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 Abstract  
In this article, by using the conformal structure in Euclidean space, the conformal structures 

in hyperbolic space and the equality of the internal angles and vertex points of conformal 

triangles in hyperbolic space are given. Especially in these special conformal triangles, the 

conformal hyperbolic equilateral triangle and the conformal hyperbolic isosceles triangle, the 

internal angles and vertices are shown. 
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1. Introduction  

The set  1

0 1 : , 1n nH x R x x      is also called the n-dimensional unit pseudo-hyperbolic space. Two 

connected components of space 0

nH are 0,

nH   and 0,

nH  ; each of these components can be taken as the model of 

n-dimensional hyperbolic space. Based on the literature, we will consider the positive component as a model of 

hyperbolic space; that is 
1

0, 1

n n nH H R 

    [1,2,8]. 

 

First, we remember the concepts of lines and triangles in the hyperbolic plane. 

 

As for : ,n nIR H and x y H   , curve 

 

     
 ,

cosh sinh
,

y x y x
t t x t

y x y x


  
 

  
  

 

is called  line through ,x y of nH  [9].  

 

Similarly for : ,n nIR H and x y H   ,  

 

     
 

 1

1

1

cosh
cosh sinh , 0,

sinh

y t x
t t x t t t

t



    

 

curve segment  is called the line segment of nH  limited to ,x y  [9]. 

 
, ,x y z , three of which are three points on the same hyperbolic line; 
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 1

1

1

cosh
cosh sinh , 0,

sinh

y t x
t t x t t t

t



    

     
 

 1

1

1

cosh
cosh sinh , 0,

sinh

z s y
s s y s s s

s



    

     
 

 1

1

1

cosh
cosh sinh , 0,

sinh

x u z
u u z u u u

u



    

 

the combination of the            1 1 10 , 0 0t s ve u         segmented line segments is called the 

hyperbolic triangle, and the hyperbolic zone bounded by the triangle is called the hyperbolic triangular zone  

[9]. 

 

  is hyperbolic triangle with 1 2 3, ,P P P vertex points; 

 

12 13

12 23

13 23

1 cosh cosh

cosh 1 cosh

cosh cosh 1

M

 

 

 

   
 

   
 
    

 

 

matrix is called egde matrix of    [4]. 

 

,i jP P two vertices of  ; 

 

cosh ,ij i jP P     

 

the real number ij  in the property cosh ,ij i jP P    is called  edge length limited by ,i jP P  of   [4]. 

 

Definition  1.  The edges of the , ,i j kP P P -pointed   hyperbolic triangle through kP point are also 

 

: nIR H  , 

: nIR H   ; 

 

the ij  angle, which is to be    , cos
k k

ı ı

ijP P
t s      , is called the internal angle of   at point kP  [9]. 

 

 
Figure 1. Triangle in Hyperbolic Space 
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2.  Conformal Triangles in Hyperbolic Space 

Definition  2.  The set  2 : , coshP H m P r     , as 2m H  and r IR  , is called the m-centered r hyperbolic 

circle in 2H  [9]. 

 

Definition 3.  Let   be the hyperbolic triangle with 1 2 3, ,P P P  vertex points. If there are real numbers 

1 2 3, ,r r r IR  as ij i jr r   with an edge length ij limited to ,i jP P ;  is called conformal hyperbolic triangle 

[9]. 

 

Theorem  4.  Let   be hyperbolic triangle with 1 2 3, ,P P P  vertex points.   to be conformal if and only if   

 

                                  ln 2 , 1,2,3ir i                                                                         (2.1) 

 

where 1 2 3, ,r r r IR  [9]. 

 

Now, we give egde matricies for conformal hyperbolic triangles. These matricies play very important roles 

throughout the paper for calculations.          

 

Lemma 5. Edge matrix of conformal hyperbolic triangles, edge matrix of conformal hyperbolic equilateral 

triangles and edge matrix of conformal hyperbolic isosceles triangles as follows 

 

   

   

   

1 2 1 3

1 2 2 3

1 3 2 3

1 cosh cosh

cosh 1 cosh

cosh cosh 1

r r r r

M r r r r

r r r r

      
 

      
      

                                                                                                (2.2) 

   

   

   

1 2 1 2

1 2 1 2

1 2 1 2

1 cosh cosh

cosh 1 cosh

cosh cosh 1

r r r r

M r r r r

r r r r

      
 

      
      

                                                                                         (2.3) 

   

   

   

1 2 1 2

1 2 2 3

1 2 2 3

1 cosh cosh

cosh 1 cosh

cosh cosh 1

r r r r

M r r r r

r r r r

      
 

      
      

                                                                                        (2.4) 

respectively [9]. 

 

From [4] 

 

cos , ; , 1,2,3
ij

ij

ii jj

M
i j i j

M M
                                                                                                                  (2.5) 

 

and from equation (8) in [5], we can define 

 

sin , ; , 1,2,3ij

ii jj

M
i j i j

M M



    .                                                                                                                (2.6) 
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3.    Equality of Internal Angles and Vertex Points in Conformal Hyperbolic Triangles 

 
In this section, using the expressions of the internal angles and vertex points, we defined in Definition 1,equality 

of internal angles to vertex points of the conformal hyperbolic triangle and special conformal hyperbolic triangles 

will be shown. 

Now, in Eq. 2.5 

cos , ; , 1,2,3
ij

ij

ii jj

M
i j i j

M M
     

was given.  

As 

  
1 2 3k

i i j j

M
sinP ,i j,i k , j k ; i, j,k , ,

M M


    

 
    .                                                                   (3.1) 

It is  

12
12

11 22

M
cos

M M
   

if  11 12M ,M and 22M from Eq. 2.2 are calculated and replaced,  

     

   

1 3 2 3 1 2

12
2 2

2 3 1 3

cosh cosh cosh
cos

sinh sinh

r r r r r r

r r r r


   


 
 

is obtained. 

Similarly, if 11 12M ,M  and M  are used at Eq 3.1, calculated from Eq 2.2,  

 

   

3

11 22

1 2 3 1 2 3

3
2 2

2 3 1 3

4

M
sin P

M M

sinhr sinhr sinhr sinh r r r
sin P

sinh r r sinh r r




 


 

 

  

would be. From here 

     

   

1 3 2 3 1 2

12
2 2

2 3 1 3

cosh cosh cosh
arccos ,

sinh sinh

r r r r r r

r r r r


    
 
   

 

 

   

1 2 3 1 2 3

3
2 2

2 3 1 3

4sinhr sinhr sinhr sinh r r r
P arcsin

sinh r r sinh r r

  
 
   

                                                                                           (3.2) 

are obtained. 

We calculate the cosine of the right side of Eq 3.2. It would be 
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1 2 3 1 2 3

2 2

2 3 1 3

1 2 3 1 2 32

2 2

2 3 1 3

1 2 3 1 2 3

2

2 3

4

4
1

4
1

sinh r sinh r sinh r sinh r r r
cos arcsin

sinh r r sinh r r

sinh r sinh r sinh r sinh r r r
sin arcsin

sinh r r sinh r r

sinh r sinh r sinh r sinh r r r

sinh r r

   
  
     

   
   
     

 
 

  

     

   

2

2

1 3

2 2

1 2 1 3 1 2 3 1 2 3

1 2 1 3

4

sinh r r

sinh r r sinh r r sinh r sinh r sinh r sinh r r r
.

sinh r r sinh r r

 
 
  

    


 

 

When necessary calculations are made, we get 

 

 

Thus,  

12 3P   

 equation is obtained. By using similar method 

23 1P   

 and 

13 2P   

are obtained [6]. 

 

3.1.   Equality of internal angles and vertex points in the conformal hyperbolic equilateral triangle 

Definition 6.  Let   be a hyperbolic triangle with 1 2 3, ,P P P  vertex points, 12 13 23, ,    dihedral angles and 

12 13 23, ,    edge lengths. Let 2H ; if 12 13 23    , 12 13 23     and 12
3


  ,   is called equilateral 

hyperbolic triangle [7]. 

Now, in Eq. 2.5  

cos , ; , 1,2,3
ij

ij

ii jj

M
i j i j

M M
     

was given.  

Including  

  
1 2 3k

i i j j

M
sin P ,i j,i k , j k ; i, j,k , ,

M M


    

 
 .                                                                           (3.3) 

            
22 2

1 2 1 3 1 2 3 1 2 3 1 3 2 3 1 24sinh r r sinh r r sinhr sinhr sinhr sinh r r r cosh r r cosh r r cosh r r         
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If 11 12M ,M and 22M  are calculated and replaced from Eq. 2.3; 

    

 

1 2 1 2

12
4

1 2

1cosh r r cosh r r
cos

sinh r r


  



 

is obtained. 

Similarly, if 11 12M ,M  and M  calculated from Eq. 2.3 used in Eq. 3.3 , it becomes as  

     

 

3

11 22

2

1 2 1 2

3
4

1 2

1 1

M
sin P

M M

cosh r r cosh r r
sin P .

sinh r r




   




 

Here, 

 

    

 

1 2 1 2

12
4

1 2

cosh cosh 1
arccos ,

sinh

r r r r

r r


   
 
  

 

     

 

2

1 2 1 2

3
4

1 2

1 1cosh r r cosh r r
P arcsin

sinh r r

 
    


 

 
 

                                                                                            (3.4)  

are obtained. 

We calculate the cosine of the right side of Eq. 3.4 as follow, 

     

 

     

 

     

 

    

2

1 2 1 2

4

1 2

2

1 2 1 22

4

1 2

2
2

1 2 1 2

4

1 2

22

1 2 1 2

1 1

1 1
1

1 1
1

1

cosh r r cosh r r
cos arcsin

sinh r r

cosh r r cosh r r
sin arcsin

sinh r r

cosh r r cosh r r

sinh r r

sinh r r cosh r r c

  
     

  
  

  

  
     

    
  

  

 
    

 
 

 
 

   


  
 

1 2

2

1 2

1osh r r
.

sinh r r

 

  

We get 

 
            

2 22 2

1 2 1 2 1 2 1 2 1 21 1 1sinh r r cosh r r cosh r r cosh r r cosh r r         
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when necessary calculations are made. Thus 

12 3P    

equality is obtained. By using similar method 

23 1P   

and 

13 2P   

are obtained [6]. 

 
3.2.   Equality of internal angles and vertex points in the conformal hyperbolic isosceles triangle 

Definition 7. Let   be a hyperbolic triangle with 1 2 3, ,P P P  vertex points, 12 13 23, ,    dihedral angles and 

12 13 23, ,   edge lengths. Let 2H ; if 12 13  and 12 232    ,   is called isosceles hyperbolic triangle 

[7]. 

Now, in Eq. 2.5  

cos , ; , 1,2,3
ij

ij

ii jj

M
i j i j

M M
     

was given.  

Including  

  
1 2 3k

i i j j

M
sin P ,i j,i k , j k ; i, j,k , ,

M M


    

 
  .                                                                           (3.5) 

If 11 22M ,M and 22M  are calculated and replaced from Eq. 2.4; 

    

   

1 2 2 3

12
2 2

2 3 1 2

1cosh r r cosh r r
cos

sinh r r sinh r r


  


 
 

is obtained. 

Similarly, if 11 22M ,M  and M  calculated from Eq. 2.4 used in Eq. 3.5, it becomes as  

 

   

3

11 22

2

1 2 1 2

3
2 2

2 3 1 2

4

M
sin P

M M

sinhr sinh r sinh r r
sin P .

sinh r r sinh r r







 

 

 

Here, 

    

   

1 2 2 3

12
2 2

2 3 1 2

cosh cosh 1
arccos ,

sinh sinh

r r r r

r r r r
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2

1 2 1 2

3
2 2

2 3 1 2

4sinhr sinh r sinh r r
P arcsin

sinh r r sinh r r

 
 
   

                                                                                                         (3.6)  

are obtained. 

We calculate the cosine of the right side of Eq. 3.6 as follow, 

 

   

 

   

 

   

2

1 2 1 2

2 2

2 3 1 2

2

1 2 1 22

2 2

2 3 1 2

2
2

1 2 1 2

2 2

2 3 1 2

4

4
1

4
1

sinhr sinh r sinh r r
cos arcsin

sinh r r sinh r r

sinhr sinh r sinh r r
sin arcsin

sinh r r sinh r r

sinhr sinh r sinh r r

sinh r r sinh r r

sinh

  
  
     

  
   
     

 
  
   


     

   

2 2 2

2 3 1 2 1 2 1 2

2 2

2 3 1 2

4r r sinh r r sinhr sinh r sinh r r
.

sinh r r sinh r r

   

 

 

We get 

 

 

when necessary calculations are made. Thus 

12 3P    

equality is obtained. By using similar method, 

23 1P   

and 

13 2P   

are obtained [6]. 
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