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Four kernel functions of support vector machines (SVM), namely, radial basis function, sigmoid 

function, linear function and polynomial function, were applied for the prediction of solar cell 

output power. Two types of SVM model such as epsilon-SRV and nu-SVR were chosen for each 

kernel function. Measured values of temperature T (°C) and irradiance E (𝑘𝑊ℎ. 𝑚−2) were used 

as inputs and solar cell output power P (kW) was used as output. The accuracy of each kernel 

function was evaluated using well known statistical parameters. Radial basis function using nu-

SVR and polynomial function using epsilon-SVR provided similar and better results than other 

kernels. However, polynomial function has taken more analysis run time while radial basis 

function used more number of support vectors than other kernels. They may be more 

computationally expensive. 
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1. Introduction 

To date, the interest in the use of photovoltaic (PV) energy 

conversion has increased worldwide. In fact, solar energy is 

a clean, abundant and easily available renewable energy, 

friendly source of energy, etc. Solar cell technology has 

become attractive for its potential in reducing greenhouse gas 

emission, consuming less fossil fuel, and providing higher 

penetration of renewable energy source. Also, due to its 

availability everywhere in the word, solar cell energy has 

opened up a wide range of potential applications like solar 

water heating, solar heating of buildings, solar distillation, 

solar pumping, solar drying of agricultural and power 

production, solar green houses, etc. [1, 2]. Other advantages 

of the solar cells are high reliability, minimum of cost of 

maintenance, long lifetime, portability, modularity, no 

expenditure on fuel, pollution free working, etc. However, 

the performance of PV systems is constantly affected by 

various parameters such as irradiance (E), ambient 

temperature (T), etc. The main difficulty of a PV controller 

is to predict the PV output power in order to estimate the 

reserve capacity. There are very little published studies 

available in literature regard to the modeling and prediction 

of solar cell output power. Also the interaction impacts of 

different ambient parameters on the solar cell output power 

and its efficiency have not been discussed enough. More 

recently, few studies using artificial intelligence approaches 

have been used to predict and model the PV power 

production [3-6]. Among those artificial intelligence 

methods, support vector machines (SVM) method has been 

quoted as a powerful prediction approach in many areas. 

Other recent studies have shown that the accuracy of SVM 

model depends on the chosen kernel function [7-11]. 

However, these functions have not yet widely explored in 

solar cell technology despite the main advantages that they 

offer. The aim of this study is to explore SVM kernel 

functions for based ambient parameters modeling and 

prediction of solar cell output power. The following SVM 
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kernel functions, namely, radial basis function (RBF), 

sigmoid function (SIG), linear function (LIN) and 

polynomial function (POL), were chosen. The results 

provided by each kernel function will be compared. 

2. Data Collection 

Data used in this study were collected from the PV system of 

the Hospital of the University of Burundi. The PV system is 

established in the north-east of Bujumbura, the capital of 

Burundi. The latitude and longitude of the PV site are of -

3°24’ and 29 ° 21’, respectively. The PV system is illustrated 

in figure 1. Figure 2 shows the fluctuations of the temperature 

of the site during the year. 1920 PV panels are installed on 

the area of 6300 m2. Its power capacity is of 400 kW. The 

solar panels are oriented in such a way that their surfaces are 

more sunlight throughout the day in order to have the 

maximum possible energy production. Table 1 represents the 

specifications of the PV system. Hourly raw data including 

solar irradiation E (𝑘𝑊ℎ. 𝑚−2), temperature T (oC) and 

output power P (kW) were collected for a period of two 

months in sunny season (July and August) 2015. Table 2 

shows the attributes and statistical properties of the collected 

data sets. 

 

Fig. 1. PV system configuration 

Table 1. Specifications of the PV system 

Number of Panels 1920 

Output power: P (kW): 400 kW 

Open circuit voltage: VOC (V) 407.2 

Short circuit current: ICC (A) 1336.8 

Current at maximum power: Ipm (A) 1221.6 

Voltage at maximum power: Vpm (V) 330.4 

Conversion efficiency: ƞ (%) 17.2 

Area (m2) 6300  

 

Table 2. Statistical properties of the attributes of collected 

data 

Variable Min Max Mean 
Standard 

Deviation 

E 2.28 6.72 5.63 0.69 

T 22.22 26.66 24.95 0.81 

P 142.05 469.46 368.58 51.28 

 

Fig. 2. PV system site's temperature fluctuations during the year 

3. Support Vector Machines 

3.1. Introduction 

The foundations of Support Vector Machines (SVM) have 

been developed by Vapnik [12], and are gaining popularity 

due to many attractive features, and promising empirical 

performance. The formulation embodies the Structural Risk 

Minimization (SRM) principle, as opposed to the Empirical 

Risk Minimization (ERM) approach commonly employed 

within statistical learning methods. SRM minimizes an upper 

bound on the generalization error, as opposed to ERM which 

minimizes the error on the training data. It is this difference 

which equips SVMs with a greater potential to generalize, 

which is our goal in statistical learning. The SVM algorithm 

is based on the statistical learning theory and the Vapnik-

Chervonenkis dimension introduced by Vladimir and Alexey 

Chervonenkis. A support vector machine performs 

classification by constructing an N-dimension hyper plane 

that optimally separates the data into two categories. Support 

vector machines models are closely related to neural 

networks [12]. Using a kernel function, SVM are an 

alternative training method for polynomial, radial basis 

function and multi-layer perceptron classifiers in which the 

weights of the network are found by solving a quadratic 

programming problem with linear constraints, rather than by 

solving a non-convex, unconstrained minimization problem 

as in standard neural network training. The optimal plane 

classifier uses only dot products between vectors in input 

space. So the goal of SVM modeling is to find the optimal 

hyperplane that separates clusters of vector in such a way that 

cases with one category of the target variable are on one side 

of the plane and cases with the other category are on the other 

side of the plane. The vectors near the hyperplane are the 

support vectors. The hyperplane can be constructed by 

solving a convex optimization problem that minimizing a 

quadratic function under linear inequality constraints. The 

optimization problem used to find the optimal hyperplane 

and the decision function used for the actual classification of 

vectors can be expressed in dual form from which depend 

only on dot products between vectors. 
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3.2. SVM kernels functions 

The most used SVM kernels are [13, 14]: 

Linear (dot) Kernel: The inner product of x and y defines 

the linear kernel: 

xxxx jiji
K .),(       (1) 

This is a linear classifier, and it should be used as a test of the 

nonlinearity in the training set, as well as a reference for the 

eventual classification improvement obtained with nonlinear 

kernel. 

Polynomial Kernel: Polynomial kernel is a simple and 

efficient method for modeling nonlinear relationships: 

).1(),( xxxx jiK
d

ji
    (2) 

where d is the degree of the polynomial. The downside of 

using polynomial kernels is the overfitting that might appear 

when the degree of the polynomial increases. 

Gaussian radial Basis Function Kernel: Radial basis 

functions (RBF) are widely used kernels, usually in the 

Gaussian form: 

)
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The parameter σ controls the shape of the separating 

hyperplane. It can be optimized with a suitable cross-

validation procedure. 

 Exponential Radial Basis Function Kernel: If 

discontinuities in the hyperplane are acceptable, an 

exponential RBF kernel is worth trying: 

)
2

exp(),(
2



yx
K xx ji


    (4) 

In some cases, this kernel requires too many support vectors 

Neural (Sigmoid, Tanh) Kernel: The hyperbolic tangent 

(tanh) function, with a sigmoid shape, is the most used 

transfer function for artificial neural networks. The 

corresponding kernel has the formula: 

).tanh()( baK xxxx jiji
    (5) 

4. Implementation 

In this study, we apply the type model: Support vector 

machine (SVM), type of analysis: regression, validation 

method: cross-validation, number of cross-validation folds: 

10. Support vector machine kernel functions: radial basis 

function (RBF), sigmoid function (SIG), linear function 

(LIN) and polynomial function (POL), and type of SVM 

models: nu-SVR and epsilon-SVR.  Results from each kernel 

function with each type of SVM model are evaluated and 

compared in terms of accuracies by using the well-known 

statistical measure parameters [15,16] namely, Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE) and 

Mean Absolute Percentage Error (MAPE), Mean squared 

error (MSE), proportion of variance explained by model 

(R^2), correlation between actual and predicted (R) and 

coefficient of variation (CV). DTREG software [17] is used 

for implementation. More details on their importance can be 

found in [18]. 

5. Results Analysis and Discussion 

The study has focused on prediction performances. A test of 

four SVM kernel functions has been conducted. For each 

kernel function, epsilon-SVR and nu-SVR as types of SVM 

models have been applied for comparison reasons. Table 3 

shows the validation result. From the tables, it can be seen 

that the four kernels give results with a litter or lager 

difference. Optimization parameters have been chosen and 

are shown in table 5. But to judge the overall accuracy of each 

kernel, validation results must be analyzed and compared. 

This judgment can be easily made from table 3 or from 

figures 3-13. 

For RBF, the best performances, CV=0.06, NMSE=0.23, 

MSE =621.61, RMSE=24.94, MAE=20.73, MAPE=5.86, 

R^2=76.36, R=0.87, and ART=3.04s were provided by nu-

SVR as type of SVM model while the worst results were 

found by using ε-SVR as type of SVM model. 

For SIG, the best results, CV=0.08, RMSE=32.84, 

MAPE=7.64, ART=5.43 were provided by using nu-SVR 

type. Both ε-SVR and nu-SVR provided similar values of 

NMSE, MSE, and MAE. R^2 and R bad results were found 

for the two types. 

For LIN, Both ε-SVR and nu-SVR provided similar values 

as it can be seen from table 3. 

For POL, Both ε-SVR and nu-SVR provided similar values 

except for art values where ART=586.47s for ε-SVR and 

ART=188.4s for nu-SVR. In the meanwhile, the overall bad 

results were provided by RBF and POL kernels using 

epsilon-SVR as type of SVM model. From the above 

observations, main conclusion can be drawn that accuracy of 

SVM kernel functions depends at less or great degree on the 

type of SVM model used. It was observed that POL kernel 

takes more analysis run time than other kernels. RBF and 

POL kernels use more number of support vectors than other 

kernels. Table 4 and figure 13 show the importance of 

temperature on solar cell power. From the table, one can see 

that the temperature contribution is significant and depends 

on the kernel and type of SVM model used. 

KF: Kernel function; MTVID: Mean target value of input 

data; MTVPD: Mean target value of predicted data; CV: 

coefficient of variation; NMSE: Normalized mean square 

error, 
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Table 3. Analysis of validation results 

Statistical 

parameter 
KF( epsilon-SVR) KF(Nu-SVR) 

 RBF SIG LIN POL RBF SIG LIN POL 

MTVID 368.58 368.58 368.58 368.58 368.58 368.58 368.58 368.58 

MTVPD 370.98 372.24 368.29 372.67 367.32 370.08 368.45 369.59 

CV 0.12 0.09 0.08 0.06 0.06 0.08 0.08 0.07 

NMSE 0.87 0.41 0.39 0.24 0.23 0.41 0.39 0.27 

MSE 2295.52 1101.21 1028.07 647.50 621.61 1078.92 1044.63 717.41 

RMSE 47.91 33.18 32.06 25.44 24.93 32.84 32.32 26.78 

MAE 23.74 26..43 25.36 19.62 20.73 26.19 25.48 21.30 

MAPE 8.89 7.8 7.35 5.65 5.86 7.64 7.44 6.37 

R^2 12.73 58.13 60.91 75.38 76.36 58.98 60.28 72.72 

R 0.54 0.76 0.78 0.87 0.87 0.76 0.77 0.85 

ART 7.89 10.34 0.37 567.47 3.04 5.43 0.37 188.4 

ART: analysis of run time (seconds) 

 

Table 4. Computed importance (%) of each parameter 

Variable Importance (%) 

 KF epsilon-SVR KF(NU-SVR 

 RBF SIG LIN POL RBF SIG LIN POL 

E 100 100 100 100 100 100 100 100 

T 94.293 10.611 15.352 84.487 37.623 13.368 15.352 45.249 

 

Table 5. Analysis of optimization parameters 

OP KF( epsilon-SVR) KF(NU-SVR) 

 RBF SIG LIN POL RBF SIG LIN POL 

ε 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

C 14999.0494 6467.66824 2864.10608 12.2583245 13494.7685 5937.44367 10285.7194 1.10717318 

ɣ  4.62078545 0.11231402 - 50 0.32644013 0.08937303  15.0266519 

P 2.29057834 39.8093199 35.4161593 0.00215443 - - -  

Nu     0.14697918 0.19420658 0.17954782 0.22822156 

NSV 57 9 12 62 13 14 13 19 

Coef0 - 0 0 0.59948425  0 - 100 

OP: optimization parameters; ɣ: gamma; ε: epsilon; NSV: number of support vectors 

 

 
Fig. 3. Histograms of CV for different kernel functions 

 

 
Fig. 4. Histograms of NMSE for different kernel functions 

 

 
Fig. 5. Histograms of MSE for different kernel functions 

 

 
Fig. 6. Histograms of RMSE for different kernel functions 

 



D. Nurwaha: Comparison of kernel functions of support vector machines: A case study for the solar cell output power prediction  

 

International Journal of Energy Applications and Technologies, Year 2020, Vol. 7, No. 1, pp. 1-6                                                 5 

 

 
Fig. 7. Histograms of MAE for different kernel functions 

 
Fig. 8 .Histograms of MAPE for different kernel functions 

 
Fig. 9. Histograms of  R^2 for different kernel functions 

 
Fig. 10. Histograms of R for different kernel functions 

 
Fig. 11. Histograms of ART for different kernel functions 

 
Fig. 12. Histograms of NSV for different kernel functions 

 
Fig. 13. Importance of temperature as contributor to the solar cell 

output power 

6. Conclusions 

The study investigated the prediction of solar cell output 

power using different SVM kernel functions. The SVM 

kernel functions have been successfully applied to a wide 

range of predictive problems. Predictive accuracy of each 

SVM kernel function has been evaluated using statistical 

metrics. The results showed that the SVM kernel functions 

provided good and similar performance. It was also 

demonstrated that accuracy of SVM kernel functions 

depends at less or great degree on the type of SVM model 

used. The importance of the type of SVM model in 

performing the output has been depicted. Roles played by the 

optimization parameters, analysis run time and number of 

support vectors were also illustrated. The overall results 

indicated that SVM kernel functions could provide a 

potential approach for prediction of PV output power. The 

main advantage of the explored methods is that the obtained 

results could allow the PV system operator to estimate the 

capacity of energy reserve. This advantage is not yet widely 

explored in controlling solar cell output energy. However, the 

analysis of different results provided by each kernel function 

suggested that further studies in the same aspect are still 

needed and compared in order to assess the acceptable 

accuracy of each SVM kernel function. 
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