Turkish J. Marine Sciences 6(1): 1-7 (2000)

Oil Pollution of Eastern Mediterranean Sea, South of Turkey

Türkiye' nin Doğu Akdeniz kıyılarında Petrol Kirliliği

Işık Bıldacı¹, Selma Ünlü² and Kasım Cemal Güven ^{2*}

¹Hacettepe University, Environmental Research Center, Ankara

² University of Istanbul, Institute of Marine Sciences and Management,

Vefa, 34470, Istanbul

Abstract

In our earlier work oil pollution of east Turkish Mediterranean area was determined before and after service of Iraq –Yumurtalık export pipeline in 1997. In this paper oil pollution amount is given in the same area in 1999. The highest pollution was found as 2690 μ g/L at Botaş and 629.60 μ g/L at Mersin. The determination was made by using Iraqian and Iranian crude oils as reference material. The oil amount was found lower when chrysene was used as a reference. The low amount of oil pollution measured by earlier workers in the same area can be attributed to this fact. The use of polluting crude oil as reference material gives reliable results to determine oil pollution.

Keywords: Oil pollution, eastern Mediterranean Sea, crude oil, chrysene

ć

^{*} Corresponding address

Introduction

Oil pollution is an important problem of seawater. This subject is discussed for the vicinity of Ataş refinery in Mersin in 1995 and 1996 (Güven *et al.*, 1998).

The oil pollution had also been investigated earlier by various authors in Eastern Mediterranean area in 1982 and 1983 by Sakarya (1985), in 1983 by Saydam and Salihoğlu (1984), in 1987 by Ehrhardt and Petrick (1989), in 1989 by Yılmaz *et al.*,(1991), in 1990-1996 by Yılmaz *et al.*,(1998) and in 1985-1986 and 1995-1996 by Yılmaz *et al.*, (1998).

These authors (except Ehrhardt and Petrick, 1989) used chrysene and found lower values for oil pollution. Güven *et al.*, (1998) used crude oil as reference material. The results differed widely depending on the reference materials.

In this work the oil pollution was investigated in the east Mediterranean area in 1999 by using crude oils and chrysene as both references and the results were compared with those obtained by using chrysene.

Materials and Methods

The samples were taken in 19.06.1999 at four stations in east Mediterranean Sea, south of Turkey. The sampling stations are shown in Fig.1.

2.8 L seawater samples were taken and extracted in portions of 700 ml with 50 ml dichloromethane (DCM). The extracts were combined and dried on anhydrous sodium sulphate then distilled. The residue was taken with hexane and the volume adjusted to 10 ml and analysed by UVF.

Figure 1. Sampling stations.

F1: 488.59 x C + 49.760 Figure 2. Standard curve of Iraqian crude oil

F1: 505.30 x C +30.631 Figure 3. Standard curve of Iranian crude oil

3

ł

The calibration curves were plotted for concentrations of 0.25-1.5 μ g/ml for Iraqian and Iranian crude oils and also 0.05-0.3 μ g/ml for chrysene, the solvent being hexane (Ünlü and Güven, unpublished data). The fluorescence intensity was measured/ at 310/360 nm (ex/em) in spectrofluorophotometer (Shimadzu RF-1501). The calibration curves and their equations were taken from the apparatus.

Results and Discussion

The standard curves of crude oils and chrysene are shown in Figs. 2-4. The oil pollution levels found at four stations of east Mediterranean are given in Table 1.

The earlier workers (Sakarya, 1985, Saydam and Salihoğlu, 1984 Ehrhardt and Petrick, 1989, Yılmaz *et al.*, 1991, Yılmaz *et al.*, 1998 and Yılmaz *et al.*, 1998) gave generally low values for oil pollution in this area. According to their findings max. levels were 25.2 µg/L in 1982, 5.7 µg/L in 1983 and 2.2 µg/L in 1984 (Sakarya, 1985), 0.6–5.6 µg/L in 1983(Saydam *et al.*, 1984), >0.4 µg/L in 1987 (Ehrhardt and Petrick in 1989), 0.84-1.25 µg/L in 1990-1996 (Yılmaz *et al.*, in 1989), 0.1-0.77 µg/L in 1985-1986 and 0.01-4.14 µg/L in 1995-1996 (Yılmaz *et al.*, 1998).

Sampling stations	Reference compounds		
	Iranian crude oil	Iragian crude oil	Chrysene
BOTAS	2690	2596	455.42
DÖRTYOL	1088	1088	218.38
YUMURTALIK	26.60	24.60	3.53
MERSIN	629.60	623.20	120.64
İSKENDERUN	9.84	9.33	3.46

Table 1. Oil amounts measured by different references in eastern Mediterranean Sea (μ g/L).

The pollution in this study varied 9.84-2690 μ g/L calculated from Iranian crude oil and 9.33-2596 μ g/L Iraqian crude oil. The results are similar for both crude oil references. The highest pollution was found as 2690 μ g/L at Botaş. This is the highest amount for Turkish sea environment. It is followed by Mersin as 623.20 μ g/L. In our earlier study Botaş showed the highest pollution as 514.28 μ g/L.

When calculated from chrysene the oil amount was found 455.42 μ g/L at Botaş, 218.38 μ g/L at Dörtyol, 3.53 μ g/L at Yumurtahk, 120.64 μ g/L at Mersin, 3.46 μ g/L at Iskenderun.

The main problem is the choice of the reference material used for plotting the calibration curve. The compounds used are chrysene or crude oils. Only Erhardt and Petrick (1989) used crude oil (Agha Jari, Iranian crude oil) but the others used chrysene as reference. When chrysene is used the crude oil results must also be mentioned, as did by many workers (Abdullah *et al.*, 1996, Badawy *et al.*, 1991).

As seen Table 1 the values of pollution are higher when crude oil is used as reference. The similar findings were reported in earlier work.

The method based on crude oil reference technique gave as much as 10-12 times higher values than when chrysene technique was used. According to Ehrhardt and Petrick (1987) chrysene, if present at all is certainly not the only PAH extractable from oil contamined seawater. If it is used as quantitative reference substance, the fluoresence intensity of a seawater extract is obtained in mass of chrysene equivalents per unit volume of water.

The use of crude oil as the reference material is more reliable since a particular kind of oil is responsible for polluting a specific area. The usual reference substance is a crude oil likely to be used or transported in the area under investigation (Ehrhardt and Patrick, 1989) Likewise we used Iranian and Iraq crude oils which were imported by Mersin refinery (Ataş) or transported by pipeline to Botaş and exported therefrom.

Furthermore the extraction solvent also affected the oil level in seawater. DCM is considered the best solvent for the extraction of oil. Hexane was used by earlier workers. Thus appreciable discrespancies occured. UNESCO adopted dichloromethane (DCM) instead of hexane as an extraction solvent (Domenico *et al.*, 1994).

In conclusion: The oil pollution is determined in this investigation as to have increased in the east Mediterranean area from 1996 to 1999.

Özet

Bu çalışmada 1999 yılına ait Türkiye sahilleri doğu Akdeniz bölgesinde Botaş ve İskenderun arasındaki denizde petrol kirliliği araştırılması sonuçları verilmiştir. Bu bölgede petrol kirliliği değişik referanslara göre hesaplama da İran petrolüne göre 9.84-2690 µg/L, Irak petrolüne göre 9.33-2596 µg/L arasında bulunmuştur. En yüksek kirlilik 2690 µg/L olarak saptanmıştır. Bu iki referans madde kullanılması arasında fark bulunmadı. Bundan önceki çalışmamızda ise bu bölgede kirlilik en yüksek petrol kirliliği miktarı 514.28 µg/L bulunmuştu. Bu bölgede yapılan bir çalışmada ise bulunan kirlilik miktarının 0.0-25.2 µg/L arasında bulunmuş, genelde ise bu miktarın 5.7 µg/L olduğu bildirilmiştir. Bizim bulgularımız ile bu bulgular arasındaki büyük farklılığın sebebi kullanılan yönteme aittir. Ehrhardt ve Petrick (1987) hariç diğerleri referans olarak chrysene 'i esas almışlardır. Chrysene fluoresans gösteren poliaromatik maddelerden yalnız bir tanesidir. Bu madde ham petrollerde eşit miktarlarda bulunmadığından buna dayanarak yapılan tayinler düşük sonuç vermektedir. Bu husus bu çalışma ile ispatlanmıştır. Her ne kadar chrysene 'i referans olarak kullanan literatürde varsa da, genelde o bölgeyi kirleten ham petrol referans bileşiği olarak kullanılması doğru sonuç verir. Chrysene kullanılması halinde ham petrole ait sonuçlarda beraberinde verilmiştir.

Bu çalışmada ayrıca ekstraksiyon solvanı olarak DCM kullanılmıştır. DCM hekzan a göre daha iyi bir çözücüdür. UNESCO da ekstraksiyon solvanı olarak DCM yi kabul etmiştir. Bu bölgedeki diğer çalışmalarda hekzan kullanılmıştır. Bu da sonuçların düşük bulunmasında etkendir. Bu bölgedeki önceki çalışmamız ile mukayesede petrol kirliliğinin 1996 yılından 1999 yılına doğru arttığı tespit edilmiştir.

References

Abdullah, A.R., Woon, W. and Bakar, R.A. (1996). Distribution of oil and grease and petroleum hydrocarbons in the straits of Johor, Peninsular Malaysia. *Bull. Env. Contam. Toxicol.* 57: 155-162.

Badawy, M.I. and Al-Harthy, F.(1991). Hydrocarbons in seawater, sediment and oyster from the Omani coastal waters. *Bull. Env. Contam. Toxicol.* 47: 386-391.

Dujmov, J. and Sucevic, P. (1988) PAH inrecent sediments of the eastern Adriatic coast determined by UV fluoresence spectroscopy method. *Rapp. Com. Int. Mer. Medit.* 31.2.

De Domenico, L., Crisafi, E., Magazzu, G., Puglisi, A. and La Rosa, A. (1994). Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluoresence spectroscopy and remote sensing techniques. *Mar. Poll. Bull*.28:587-591.

Ehrhardt, M. and Petrick, G. (1989). Relative concentrations of dissolved/dispersed fossil fuel residues in Mediterranean surface waters as measured by UVF fluorescence. *Mar. Poll. Bull.*20:560-565.

Güven, K.C., Ünlü, S., Bıldacı, I. and Doğan, E. (1998). An investigation on the oil pollution of the eastern Mediterranean coast of Turkey. *Turkish J. Mar.Sci.* 4: 51-60.

Sakarya, M. (1985). Petroleum hydrocarbons in the marine environment Thesis, Middle East Technical University, Institute of Marine Science, Icel, Turkey.

Saydam, C., Salihoğlu, İ., Sakarya, M. and Yılmaz A. (1984). Dissolved/dispersed petroleum hydrocarbons suspended sediment, plastic pelagic tar and other litter in the North Eastern Mediterranean. *VII^{es} Journées Étud. Pollutions, Lucerne*, C.I.E.S.M. 509-519.

Yılmaz, A., Saydam, A.C., Baştürk, Ö. and Salihoğlu, İ.(1991). Transport of Dissolved /dispersed petroleum hydrocarbons in the Northeastern Mediterranean. *Toxicological and Environmental Chemistry* 31-32, 187-197.

Yılmaz, A., Salihoğlu, İ. and Yayla, M. (1991). Assessment of oil pollution in eastern Mediterranean. International conference oil spills in the Mediterranean and Black Sea regions. 15th-18th September 1998, Istanbul.

Yılmaz, K., Yılmaz, A. Yemenicioğlu, S., Sur, M., Salihoğlu, İ., Karabulut, Z., Telli Karakoç, T., Hatipoğlu, E., Gaines, A.F., Phillips, D. and Hewer, A. (1998). Polynuclear aromatic hydrocarbons (PAHs) in the eastern Mediterranean Sea. *Mar. Poll. Bull.* 36, 922-925.

Received: 10.7.1999 Accepted: 6.9. 1999