure, it is 

concluded that nonconsumption of fossil fuels for 

residential heating is a decisive factor in summer seasons 

for most of the northern Turkey. Moreover, effects of 

desert dusts are explicit in the southeastern, eastern 

Anatolia and eastern Mediterranean Regions. In this 

season, the cities with the lowest-PM10 concentrations are 

Kocaeli, Şanlıurfa, Kırklareli, İstanbul and Kırıkkale.  

For autumn seasons, it is seen in the Figure 4 (f), 

average PM10 concentrations change between 28 g/m3 

and 97.6 g/m3. The stations which have PM10 

concentrations above 70 g/m3 are Iğdır, Kayseri-

Hürriyet, Muş, Erzincan, Kahramanmaraş-Elbistan, 

Osmaniye, Siirt, Hatay-Antakya, Batman, Kars-İstasyon 

Mahallesi, İzmir, Manisa, Afyon, Konya, Ankara, 

Karaman, Çankırı, Kastamonu, Niğde, Çorum, Amasya, 

Samsun, Tokat, Sivas, Gaziantep, Sivas, Ordu, 

Adıyaman, Malatya, Elazığ, Trabzon, Bayburt, 

Diyarbakır, Mardin, Ardahan, Ağrı, Hakkari and Van. 

Figure 6 (e) show that there are rather high PM10 

concentrations are common in Turkey except Marmara 

Region. In this season, the cities with the lowest-PM10 

concentrations are Çanakkale, İstanbul, Kocaeli, Yalova 

and Tekirdağ.  

For winter seasons, average PM10 concentrations 

change between 28 g/m3 and 95 g/m3 as seen in the 

Figure 4 (f). The stations which have PM10 concentrations 
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above 70 g/m3 are Kütahya, Iğdır, Ankara-Kayaş, 

Manisa-Soma, Bursa, Bursa-Beyazıt Caddesi, Erzurum, 

Edirne-Keşan, Bursa-Kestel, Muğla-Musluhittin, Edirne, 

İstanbul, Denizli, Uşak, Kocaeli, Iğdır, Eskişehir, Afyon, 

Isparta, Antalya, Düzce, Zonguldak, Karabük, Ankara, 

Niğde, Adana, Kayseri, Hatay, Kahramanmaraş, 

Gaziantep, Trabzon, Muş, Ağrı and Hakkâri. From Figure 

6 (g), it can be concluded that desert dusts are the most 

important reason for large PM10 concentrations. Other 

than the abovementioned parts of Turkey, PM10 levels are 

low in winters. Furthermore, it can be said that the areas 

which have higher PM10 concentrations are generally 

industrial zones.  

4. Conclusion 

To decrease environmental pollution and public health 

risks, spatiotemporal mapping of air pollutants is 

necessary. From this point of view, the first and only 

spatiotemporal PM10 study including all regions of 

Turkey has been realized. 

All variables like climatological conditions, 

agricultural activities, industries, residential heating 

types, topographical features, populations should be 

considered when interpreting PM10 levels. According to 

annual prediction results, Southeastern Anatolia Region 

has high PM10 concentrations. Closeness to deserts, 

western wind zones, being on the transition path of 

mesoscale cyclones can be regarded as reasons of high 

PM10 concentrations. Moreover, the eastern and middle 

part of the Black Sea Region, northeastern part of Central 

Anatolia, Aegean Region and eastern part of Turkey are 

high-PM10 zones.  

According to seasonal PM10 maps, there are high PM10 

concentrations especially in Summer and Autumn 

seasons. The highest PM10 concentrations are realized in 

Autumn seasons. Apart from major part of the Marmara 

Region, almost all regions have high PM10 concentrations 

in autumns. This situation can be explained by either the 

season is the desert dusts effective season or residential 

heating begins. Besides, the reason of relatively clear 

appearance of the Marmara Region may be due to wind 

effects. The PM10 prediction map of Summer seasons 

indicates high PM10 concentrations in the southwestern, 

eastern and northeastern part of Turkey and inner Aegean 

Region. The increase of PM10 in Autumn and Summer 

seasons may be associated from agricultural activities in 

addition to lack of rain and desert dusts. Also, these 

regions are less covered by forests pretending like natural 

dust filters than Black Sea Region as stated by Karaca 

[21].  

Although Winter seasons have generally the most 

polluted air due to traffic-based emissions and residential 

heating, Turkey shows a different PM10 profile. Some 

regions of the Marmara, inner Aegean, Eastern and 

Central Anatolia Regions have high PM10 concentrations. 

The sources of this pollution may be industries, heating, 

traffic and climatic conditions. In addition, the Marmara, 

Aegean and Southeastern Regions have high PM10 

concentrations in Spring seasons. 

When viewed error variance maps, error variance 

values are higher in Autumn and Winter seasons than in 

Spring and Summer seasons since Autumn and Winter 

seasons have higher fluctuations and variability of PM10 

concentrations and this situation may cause high error 

variance values. 

One of the most important difficulties faced by the 

study is the lack of available data. The problems of 

missing or unreasonable data should be solved and the 

number of mobile stations should be increased.  

For the future studies, it is aimed to realize multi-point 

mappings of PM10 and generating other air pollutants’ 

maps. Furthermore, epidemiologic studies which are 

focusing on the relationship between PM10 values and 

some diseases especially respiratory disorders should be 

analyzed and mapped. 
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