Equality of internal angles and vertex points in conformal hyperbolic triangles

Ümit TOKESSER $R^{1, * *(D)}$ Ömer ALSAN ${ }^{2}$ (id
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Kastamonu University, 37100, Kastamonu, Turkey
${ }^{2}$ Zeytinburnu Anatolian High School, 34100, Istanbul, Turkey

Abstract

In this article, by using the conformal structure in Euclidean space, the conformal structures in hyperbolic space and the equality of the internal angles and vertex points of conformal triangles in hyperbolic space are given. Especially in these special conformal triangles, the conformal hyperbolic equilateral triangle and the conformal hyperbolic isosceles triangle, the internal angles and vertices are shown.

Article info
 History:

Received: 14.04.2020
Accepted: 01.09.2020
Keywords:
Conformal hyperbolic triangle, Conformal hyperbolic isosceles triangle, Conformal hyperbolic equilateral triangle

1. Introduction

The set $H_{0}^{n}=\left\{x \in R_{1}^{n+1}:<x, x>=-1\right\}$ is also called the n-dimensional unit pseudo-hyperbolic space. Two connected components of space H_{0}^{n} are $H_{0,+}^{n}$ and $H_{0,-}^{n}$; each of these components can be taken as the model of n-dimensional hyperbolic space. Based on the literature, we will consider the positive component as a model of hyperbolic space; that is $H_{0,+}^{n}=H^{n} \subset R_{1}^{n+1}[1,2,8]$.

First, we remember the concepts of lines and triangles in the hyperbolic plane.

As for $\alpha: I R \rightarrow H^{n}$ and $x, y \in H^{n}$, curve

$$
\alpha(t)=(\cosh t) x+(\sinh t) \frac{(y+\langle x, y\rangle x)}{\|y+\langle x, y\rangle x\|}
$$

is called line through x, y of H^{n} [9].

Similarly for $\alpha: I R \rightarrow H^{n}$ and $x, y \in H^{n}$,
$\alpha(t)=(\cosh t) x+(\sinh t) \frac{\left(y-\cosh t_{1} x\right)}{\sinh t_{1}}, t \in\left[0, t_{1}\right]$
curve segment is called the line segment of H^{n} limited to x, y [9].
x, y, z, three of which are three points on the same hyperbolic line;

[^0]$\begin{array}{ll}\alpha(t)=(\cosh t) x+(\sinh t) \frac{\left(y-\cosh t_{1} x\right)}{\sinh t_{1}}, & t \in\left[0, t_{1}\right] \\ \beta(s)=(\cosh s) y+(\sinh s) \frac{\left(z-\cosh s_{1} y\right)}{\sinh s_{1}}, \quad s \in\left[0, s_{1}\right] \\ \gamma(u)=(\cosh u) z+(\sinh u) \frac{\left(x-\cosh u_{1} z\right)}{\sinh u_{1}}, \quad u \in\left[0, u_{1}\right]\end{array}$
the combination of the $\alpha\left(t_{1}\right)=\beta(0), \beta\left(s_{1}\right)=\gamma(0)$ ve $\gamma\left(u_{1}\right)=\alpha(0)$ segmented line segments is called the hyperbolic triangle, and the hyperbolic zone bounded by the triangle is called the hyperbolic triangular zone [9].
Ω is hyperbolic triangle with P_{1}, P_{2}, P_{3} vertex points;
$M=\left[\begin{array}{ccc}-1 & -\cosh \varphi_{12} & -\cosh \varphi_{13} \\ -\cosh \varphi_{12} & -1 & -\cosh \varphi_{23} \\ -\cosh \varphi_{13} & -\cosh \varphi_{23} & -1\end{array}\right]$
matrix is called egde matrix of Ω [4].
P_{i}, P_{j} two vertices of Ω;
$\cosh \varphi_{i j}=-\left\langle P_{i}, P_{j}\right\rangle$
the real number $\varphi_{i j}$ in the property $\cosh \varphi_{i j}=-\left\langle P_{i}, P_{j}\right\rangle$ is called edge length limited by P_{i}, P_{j} of Ω [4].

Definition 1. The edges of the P_{i}, P_{j}, P_{k}-pointed Ω hyperbolic triangle through P_{k} point are also
$\alpha: I R \rightarrow H^{n}$,
$\beta: I R \rightarrow H^{n} ;$
the $\theta_{i j}$ angle, which is to be $\left\langle\left.\alpha^{t}(t)\right|_{P_{k}},\left\langle\left.\beta^{t}(s)\right|_{P_{k}}\right\rangle=\cos \theta_{i j}\right.$, is called the internal angle of Ω at point P_{k} [9].

Figure 1. Triangle in Hyperbolic Space

2. Conformal Triangles in Hyperbolic Space

Definition 2. The set $\left\{P \in H^{2}:\langle m, P\rangle=-\cosh r\right\}$, as $m \in H^{2}$ and $r \in I R^{+}$, is called the m-centered r hyperbolic circle in H^{2} [9].

Definition 3. Let Ω be the hyperbolic triangle with P_{1}, P_{2}, P_{3} vertex points. If there are real numbers $r_{1}, r_{2}, r_{3} \in I R^{+}$as $\varphi_{i j}=r_{i}+r_{j}$ with an edge length $\varphi_{i j}$ limited to $P_{i}, P_{j} ; \Omega$ is called conformal hyperbolic triangle [9].

Theorem 4. Let Ω be hyperbolic triangle with P_{1}, P_{2}, P_{3} vertex points. Ω to be conformal if and only if

$$
\begin{equation*}
r_{i}>\ln \sqrt{2}, \quad i=1,2,3 \tag{2.1}
\end{equation*}
$$

where $r_{1}, r_{2}, r_{3} \in I R^{+}$[9].
Now, we give egde matricies for conformal hyperbolic triangles. These matricies play very important roles throughout the paper for calculations.

Lemma 5. Edge matrix of conformal hyperbolic triangles, edge matrix of conformal hyperbolic equilateral triangles and edge matrix of conformal hyperbolic isosceles triangles as follows
$M=\left[\begin{array}{ccc}-1 & -\cosh \left(r_{1}+r_{2}\right) & -\cosh \left(r_{1}+r_{3}\right) \\ -\cosh \left(r_{1}+r_{2}\right) & -1 & -\cosh \left(r_{2}+r_{3}\right) \\ -\cosh \left(r_{1}+r_{3}\right) & -\cosh \left(r_{2}+r_{3}\right) & -1\end{array}\right]$
$\tilde{M}=\left[\begin{array}{ccc}-1 & -\cosh \left(r_{1}+r_{2}\right) & -\cosh \left(r_{1}+r_{2}\right) \\ -\cosh \left(r_{1}+r_{2}\right) & -1 & -\cosh \left(r_{1}+r_{2}\right) \\ -\cosh \left(r_{1}+r_{2}\right) & -\cosh \left(r_{1}+r_{2}\right) & -1\end{array}\right]$
$\hat{M}=\left[\begin{array}{ccc}-1 & -\cosh \left(r_{1}+r_{2}\right) & -\cosh \left(r_{1}+r_{2}\right) \\ -\cosh \left(r_{1}+r_{2}\right) & -1 & -\cosh \left(r_{2}+r_{3}\right) \\ -\cosh \left(r_{1}+r_{2}\right) & -\cosh \left(r_{2}+r_{3}\right) & -1\end{array}\right]$
respectively [9].

From [4]
$\cos \theta_{i j}=\frac{M_{i j}}{\sqrt{M_{i i} M_{i j}}}, i \neq j ; i, j=1,2,3$
and from equation (8) in [5], we can define

$$
\begin{equation*}
\sin \theta_{i j}=\frac{\sqrt{-|M|}}{\sqrt{M_{i i} M_{i j}}} \quad, i \neq j ; i, j=1,2,3 . \tag{2.6}
\end{equation*}
$$

3. Equality of Internal Angles and Vertex Points in Conformal Hyperbolic Triangles

In this section, using the expressions of the internal angles and vertex points, we defined in Definition 1, equality of internal angles to vertex points of the conformal hyperbolic triangle and special conformal hyperbolic triangles will be shown.
Now, in Eq. 2.5
$\cos \theta_{i j}=\frac{M_{i j}}{\sqrt{M_{i i} M_{j j}}} \quad, i \neq j ; i, j=1,2,3$
was given.
As $\sin P_{k}=\frac{\sqrt{-|M|}}{\sqrt{\left(-M_{i i}\right)\left(-M_{j j}\right)}} \quad, i \neq j, i \neq k, j \neq k ; i, j, k=1,2,3$.
It is
$\cos \theta_{12}=\frac{M_{12}}{\sqrt{M_{11} M_{22}}}$
if M_{11}, M_{12} and M_{22} from Eq. 2.2 are calculated and replaced,
$\cos \theta_{12}=\frac{\cosh \left(r_{1}+r_{3}\right) \cosh \left(r_{2}+r_{3}\right)-\cosh \left(r_{1}+r_{2}\right)}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)}}$
is obtained.
Similarly, if M_{11}, M_{12} and $|M|$ are used at Eq 3.1, calculated from Eq 2.2,
$\sin P_{3}=\frac{\sqrt{-|M|}}{\sqrt{M_{11} M_{22}}}$
$\sin P_{3}=\frac{\sqrt{4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)}}$
would be. From here
$\theta_{12}=\arccos \left(\frac{\cosh \left(r_{1}+r_{3}\right) \cosh \left(r_{2}+r_{3}\right)-\cosh \left(r_{1}+r_{2}\right)}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)}}\right)$,
$P_{3}=\arcsin \left(\frac{\sqrt{4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)}}\right)$
are obtained.
We calculate the cosine of the right side of Eq 3.2. It would be

$$
\begin{aligned}
& \cos \left(\arcsin \left(\frac{\sqrt{4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)}}\right)\right) \\
& =\sqrt{1-\sin ^{2}\left(\arcsin \left(\frac{\sqrt{4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh h^{2}\left(r_{1}+r_{3}\right)}}\right)\right.} \\
& =\sqrt{1-\left(\frac{\sqrt{4 \sinh r_{1} \sinh _{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh h^{2}\left(r_{1}+r_{3}\right)}}\right)^{2}} \\
& =\frac{\sqrt{\sinh ^{2}\left(r_{1}+r_{2}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)-4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)}}{\sinh \left(r_{1}+r_{2}\right) \sinh \left(r_{1}+r_{3}\right)} .
\end{aligned}
$$

When necessary calculations are made, we get

$$
\sinh ^{2}\left(r_{1}+r_{2}\right) \sinh ^{2}\left(r_{1}+r_{3}\right)-4 \sinh r_{1} \sinh r_{2} \sinh r_{3} \sinh \left(r_{1}+r_{2}+r_{3}\right)=\left(\cosh \left(r_{1}+r_{3}\right) \cosh \left(r_{2}+r_{3}\right)-\cosh \left(r_{1}+r_{2}\right)\right)^{2}
$$

Thus,
$\theta_{12}=P_{3}$
equation is obtained. By using similar method
$\theta_{23}=P_{1}$
and
$\theta_{13}=P_{2}$
are obtained [6].

3.1. Equality of internal angles and vertex points in the conformal hyperbolic equilateral triangle

Definition 6. Let Ω be a hyperbolic triangle with P_{1}, P_{2}, P_{3} vertex points, $\theta_{12}, \theta_{13}, \theta_{23}$ dihedral angles and $\varphi_{12}, \varphi_{13}, \varphi_{23}$ edge lengths. Let $\Omega \in H^{2}$; if $\theta_{12}=\theta_{13}=\theta_{23}, \varphi_{12}=\varphi_{13}=\varphi_{23}$ and $\theta_{12}<\frac{\pi}{3}, \Omega$ is called equilateral hyperbolic triangle [7].
Now, in Eq. 2.5
$\cos \theta_{i j}=\frac{\tilde{M}_{i j}}{\sqrt{\tilde{M}_{i i} \tilde{M}_{j j}}}, i \neq j ; i, j=1,2,3$
was given.
Including
$\sin P_{k}=\frac{\sqrt{-|\tilde{M}|}}{\sqrt{\left(-\tilde{M}_{i i}\right)\left(-\tilde{M}_{j j}\right)}} \quad, i \neq j, i \neq k, j \neq k ; i, j, k=1,2,3$.

If $\tilde{M}_{11}, \tilde{M}_{12}$ and \tilde{M}_{22} are calculated and replaced from Eq. 2.3;

$$
\cos \theta_{12}=\frac{\cosh \left(r_{1}+r_{2}\right)\left(\cosh \left(r_{1}+r_{2}\right)-1\right)}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}
$$

is obtained.
Similarly, if $\tilde{M}_{11}, \tilde{M}_{12}$ and $|\tilde{M}|$ calculated from Eq. 2.3 used in Eq. 3.3 , it becomes as

$$
\begin{aligned}
& \sin P_{3}=\frac{\sqrt{-|\tilde{M}|}}{\sqrt{\tilde{M}_{11} \tilde{M}_{22}}} \\
& \sin P_{3}=\frac{\sqrt{\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}} .
\end{aligned}
$$

Here,

$$
\theta_{12}=\arccos \left(\frac{\cosh \left(r_{1}+r_{2}\right)\left(\cosh \left(r_{1}+r_{2}\right)-1\right)}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}\right)
$$

$$
\begin{equation*}
P_{3}=\arcsin \left(\frac{\sqrt{\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}\right) \tag{3.4}
\end{equation*}
$$

are obtained.
We calculate the cosine of the right side of Eq. 3.4 as follow,

$$
\cos \left(\arcsin \left(\frac{\sqrt{\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}\right)\right)
$$

$$
\left.=\sqrt{1-\sin ^{2}\left(\arcsin \left(\frac{\sqrt{\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}\right)\right.}\right)
$$

$$
=\sqrt{1-\left(\frac{\sqrt{\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sqrt{\sinh ^{4}\left(r_{1}+r_{2}\right)}}\right)^{2}}
$$

$$
=\frac{\sqrt{\sinh ^{2}\left(r_{1}+r_{2}\right)-\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)}}{\sinh ^{2}\left(r_{1}+r_{2}\right)} .
$$

We get

$$
\sinh ^{2}\left(r_{1}+r_{2}\right)-\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}\left(\cosh \left(r_{1}+r_{2}\right)+1\right)=\cosh ^{2}\left(r_{1}+r_{2}\right)\left(\cosh \left(r_{1}+r_{2}\right)-1\right)^{2}
$$

when necessary calculations are made. Thus

$$
\theta_{12}=P_{3}
$$

equality is obtained. By using similar method
$\theta_{23}=P_{1}$
and
$\theta_{13}=P_{2}$
are obtained [6].
3.2. Equality of internal angles and vertex points in the conformal hyperbolic isosceles triangle

Definition 7. Let Ω be a hyperbolic triangle with P_{1}, P_{2}, P_{3} vertex points, $\theta_{12}, \theta_{13}, \theta_{23}$ dihedral angles and $\varphi_{12}, \varphi_{13}, \varphi_{23}$ edge lengths. Let $\Omega \in H^{2}$; if $\theta_{12}=\theta_{13}$ and $2 \theta_{12}<\pi-\theta_{23}, \Omega$ is called isosceles hyperbolic triangle [7].
Now, in Eq. 2.5
$\cos \theta_{i j}=\frac{\widehat{M}_{i j}}{\sqrt{\hat{M}_{i i} \hat{M}_{j j}}} \quad, i \neq j ; i, j=1,2,3$
was given.
Including
$\sin P_{k}=\frac{\sqrt{-|\hat{M}|}}{\sqrt{\left(-\widehat{M}_{i i}\right)\left(-\widehat{M}_{j j}\right)}} \quad, i \neq j, i \neq k, j \neq k ; i, j, k=1,2,3$.
If $\bar{M}_{11}, \widehat{M}_{22}$ and \widehat{M}_{22} are calculated and replaced from Eq. 2.4;
$\cos \theta_{12}=\frac{\cosh \left(r_{1}+r_{2}\right)\left(\cosh \left(r_{2}+r_{3}\right)-1\right)}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}$
is obtained.
Similarly, if $\hat{M}_{11}, \hat{M}_{22}$ and $|\hat{M}|$ calculated from Eq. 2.4 used in Eq. 3.5, it becomes as
$\sin P_{3}=\frac{\sqrt{-|\hat{M}|}}{\sqrt{\hat{M}_{11} \hat{M}_{22}}}$
$\sin P_{3}=\frac{\sqrt{4 \sinh r_{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}$.

Here,
$\theta_{12}=\arccos \left(\frac{\cosh \left(r_{1}+r_{2}\right)\left(\cosh \left(r_{2}+r_{3}\right)-1\right)}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}\right)$,
$P_{3}=\arcsin \left(\frac{\sqrt{4 \sinh r_{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}\right)$
are obtained.
We calculate the cosine of the right side of Eq. 3.6 as follow,
$\cos \left(\arcsin \left(\frac{\sqrt{4 \sinh _{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}\right)\right)$
$\left.=\sqrt{1-\sin ^{2}\left(\arcsin \left(\frac{\sqrt{4 \sinh r_{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}\right)\right.}\right)$
$=\sqrt{1-\left(\frac{\sqrt{4 \sinh r_{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}}\right)^{2}}$
$=\frac{\sqrt{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)-4 \sinh _{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)}}{\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)}$.
We get

$$
\sinh ^{2}\left(r_{2}+r_{3}\right) \sinh ^{2}\left(r_{1}+r_{2}\right)-4 \sinh r_{1} \sinh ^{2} r_{2} \sinh \left(r_{1}+r_{2}\right)=\cosh ^{2}\left(r_{1}+r_{2}\right)\left(\cosh \left(r_{2}+r_{3}\right)-1\right)^{2}
$$

when necessary calculations are made. Thus
$\theta_{12}=P_{3}$
equality is obtained. By using similar method,
$\theta_{23}=P_{1}$
and
$\theta_{13}=P_{2}$
are obtained [6].

References

[1] Asmus, I., Duality Between Hyperbolic and de-Sitter Geometry, New York: Cornell University, 2008; pp 132.
[2] O'neil, B., Semi-Riemannian Geometry, London: Academic Press, 1983; pp 46-49, 54-57, 108-114, 143-144.
[3] Suarez-Peiro, E., A Schlafli Differential Formula for Implices in Semi-Riemannian Hyperquadrics, GaussBonnet Formulas for Simplices in the de Sitter Sphere and the Dual Volume of a Hyperbolic Simplex, Pasicif Journal of Mathematics, 194(1) (2000) 229.
[4] Karlığa, B., Edge matrix of hyperbolic simplices, Geom. Dedicata, 109 (2004) 1-6.
[5] Karlığa, B., Yakut, A.T., Vertex angles of a simplex in hyperbolic space H^{n}, Geom. Dedicata, 120 (2006) 49-58.
[6] Alsan, Ö., Conformal Triangles, M.Sc. Thesis, Kastamonu University Institute of Science and Technology, Kastamonu, 2015.
[7] Karlığa, B., Savaş, M., "Field Formulas Based on Edge Lengths of Hyperbolic and Spherical Triangles", Seminar of Mathematics Deparment, Gazi University, Ankara, (2006) 1-6.
[8] Ratcliffe, J.G., "Foundations of Hyperbolic Manifolds", , Berlin: Springer-Verlag, 1994.
[9] Tokeşer, Ü., "Triangles in Spherical Hyperbolic and de-Sitter Planes", Ph.D. Thesis, Gazi University Institute of Science and Technology, Ankara 2013.

[^0]: *Corresponding author. Email address: utokeser@kastamonu.edu.tr
 http://dergipark.gov.tr/csj ©2020 Faculty of Science, Sivas Cumhuriyet University

