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ABSTRACT: In a four-bar mechanism, the crank link rotates at a constant angular velocity, while the other

two links have constantly changing angular velocities. If it is desired to convert a 3RM into a four-bar

mechanism, the variable angular velocities of the rotary actuators at both ends of the coupler link should

be accurate. The general parametric set of equations that give the cartesian coordinates of 3RM can be

arranged so that they can be used for the four-bar mechanism by limiting the degree of freedom. In this

case, the angular velocities of the actuators on both ends of the coupler link should be determined while

the crank link rotates at a constant angular speed. Angular velocities of actuators have been obtained using

the WorkingModel2D (WM2D) "dynamic motion-simulation software" for a four-bar mechanism, whose

geometric parameters have been selected as the crank-rocker. Using the angular velocity data, unknown

coefficients in polynomials expressing the angular velocities of the rotary actuators connected to the

coupler link have been found using Mathematica software. The trajectory and angular velocity data have

been obtained from WM2D, the results of trajectory and angular velocity equations have been compared

and the results have been at acceptable levels.
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Üç Döner Mafsallı Düzlemsel Manipülatörün (3RM) Parametrik Pozisyon Denklemlerini Kullanarak

Bir Dört Çubuk Mekanizmasının Parametrik Pozisyon Denklemlerinin Elde Edilmesi

ÖZ: Bir dört çubuk mekanizmasında, kol uzvu sabit bir açısal hız ile dönerken, diğer iki uzuv sürekli

değişen açısal hızlara sahiptir. Bir 3RM mekanizması, dört çubuk mekanizmasına dönüştürülmek

istenirse, biyel uzvunun her iki ucundaki döner aktuatörlerin değişken açısal hızlarının doğru olarak

belirlenmesini gerekir. 3RM’nin kartezyen koordinatlarını veren genel parametrik denklem seti serbestlik

derecesi sınırlanarak dört çubuk mekanizması için kullanılabilecek şekilde düzenlenebilir. Bu durumda

kol uzvu sabit bir açısal hız ile dönerken, biyel uzvunun her iki ucundaki aktuatörlerin açısal hızları

belirlenmelidir. Aktüatörlerin açısal hızları, geometrik parametreleri kol-sarkaç çalışmasına göre seçilen

bir dört çubuk mekanizması için WorkingModel2D (WM2D) "dinamik hareket simülasyon yazılımı"

kullanılarak elde edilmiştir. Açısal hız verileri kullanılarak, biyel uzvuna bağlı döner aktuatörlerin açısal

hızlarını ifade eden polinomlardaki bilinmeyen katsayılar Mathematica yazılımı kullanılarak

bulunmuştur. WM2D’den elde edilen yörünge ve açısal hız verileri, yörünge ve açısal hız denklemlerinin

sonuçları karşılaştırılmış ve elde edilen sonuçların kabul edilebilir seviyelerde olduğu bulunmuştur.

Anahtar Kelimeler: Parametrik model, dört çubuk mekanizması, 3R Manipulatör, ters kinematik çözüm
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1. INTRODUCTION 

Theoretically, four bar mechanisms that can draw an infinite number of trajectories have a very 

important place in machine design. Trajectory synthesis has been one of the main areas of studies on these 

mechanisms. Because the position equations of the four-bar mechanisms are in non-linear form, various 

computer algorithms are used for their solutions (Roy et al., 2008; Wampler et al., 1992; Acharyya and 

Mandal, 2009; Hong-Sen Yan and Soong, 2001; Tang et al., 2013; Dong et al., 2013). In addition to the old 

research topics such as kinematics and dynamic analysis of four bar mechanisms, many interesting studies 

are carried out about bio-mechanisms (Alfaro et al., 2004; Fujie et al., 2013; Pennock and Yang, 1983). 

Trajectory generation of a planar revulute manipulator (nRM) depends on geometric and 

kinematic parameters including, link dimensions, initial angular positions of the links and actuator 

velocities of the joints. Such mechanisms may be constructed by mechanically coupling the rotations of 

the links of an n-link, n degree of freedom serial chain manipulator using cable and pulley drives or gear-

trains. Each coupling between two successive joint rotations reduces one DOF (Degrees of freedom) and 

repeated coupling reduces the overall degrees of freedom of the manipulator to one (Krovi et al., 2002; Nie 

and Krovi, 2005; Vukobratovic and Kircanski, 1986). It is one of the important study topics in the 

adaptation of walking trajectory curves to robots in humanoid and animal mobile robots (Çatalkaya and 

Akay, 2018; Hirose and Ogawa, 2007; Shieh, 1996). 

In the four-bar mechanisms which driven with angular velocity ω1, the angular velocities of the 

joints which the coupler link is connected vary with time [ω2(t)≠ω3(t)]. The special case of this situation is 

parallelograms. In these mechanisms, absolute angular velocities are equal all of the joints (ω1= -ω2= -ω3 ). 

For this reason, parametric position equations of a 3RM (ω1= -ω2= -ω3) are also valid for a parallelogram 

(Fig 1a). The shape of the trajectory drawn by the parallelogram coupler undergoes a radical change when 

the length of the input link of the parallelogram is slightly reduced (Fig 1b). According to the Grashof 

theorem, the mechanism works with the crank-rocker character, with the condition "l + s <p + q" is satisfied. 

This radical change is the result of the relationship of ω2(t)≠ω3(t) depending on the geometric change. In 

order to obtain the parametric position equations, it is necessary to obtain the equations that give the 

angular joint velocities ω2(t) and ω3(t). This study focuses on how to solve this problem.  

 

 
 

(a) (b) 

Figure 1. Schematic models of parallelogram and 3RM 

 

The data used in the study have been obtained with the simulation software WM2D.Working 

Model 2D (WM2D) is a motion simulation package. By defining connected systems formed from rigid 

bodies, motors and springs, and defining constraining forces and torques. The program accepts imported 

data from popular CAD packages in DXF format in addition to systems created within its own 

environment, and furthermore will accept inputs from other applications such as Excel and Matlab to add 

control inputs to the models. There are various motion and dynamic analysis studies using this software 

(Cruz et al., 2015; Shala and Bruqi, 2017; Wang,  2001; Wang, 1996; Yan and Soong, 2001) 
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2. GEOMETRIC AND PARAMETRIC MODEL 

The geometric (θ1,2,3, l1,2,3) and kinematic parameters (ω1,2,3) of the 3RM are shown in Fig 2 The 

reference point P3 is the end point of the link l3. The point is P2m the midpont of the link l2 . 

 

 
Figure 2. The geometric and kinematic parameters of the 3RM 

 

The general position equations of the end effector P3(x3, y3) can be written in the parametric form 

according to initial angles (𝜃10,20,30) and time (t) parameters as follows; 

 

𝑃3𝑥(𝑡) = 𝑙1𝐶𝑜𝑠(𝜃10 + 𝜔1𝑡) + 𝑙2𝐶𝑜𝑠[𝜃10 + 𝜃20 + 𝑡(𝜔1 + 𝜔2)] + 𝑙3𝐶𝑜𝑠[𝜃10 + 𝜃20 + 𝜃30 + 𝑡(𝜔1 + 𝜔2 + 𝜔3) (1) 

𝑃3𝑦(𝑡) = 𝑙1𝑆𝑖𝑛(𝜃10 + 𝜔1𝑡) + 𝑙2𝑆𝑖𝑛[𝜃10 + 𝜃20 + 𝑡(𝜔1 + 𝜔2)] + 𝑙3𝑆𝑖𝑛[𝜃10 + 𝜃20 + 𝜃30 + 𝑡(𝜔1 + 𝜔2 + 𝜔3)] (2) 

 

Equations 1 and 2 give the correct results when ω1,2,3 are constant. The 3RM's DOF will be 3 under 

these conditions. On the condition that P3 is fixed, the 3RM turns into a four-bar mechanism. Geometric 

and kinematic parameters of this mechanism are illustrated below (Fig. 3).   

 
Figure 3. Geometric and kinematic parameters of four bar mechanism 
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The angular velocities ω2 and ω3 vary depending on the time. Therefore, the change of angular 

velocities should be investigated by taking into account the small-time intervals (ts) obtained by dividing 

the time by n intervals. If equations 1 and 2 are arranged according to ω1=const., ω2(t)≠ω3(t) for P3  fixed 

joint coordinates, these equations take the form below: 

 

𝑃3𝑥(𝑡) = 𝑙1𝐶𝑜𝑠(𝜃10 + 𝑛𝑡𝑠𝜔1) + 𝑙2𝐶𝑜𝑠(∑ 𝜃𝑖0
2
𝑖=1 + 𝑡𝑠(𝑖𝜔1 + ∑ 𝜔2𝑖

𝑛
𝑖=0 ) + 𝑙3𝐶𝑜𝑠(∑ 𝜃𝑖0

3
𝑖=1 + 𝑡𝑠(𝑖𝜔1 + ∑ (𝜔2𝑖 + 𝜔3𝑖

𝑛
𝑖=0 )) (3) 

𝑃3𝑦(𝑡) = 𝑙1𝑆𝑖𝑛(𝜃10  + 𝑛𝑡𝑠𝜔1) + 𝑙2𝑆𝑖𝑛(∑ 𝜃𝑖0
2
𝑖=1 + 𝑡𝑠(𝑖𝜔1 + ∑ 𝜔2𝑖

𝑛
𝑖=0 ) + 𝑙3𝑆𝑖𝑛(∑ 𝜃𝑖0

3
𝑖=1 + 𝑡𝑠(𝑖𝜔1 +  ∑ (𝜔2𝑖 + 𝜔3𝑖

𝑛
𝑖=0 )) (4) 

 

Equations 3 and 4 can be applied to any point on the four bar mechanism, with the requirement 

of the dimensional and angular parameters according to any selected point. Table 1 summarizes the time-

dependent variation of link angle  according to the time (θ1i, θ2i, θ3i) . In these table the time interval is ts=0.05 second; 

 

Table 1. The time-dependent variation of θ1i, θ2i, θ3i 

i ti θ1i (t) θ2i (t) θ3i (t) 

0 0 θ10 θ10+θ20 θ10+ θ20+ θ30 

1 0.05 (θ10)+ ω1ts (θ10+θ20)+ ts (ω1+ ω21) (θ10+ θ20+ θ30)+ ts (ω1+ω21+ω31) 

2 0.10 (θ10+ω1ts )+ 

ω1ts 

(θ10+θ20+ ts (ω1+ ω21))+ ts (ω1+ 

ω22) 

(θ10+θ20+θ30+ts(ω1+ω21+ω31))+ ts(ω1+ω22+ω32) 

. . . . . 

n  θ10 + 𝑡𝑠nω1 
𝜃10 + 𝜃20 + 𝑡𝑠 (∑ 𝑖𝜔1 + 𝜔2𝑖

𝑛

𝑖=0

) 𝜃10 + 𝜃20 + 𝜃30 + 𝑡𝑠((∑(𝑖𝜔1 + 𝜔2𝑖 + 𝜔3𝑖

𝑛

𝑖=0

)) 

 

In order to use equations 3 and 4 it is necessary to obtain equations which give time-dependent 

variation of angular velocities ω2 and ω3. For this we can define “ω1+ω2i” and “ω1+ω2i+ω3i” with polynomials 

which seventh degree. In these equations ai  and bi are unknown constant coefficients.  Although the degree 

of polynomial can be chosen smaller, the results of the accuracy will decrease and in the opposite case, the 

accuracy will increase. 

 

𝑖𝜔1 + ∑ 𝜔2𝑖
𝑛
𝑖=0 = ∑ 𝑎𝑗𝑡𝑗7

𝑗=0  (5) 

𝑖𝜔1 + ∑ (𝜔2𝑖 + 𝜔3𝑖)
𝑛
𝑖=0 = ∑ 𝑏𝑗𝑡𝑗7

𝑗=0  (6) 

3. MODEL VALIDATION OF PARAMETRIC EQUATION SET 

In order to validate equations 3-4, an inverse kinematic solution has been made. Kinematic data 

of the sample crank-rocker mechanism has been used to perform inverse kinematic solution. Geometric 

and kinematic parameters of the mechanism are randomly selected (ω1=1 rad/s, l0=P0P3=1, l1=0.5, l2=1.118, 

l3=1, θ1=1.57, θ2=5.1836, θ3=4.2411 rad.). The only limiting condition of these randomly selected criteria is 

that the mechanism works as a crank-rocker. The mid-point trajectory of the coupler has been selected for 

investigation (P2m(x,y)). Data of WM2D simulation software has been used to get the unknown coefficients 

(𝑎𝑗 , 𝑏𝑗). One period time of the mechanism movement is divided into n =126 time intervals as ts=0,05 

seconds. For curve fitting process 127 angular velocity data , [(ω
1
+ω2i(ti)), (ω1+ω2i(ti)+ω3i(ti))] has been used 

for each equation ( 5-6). Accuracy settings of the WM2D which has been used in the study are given in Fig 

4.  
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Figure 4. WM2D accuracy settings 

 

Constant coefficients (aj, bj, 0≤j≤7 ) have been calculated by NonlinearModelFit function with 

Mathematica software using WM2D data( (ω1+ ω2i(ti)), (ω1+ω2i(ti)+ω3i(ti)). Screen capture of Mathematica 

software has given in Fig.5. 

 

 
Figure 5. Screen capture of Mathematica 

 

4. RESULT AND DISCUSSION  

Four bar mechanism arranged according to geometric and kinematic parameters has been 

simulated with WM2D (0≤t≤6.30). As a result of the simulation, (ω1+ω2i(ti)), and (ω1+ω2i(ti)+ω3i(ti)) angular 

velocities, cartesian coordinates of the P2mx(t) and P2my(t) points have been obtained depends on the time. 

Constant coefficients (aj, bj, 0≤j≤7 ) have been calculated by NonlinearModelFit function with Mathematica 

software using WM2D data( (ω1+ ω2i(ti)), (ω1+ω2i(ti)+ω3i(ti)). Screen capture of curve fittings results has 

given in Table 2. 
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Table 2. Curve fitting results 

"Estimate"
𝑎7 −0.001813477812779328

𝑎6 0.03390786004840107

𝑎5 −0.23682398067048188

𝑎4 0.7721336909447628

𝑎3 −1.2242243493790288

𝑎2 0.8586005844259332

𝑎1 0.01469943760892944

𝑎0 0.00737108328376324

0.96532

"Estimate"
𝑏7 −0.001185270220434778

𝑏6 0.01982784209897974

𝑏5 −0.11727174842874329

𝑏4 0.2889999901177289

𝑏3 −0.2415875300301827

𝑏2 −0.13316797699760774

𝑏1 0.20409794471981227

𝑏0 0.4448991323842059

0.99997 

 

The numerical values of the coefficients have been placed in the equations 5 and 6 and the 

equations 7 and 8 given below were obtained. 

 
ω1+2=0.00737108328376324  + 0.01469943760892944t + 0.8586005844259332t2 −

            −1.2242243493790288t3 + 0.7721336909447628t4 − 0.23682398067048188 +

            0.03390786004840107t6 − 0.001813477812779328t7 (7) 
ω1+2+3=0.444899132384216  + 0.20409794471982887t − 0.13316797699760435t2 −

                 0.24158753003018377t3 + 0.28899999011772887t4 − 0.11727174842874326t5 +

                 0.019827842098979743t6 − 0.0011852702204347783t7 (8) 
 

Variation of angular velocities has been calculated by using equations 7 and 8. The results and the 

graphs drawn by the data obtained from the WM2D simulation are given below (Fig 6a, b). In Fig  5a, R2 

(the coefficient of multiple determination for multiple regression) as 0.965 and in Fig 5b R2 as 0.901 have 

been calculated. It is clear that better results can be obtained if the degree of the polynomial is increased. 

 

 
(a) 

 
(b) 

Figure 6. Angular velocities obtained by simulation data and calculation. 
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Coordinates of the mid point of the coupler P2m[x(t), y(t)] have been obtained according to angular 

velocity and geometric parameters (ω1=1 rad/s, l0=1, l1=0.5, l2=0.559, l3=0, θ1=1.57, θ2=5.1836, θ3=0). 

According to these parameters’ equation 3 and 4. are re-arranged. (Equation 9 and 10). 

 

𝑃2𝑚𝑥(𝑡) = 𝑙1𝐶𝑜𝑠(𝜃10  +  𝑛𝑡𝑠𝜔1) + (𝑙2/2) 𝐶𝑜𝑠(∑ 𝜃𝑖0
2
𝑖=1 + 𝑡𝑠(𝑖𝜔1 + ∑ 𝜔2𝑖

𝑛
𝑖=0 ) (9) 

𝑃2𝑚𝑦(𝑡) = 𝑙1𝑆𝑖𝑛(𝜃10  +  𝑛𝑡𝑠𝜔1) + (𝑙2/2) 𝑆𝑖𝑛(∑ 𝜃𝑖0
2
𝑖=1 + 𝑡𝑠(𝑖𝜔1 + ∑ 𝜔2𝑖

𝑛
𝑖=0 ) (10) 

 

WM2D simulation data and solving results of equations for P2mx and P2my are presented graphs 

below (Fig 7a,b). The R2's of the data were calculated 0.999 in both graphs. WM2D trajectory data (P2mx, 

P2my ) has been used for calculation of R2. 

 

  

(a) (b) 

Figure 7. Time dependent change of coordinates P2mx and P2my 

 

Figure 8 shows the trajectory of the point P2m on the coupler. The curves in this graph are calculated 

results and WM2D simulation data. As can be seen from the graph, the trajectories drawn by the 

simulation and calculation results are quite similar. 

 

 
Figure 8. The graph of P2mx and P2my 

 

In this study, it is focused on obtaining parametric general position equations of a four-bar 

mechanism. Therefore, parametric position equations of 3RM have been used, parametric position 

equations have been obtained for four-bar mechanism, limiting the degree of freedom to operate like a 
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four-bar mechanism. In order to test the validity of the assumptions and solutions to obtain these 

equations, a sample inverse kinematic solution has been applied and found to be quite compatible with 

the actual data. Although the parametric velocity and acceleration equations can be easily obtained with 

these equation sets, they are excluded from the study for not avoid of the focus point of the study. The 

parametric position equations have a suitable mathematical form for the time depended position synthesis 

of dimensional and kinematic parameters. 
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