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EXISTENCE AND DECAY OF SOLUTIONS FOR A
HIGHER-ORDER VISCOELASTIC WAVE EQUATION WITH
LOGARITHMIC NONLINEARITY

Erhan PISKIN and Nazli IRKIL
Department of Mathematics, Dicle University, Diyarbakir, TURKEY

ABSTRACT. The main goal of this paper is to study for the local existence
and decay estimates results for a high-order viscoelastic wave equation with
logarithmic nonlinearity. We obtain several results: Firstly, by using Faedo-
Galerkin method and a logaritmic Sobolev inequality, we proved local existence
of solutions. Later, we proved general decay results of solutions.

1. INTRODUCTION

In this paper, we investigate the following nonlinear initial boundary value prob-
lem

t
g + [Pug + Pug] + Pu+u —fg(t—s)Puds—l—ut:uln|u|k,x€Qx(O7T),
0

u(z,0) =ug (z), u(z,0)=mu(z), x €,
Zou(r,t)=0, (i=1,2...m—-1) 2 €90 % (0,T),

(1)
where Q C R? is a bounded domain with smooth boundary 02, v is the unit outer
normal, k is positive constant to be chosen later and P = (—=A)™,(m > 1 and
m € N). The kernel g has some conditions to be specified later.

The equation with the logarithmic source term is related with many branches of
physics. Cause of this is interest in it occures naturally in inflation cosmology and
supersymmetric field theories, quantum mechanics, nuclear physics [6,/8,(9]. Some
of them authors [3-5}11},/15,/16] improve many results in the literature.
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When m = 2, problem ([I}) becomes the following
t
g |” wgy + Augy + A% — /g (t —s) A%u ds +u=uln|ul*. (2)
0
In [2], Al-Gharabli et al. investigated the local existence, global existence and
stability for the problem .
In [13], Peyravi consider
t

utt—Au+U+/g(t—s)Au ds + R (ug) ug + [ul> v = win ul*, (3)
0

in Q C R3 with h(s) = ko + k1]s|™ " . He studied the decay estimate and expo-
nential growth of solutions for the problem (3)).

Motivated by the above studies, we asked that what results will be obtained
if one revises the Laplace operator by other high order viscoelastic term. Then,
we established the local existence, and general decay estimates of the solution for
problem .

The rest of our work is organized as follows. In section 2, we give some notations
and lemmas which will be used throughout this paper. In section 3, our purpose
is to get suitable conditions of the local existence the solutions of the problem. In
section 4, we established the general decay of the solutions of the problem.

2. PRELIMINARIES

In this part, we give some notations and lemmas and preliminary results in
order to state the main results of this paper. We use the standart Lebesgue space
LP () and Sobolev space H™ (§2) with their scalar products and norms. Meanwhile

we define HJ" () = {u € H™(Q): g;’f =0,i=0,1,..m — 1} and introduce the
following abbreviations; .| = |[.[lz2(q, I, = [-lzo) and [lllzn = [l gm @)
(For detailed information about these spaces, see [1,/14]). We denote by C and C;
(i =1,2,...) various positive constants.

Now we give some important lemmas for proof of our theorems.

Lemma 1. [10] (Logarithmic Sobolev Inequality). Let u be any functionu € H}(Q),
Q C R3 be a bounded smooth domain and o > 0 be any number. Then,

2
o 2 2 3 2
/ln Ju| ude < — || Vau|® 4+ In |Jul| [Ju]]* - 3 (I+Ina)|u|”.

2w
Q

Corollary 2. Let u be any function u € HJ'(), Q C R® be a bounded smooth
domain and o > 0 be any number and where c, is he smallest positive number
satisfying

2
[Vul* < ¢, P%uH , Yu e H" Q).
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Then, we obtain,

2 @ || 1 |2 2 3 2
In Ju|u dngHPwH ] [l = 5 (1 + ) uf*. (4)
™
Q

Lemma 3. [7] (Logarithmic Gronwall Inequality) Assume that w(t) is nonnegative,

w(t) € L™ (0,T), co > 0, and it satisfies
¢
w(t) Sco—&—b/go—&—w(s)ln[(p—l—w(s)}ds, telo,T],
0

where @ > 1 and b > 0 are positive constants. Then we have

ebt
w(t) < (80 + CO) —p, te [OaT] . (5)
Lemma 4. [7] Let ¢y € (0,1). Then there exists d., > 0 such that
s|lns| < 8% +de,s' 7, Vs > 0. (6)

Now, we present following assumptions:
(A1) ¢ (x) = ug (x) € Hg* (), ¢ (z) = w1 (z) € Hg"(Q).
(A2) g : R™ — R™ is a C! nonincreasing function satisfying

g(0) >0, /g(s)d$<oo,1—/g($)d$:lo>07 (7)
0 0

(A3) There exist a nonincreasing differentiable function w : Rt — RT such that

oo

7000, [w)ds=c. (8)
0

(A4) The constant k in satisfles 0 < k < kj,where k; is the positive real
number satisfying

= [T (9)
and ¢, is defined in Corollary 2.

Lemma 5. The energy functional E (t) is decreasing with respect to t. Where

t

1 1 2 1 2
E(X) = §||ut||2+§HP%ut t3 17/g(s)ds HP%UH
0
1 k+2 1
t5 (g o P%u) + % Jul|* — 3 /ln|u\ku2d:p. (10)

Q
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Proof. We multiply both sides of by u; and then integrating over {2, we have

/uttutd:c—F/Puftutd;E—F/Puutdm
Q
o

g (t — s) Puuy dsdx + /uutda:

o .

Q Q
+/Pututd:c+/ututdm
= /1n|u\kuutdx,
Q
¢
d |1 1 o2 1 12
i |3l e g [Phal 5 (1= [oas ) b
0
1 k+2 1
+5 (g0 Pru) + = ful? §/ln|u\ku2da@
Q
2 1 2
- el s ) -sol] sn
/ 2 1 2 1 ’ 1 1 2
B () = =l = [|PHuc]| + 5 |+ (o 0 P2u) —g ) [ PR | <0 ()

Next, we begin with defining the potential energy functional and Nehari func-
tional on HJ" (Q2)

I(t) = (1 ffg (s ds) HP%UH2+ I + (gopéu) 7k§fl1n|u|u2da:
T(t) = % [lu® +11()
(1) = 3 luel3 + 3 [ Phu] + 7 )

where

(goP%u> (t) :/g(tfs)/‘P%u(t,:c)fP%u(s,x) dzdt.
0

Q
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3. LOCAL EXISTENCE

In this section we state and prove the local existence result for problem . The
proof is based on Faedo-Galerkin method.

Definition 6. A function u defined on [0,T] is called a weak solution of if
uwe C([0,T); Hy" (), uw € C([0,T); H* () ,uy € C[0,T); Hy ™ (),

and u satisfies

/utt (z,t)w () dﬂc—i—/P%utt (z,t) P%w(x)dx
Q

2

Nl

w(m)dw—i—/u(m,t)w(x)dm

—l—/P%u(x,t)P
Q Q

—|—/P%ut (z,t) P%w(aj) daz—l—/ut (z,t)w (z) dx
Q Q

+//tg(t—s) (P%u,P%w) dx
Q0

= /ln|u(z,t)|ku(z,t)w(m)dx,
Q
forw e Hf ().

Theorem 7. Suppose that (A1) — (A3) hold and let (ug,u1) € HF* (2) x HY* (Q) .
Then there exists a weak solution for such that

we L>®(0,T,Hy* (), u € L= (0, T, HJ* (Q)) ,use € L=(0,T, Hy, ™ () .

Proof. We will use the Faedo-Galerkin method to construct approximate solutions.
Let {w; }]Oil be an orthogonal basis of the “separable” space Hj"* (2). Let

Vin = span {wy, wa, ..., Wy }

and let the projections of the initial data on the finite dimensional subspace V,,, be
given by

up' (x) = Y ajw; (z) — ug in HY* (Q),
j=1

u' (z) = Z bjwj (x) — uy in Hy" (), (13)

for j=1,2,...,m.



EXISTENCE AND DECAY OF SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION305

We look for the approximate solution

m

u™ (w,) = > hT(t)w; (x),
j=1
of the approximate problem in V,,

J [u{?w + PrullAw + P2u™Prw + u™w

)
t
+P3ul Prw 4 ufw + [ g (t — s) (Péum,Péw)} dx
0
= [In lumF umwde, w € Vi, (14)
@ m
u™ (0) = ug' = 32 (uo,wj) wy,
J;l
uf (0) =ui® = 3 (u1,w;) w;.

1

J

This leads to a system of ordinary differantial equations for unknown functions

hi (t). Based on standard existence theory for ordinary differantial equation, one
can obtain functions

hj:[0,tm) = R, j=1,2,...,m,

which satisfy in a maximal interval [0,%¢,,), 0 < ¢, < T. Next, we show
that ¢,, =T and that the local solution is uniformly bounded independent of m
and ¢. For this purpose, let us replace w by uj" in

t

d

1 m2 1 1 m 2 1 1 m 2
g3+ 5 [Prur| 5 (1= [ gds | |Prum|
0
1 k+2 1
+39° Py + % ™| = 5/ha lu™|* (u™)? da
Q
_ m2 _ P% m 2 1 ! P% my\ _ ¢ P% m 2 15
= Hut Hz Uy + B g o u 9() u ) ( )
so that we can write
d 2 1 2
GEMO = - [P 5 | (o0 Phe) < g0 | Pre ]
1
< 3 (g/oP%um> <0. (16)

Then by integrating with respect to ¢ from 0, we obtain

E™(t) < E™(0). (17)
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If we use the Logarithmic Sobolev Inequality for estimating 3 [In lum* (um)? da
Q
term we lead to

E™(t)

Y

1m21 lm2
5 Il + 5 || Phor |
t
1 2 k+2
w5 (1= [awas ) [Pram| + (g0 phum) + 52 jum?
0

k cpa2 PR . a3 -
2 et it - S a4 ) ]
1 2 1 k 2 2 1
= 3 <||u;”|2 + HP%uT ) + 3 (lo — C;: > HP%umH + igoP%um
k+2 3k . k .
(5524 2 ma) ) ol = a1 18)

by combining and , we obtain

2 ke a2 2
g™ ||* + HP%uTH + (lo - ) HP%umH

27
1 kE+2 3k
+go P%um + (2 + > (1 + lna)) ||um||2
< CH k™ fum)?, (19)
where C' = 2E™(0).
Choosing eI << % will make
kcpa?
l _ 14
(0 2 ) >0
and kE+2 3k
%-F?(l-i-lna) > 0.

This selection is possible thanks to (A4).So, we obtain
u™||* + HP%u;"H2 + HP%umH2 + (g o P%um> + ™
< (1 P ). (20)
We know that .

ou™

u™ (1) =u"(,,0) + / — (., 7)dr.
ar
0
We make use of the following Cauchy-Schwarz inequality

(a+b)2§2(a2+b2),
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we obtain

lu™ @) = um(.,O)—&-/W(.,T)dT

¢ 2

ou™
< 2™ O +2|| [ w—(,7)dT
0/87
< 20lu™ (0)] + max {1, QT}ﬂ/Ht WPdr. (1)

Then by we have
O T A P Y (22)

where
M = 2|[u™ (0)||* + max {1,27} (1 + C) T, N = max{1,2T} (1+C) > 1.

Noting that xlnx < (z + B)In(z + B) for any x > 0, B > 1 holds, then by using
of Logarithmic Gronwall inequality, we obtain

l™|? < (M + N)*" =N < Cr., (23)
Hence, from inequality and

2
b3+ Nawg® + | PRam|| + go PRum + um P < €20 (20)

where C5 is a positive constant independent of m and t¢.

So, the approximate solution is uniformly bounded independent of m and ft.
Therefore, we can extend ¢, to T.

Substituting w = uj} in and using of

1 2
dz| < 6 |Juy|® + —=
/umt @ < 8 Juel|” + 5 llul
Q
inequality, we get
/p%u P2y tdx+//g (t —s) P2u™P3u}} dsda
Q Q0
Q

g+ [ PAap |

k
um 'IYLd.,L,_’_/ln|u77L| umugdfll
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2
< ou||Prug|”+ oa g+ 6 | PRy

2

t

+ﬁ O/g(t—s)HP;‘um‘Lds —I-EHP%L’”H

1
L m? k/1n|ummmu;gdx. (25)
155

To estimate the last term of , we will use @ with eg = % and Young’s, Cauchy-
Schwarz and the Embedding inequalities, we obtain

k/ln|um|u uyydx

Q
< c/(\um|2+d2 /um) uZ}dw
Q
2
< ¢ 54uttdx+46 /(|um|2+d2\/um> dx
< c54HP u:’ZH + 50 /|um| dx—|—/|um\dx

1
< cly HPfufZ

2 A m m
*m(” w3+ ) (26)
Combining and to have
2
(1= 62) [l |* + (1 = ey — ds — 01) [ Pz
t 2

1 1 m m|2
105 /g(t_s)HP u szs +45 ™l
0

o [P + (|\Aum||2+||um||)

Integrate the last inequality on (O,T) and use (24) and (A2) leads to

T T
(1—6) /||ug;||2dt+(1—054—53— /HP?utt
0

IN

T
< [ oo phurs [phur |+ pawr s+ ) ae (21)
0
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From the last inequality, if we take § = min {d2, cd4,03,01} > 0 small enough and
using , we have the following, for some C3 > 0 not depending m or ¢ :

T
2
/HP%;’;H dt < Cs. (28)
0
From and , we obtain
u™, is uniformly bounded in L (0,T; Hj* (),
uj”, is uniformly bounded in L* (0,T; HJ* (), (29)
uf?, is uniformly bounded in L? (0, T; H" (Q)),
)

that there exists a subsequence of (u™) (still denoted by (u™)), such that
u™ — u, weakly* in L (0,T; H" (),
ul® — g, weakly® in L (0,T; HJ" (),
u™ — u, weakly in L2 (0,T; H" (2)),
u — ug, weakly in L2 (0,T; HY* (),
ull — ug, weakly in L2 (0,T; HZ* ().
Then using and Aubin-Lions’ lemma, we have

u™ — u, strongly in L? (9 x (0,T))

(30)

which implies
u™ —u, Qx(0,7T).

Since the map s — sln |s|k is continuous, we have the convergence
w In [u™|" = winu®, Qx(0,T). (31)
By the Sobolev embedding theorem (HZ () — L (Q)), it is clear that
w™In [u™|® — win|u|®| is bounded in L (9 x (0,T)). Next, taking into account
the Lebesgue bounded convergence theorem, we have
u™ In [u™|* — win [ul* , strongly in L? (0,T;L* (). (32)
We integrate over (0,t) to obtain, Yw € V,,

1 1 1
§/u;nwda:ds— i/udeer 3 /P%u;npéwdzds
Q

Q Q

1 1 1 1 1
—i/PiuTwadx§/umwd:cds— i/ug‘wdx
Q Q Q

1 1
+§ /P%umP%wdxds— §/P%u6”P%wd$
Q Q
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/ " wdxds
Q

/ /g (t—s) Pru™ | Prwdsdrds
Q \0

t
= //ln|um|kumwdmd8. (33)
0 Q

Convergences , , are sufficient to pass to the limit in as m — 00,

+ /P%umP%wdxds-i-
Q

o—_ .

+

S O~

1 1
i/u?wdwds = i/u’lnwdx— /P%utP%wdxds
Q Q Q
1 1 1
—i/umwdmds—t— i/u(’)”wdx— 3 /P%umP%wdxds
Q Q
¢

Q
1 PR | 1 ot L1
—|—§ Pzug'Pzwdx + | P2ul"P2wdr — PzuP2wdzds
Q Q

Q 0

T

¢
—// /g(t—s)P%um Prwdsdrda
0 Q

0
t

umwdxds—i—//ln|um\kumwdmds, (34)
0 Q

|
o
O

which implies that (34) is valid Yw € HJ" () .Using the fact that the terms in
the right-hand side are absolutely continuous since they are functions of ¢
defined by integrals over (0,t), hence it is differentiable for a.e. ¢ € RT. Thus,
differentiating , we obtain, for a.e. t € (0,7T") and any w € HJ" (),

/uttwds—i—/ P%uttP%wds—i—/P%uP%wdx

Q Q Q
+/P%utP%wdx+/utwdx+/uwdw
Q Q Q

t
—/ /g(t—s)P%u(s) Prwdsda
0

Q
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= /ln lu (z, )" u (2, t) w (z) dz.
Q
This completed the proof. ([l

4. GENERAL DECAY

In this section we study general decay of problem .
Now, we introduce the following

k 3k l
Ei=-(),Co=14+—=(1+Ia), 0<a< ﬂ, v =e 2% . (35)
4 2 key,

For the logarithmic source, we assume that k& > 1. The next lemma by Martinez
plays an important role in our proof.

Lemma 8. [12] Let E : RT — R™ be a nonincresing function and ¢ : Rt — R be
a C? increasing function such that ¢ (0) =0 and tlim ¢ (t) = co.Assume that there

exists ¢ > 0 for which
/C/(s)E(s)ds <cE(t), Vt>0,
t

and then
E (t) < M\E (0) e¥*®),
for some positive constants w and .

Theorem 9. Suppose that (A1) — (A3) hold. Let ||ug ()|, <~v* and 0 < E(0) <
FE1. Then, there exist two positive constants n and n suh that

(—ﬁjw(s)ds)
E(t)<nE((0)e\ ° , (36)
holds for all t > 0.

To prove the our theorem we need the following lemma.

Lemma 10. Assume that (A1) — (A2) hold, ||ug (z)||, < ¥* and 0 < E(0) < Ej.
Then ||lu(z,t)||, <~* for allt € [0,T).

Proof. By the definition of FE (t), using Logarithmic Sobolev inequality and ,
we obtain
t

E@t) > J(t)Z%I(t):% 1—/g(s)d8 HP%UH2
0

1 1
+go Pzu+ 3 lul® — k/ln lu| u?dx
Q
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t
1 2 1 1
> - 1—/9(8)ds |PEu|| + 590 PHu+ 5 Jlul?
2 2 2
0
k 2 2 3
(2 ] i ® - S @+ ma )
1 k 2 2 1
o) ol e
1/ 3k
+3 (14 T 0 ma) k) (37

Let o = @, from we get
1 k
E(t) 2 5C0" = 5 (Iny)7* = M (v), (38)

where ||u|| = . It is clear that lim M () = —oco. Now, if we define v* the max

y— 00

roote of %M (7) =0, hence, by taking

fy* = ezc%ik. (39)
Thus, we can say
>0, 0<vy <97,
M (7) = = 07 Y= ’Y*,
<0, 7<¥*<x

Then if we write in 7 we obtain

e M) = 2060 - (ny) (0)?
= MG
~ Z(v*)z
= E. (40)

Assume that [ju (z,t)|, < ~* is false in [0,7) . Moreover , because of continuity of
u (t) and Bolzano Theorem, it comes after that there exists 0 < tg < T such that

llu(z,to)|y =~ From and we can write that
E(to) = M (|u(z,to)ll,) = M (v") = Ey.

But this is unfeasible since, by (12)), E (¢t) < E (0) < E; for all t > 0. So that proof
is completed. (Il

Remark 11. Under assumptions of Lemma 10, I (t) > 0 for allt € [0,T'). By the,
definition of 1 (t), Logarithic Sobolev Inequality and o = G, we obtain,
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2 1
I(t) = 1—/g(s)ds HP%uH +||uH2+§goP%u—k/ln|u|u2dx
0 Q
2
> o[l 4 ol -k [ 2 [Pl t? - S 1+ m) )
k 3k
> (-2 [l (1 2 el = o ) ul?
k k
> (10228 [Pl S

> 0. (41)

Remark 12. By Remark 11 we can say that if ||u(z,0)|l, < v* and E(0) <
E; then J (t) >0 and E (t) > 0 for all t € [0,T). Moreover from (12) and({d)), for
all t € [0,T) we obtain

||ut<>|\2<gE<><2E<o>
HP2ut )H < 2E(t) < 2E(0)

lu(@)* < 2T(t) < 37T (1) < RE () < £E(0),
2m 4 4
|Pruc H —ml(t)ng(t)ng(o)’

which show that the solutions are bounded in time.
Now, we are in a situation to demonstrate the Theorem 10.

Proof. Firstly we multiply both sides of the (1)) with w (¢) u and integrate on [t1, t2] X
Q,0<t; <ty < o0, we get

2 to t
L2

/w(t)/uuttdwdt—i—/w(t) 1—/9(3) ds HPiuH dt
t1 Q ty1 0

to t
—l—/w(t)/P%u/g(t—s) (P%u(t)—P%u(s)) dsdxdt

t1 Q 0

to to ta
—I—/w(t)/P%uPéutda:dt—l—/w(t)/uutdxdt+/w(t) [lw|®

t1 Q t1 Q t1

tz t2
+/w(t)/P%uP%uttdzdt—/w(t)/(ln|u|k) w?dzdt

i Q i Q

= 0. (43)
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Then, from and multiplying E (¢) with cw (t) (0 > 0) and integrating on [t1, t2],
we obtain

to ta
a/w(t)E(t) dt = —/w(t)/uuttdxdt
ty 31 Q
to to
_/w(t)/P%uP%uttda:dt+%/w(t) s || dt
t1 Q t1
k2 i i
+ (0 <Z> - 1> /w (t) |ull dt + %/w(t)goP%udt
tl tl
ta t 9
+(%fl>/w(t) 17/9(5)515 HP%UH dt (44)
t1 0
tz t2
—/w(t)/P%uP%utdxdt—/w(t)/uutdxdt
t1 Q t1 Q
t2 9 t2
g 3 _Z 2
—|—2/w(t)HP ut dt—l—k‘(l 2)/w(t)/u In |u| dadt
t1 t1 Q

t

+]2w(t)/péu/g(t_s) (PHu() — Phu(s)) dsdud.
Q

t1 0

Next, we try to estimate terms in the right hand side of . For the first term we
obtain

tQ t2
_ /w(t)/uuttdxdt = f/w(t) wudz |} +/w/ (t)/uutd:vdt
t1 Q Q t1 Q
to
+/w(t) lue|)? dt. (45)
ty

For the first term in right side of , using and Young’s inequality we obtain
to

—/w(t) uurdx < 4 w(t)/uutdx

1=
Q t Q t=t;
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2

< w0 |; [eods; [ @]l
=1 Q Q
< <2+2>w(t1)E(t1). (46)

Similary, we get

ta 2}

/w’ (t)/uutdxdt

t1 Q t1

IN
\
A/
>N
+
—_
~——
\
E\
=
&
=
QU
SN

IN
/N
| b
+

—_
"
&

=

=

N~—
=

=

—

iy

-

Also, we have
w( /P%uP%uttdxdt
Q

to

/w P2uP2utda:| /w' (t)/P%uP%utdxdt
Q t1 Q
t

2
+/w ‘PQUt
1

For the first term in right side of , we use (42) and Young inequality to obtain
to

dt. (48)

~

—/w(t) P2yPru,ds
Q t
2
< Z / P2uP2utdx
i=1 o i,
2
<

S w() %/Pm( Vi + /qut A
Q

i=1

(4” % + 2) w(t1) E (t1). (49)

2nly — key (@
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Similary, we get
to
W' (t)/P%uP%utdxdt

t1 Q
ta

2m /
_ (mo_ T 1) / W () E (t) dt

t1
to
!

- (2”2+1> w(t) E (8) |2 —/w(t)E (t)dt

27l — keyp (@) ;

For the estimating last term of using Young’s inequality, and , for

€ > 0, we obtain

/P;u/tg(t —9) (P%u (t) — P%u(s)) dsdx

Q

< g”Piu(t)‘r %//g(t—s)(PHL(t)—Pfu(s))ds dx
Q10
< ;HPéu(t)HQ—F;E(/g(s)ds)//g(t—s)‘(PZu(t)—P2u(s)>’2dsdx
0 Q

0

4dme 1—[0 1
L — O o P3y) ().
21ly — ke, (@) B+ = (9 )()

By using Young inequality for § > 0 and §; > 0 and 7 we have

to to

/w(t)/P%uP%utdwdt—i—/w(t)/uutda:dt
Q Q

t1 ty

3 (31l 51 | 2a)
1

<25 SR ) — ) E(t)

k" 2mly — ke, (a)°

IN
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2

1 1 1
5 ||ut||2+ﬁ szut

Hence, by — and @ the equality , for 0 < 2, brings about to the
following
to

6
< + — = +6|w(t)E(t
- ( 27y — key () ) () B (1)
to
4 25 216
b 42T /w(t)E(t)
27ly — key (G) k2wl — ke, (@)

t1
to to 9
1 1 1
L /w(t)||ut|\2dt+ T — /w(t)HPautH dt
2 201

t1 t1

ta to

7! 2—510) [eoe Phus <a ("":2) - 1) [e@lul? a

t1 t1

ta

—|—(%—1)/w(t) l—O/g(s)ds HP%qudt

+k (1 - g) /w(t)/u2 In |u| dzdt. (52)
t1 Q
Because of and clearly we have

/2w () llue? dt < w (1) E (1), jw 0) HP%utHth <w(i)E@®)  (53)

and
w (1) (g o P%u) (1) < — (g/ o P%u) () < 2w (1) E (4 (54)

).
By using of and , Logarithmic Sobolev inequality for o = a in we get
2
4 26 2mo
(o’— LA - - ﬂl) /w(t)E(t)dt
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g 1 ].—l()
+<2+1+%)+0+ - ]W(tl)E(tl)

t

s (a (’“;2) —1) ﬂ(t) Jul? dt

ty

c(G-1) (-2 [uto ]t o]

ty

+ {k (1 - %) <ln ul| — ; (1 +lna)> - ﬂ ]Zw(t) lul? dt. (55)

ty

Then, we take small enough such that 0 < o < ,%2 For this choice of o clearly

(%—1)<0and0<a< kiz

we get

o lfcpoz2
(Z-1) <z0— o ) <0,
By Lemma 10 and for £ > 1 we also get
o 3 1
k (1 - 5) (ln||u|| -5 +lna)> =
1
<ln’y* - g (1 +lna)> ~3

Co 1 3 1
e | _z
(k 2 2(+n0‘)> 2

1 1

—
|

< k

I
E
/N /N VS
—
|
oA N N|Q

—
I

SN— N—— SN—
N
|
|
O |
N———
|
DO =

IN

If we take €, 4, d; small enough so that

4re 20 2701
o5~ o a2>0
27ly — kep (G) k 2rly — key (a)

Therefore, there exist C' > 0 such that

ta

/w(t)E(t)dthE(tl).

t1
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t

Taking ¢ (z,0) = [w(s)ds and letting to — oo, then an application of Lemma 8
0

established (36]). Thus, the proof is completed. O
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