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Abstract - In this paper a new class of functions called strongly
faint (τ, µ)-continuous functions has been introduced. Some prop-
erties of such functions are studied, furthermore the relationships
between strongly faint (τ, µ)-continuous function and its graph are
also being investigated here.
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1 Introduction

For the last one decade or so, a new area of study has emerged and has been rapidly
growing. The area is concerned with the investigations of generalized topological spaces
and several classes of generalized types of open sets. Our aim here is to study the notion
of strongly faint continuous functions by using the concept of generalized topology
introduced by Á. Császár [7].

We first recall some definitions given in [7]. Let X be a non-empty set and expX
denote the power set of X. We call a class µ ⊆ expX a generalized topology (briefly,
GT) [7], if ∅ ∈ µ and µ is closed under arbitrary unions. A set X, with a GT µ on it
is said to be a generalized topological space (briefly, GTS) and is denoted by (X, µ).
For a GTS (X, µ), the elements of µ are called µ-open sets and the complements of
µ-open sets are called µ-closed sets. For A ⊆ X, we denote by cµ(A) the intersection of
all µ-closed sets containing A i.e., the smallest µ-closed set containing A; and by iµ(A)
the union of all µ-open sets contained in A i.e., the largest µ-open set contained in A
(see [5, 7]). A GT µ on X is said to be a quasi topology (briefly QT) [8] if M, M

′ ∈ µ
implies M ∩M

′ ∈ µ. The pair (X, µ) is said to be a QTS if µ is a QT on X.
Let (X, τ) be a topological space. The δ-closure [24] of a subset A of a topological

space (X, τ) is defined as {x ∈ X : A∩U 6= ∅ for all regular open sets U containing x},
where a subset A is called regular open if A = int(cl(A)). A subset A of a topological
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space (X, τ) is called semiopen [12] (resp. preopen [14], α-open [15], β-open [1], b-open
[2], δ-preopen [17], δ-semiopen [16], e-open [10]) if A ⊆ cl(int(A)) (resp. A ⊆ int(cl(A)),
A ⊆ int(cl(int(A))), A ⊆ cl(int(clA)), A ⊆ cl(int(A)) ∪ int(cl(A)), A ⊆ int(clδ(A)),
A ⊆ cl(intδ(A)), A ⊆ int(clδ(A)) ∪ cl(intδ(A))). A point x ∈ X is in scl(A) (resp.
pcl(A)) if for each semi-open (resp. preopen) set U containing x, U ∩ A 6= ∅. A
point x ∈ X is called a θ-cluster [24] (resp. semi-θ-cluster [13]) point of A denoted by
clθ(A) (resp. sclθ(A)) if cl(A) ∩ U 6= ∅ (resp. scl(A) ∩ U 6= ∅) for every open (resp.
semi-open) set U containing x. A subset A is called θ-closed (resp. semi-θ-closed) if
clθ(A) = A (resp. sclθ(A) = A). The complement of a θ-closed (resp. semi-θ-closed) set
is called a θ-open (resp. semi-θ-open) set. The family of all θ-open sets in a topological
space forms a topology which is weaker than the original topology. For any topological
space (X, τ), the collection of all semi-open (resp. preopen, α-open, β-open, b-open,
δ-preopen, δ-semiopen, e-open, θ-open, semi-θ-open) sets are denoted by SO(X) (resp.
PO(X), αO(X), βO(X), BO(X), δPO(X), δSO(X), eO(X), θO(X), SθO(X)). We note
that each of these collections forms a GT on (X, τ).

It is easy to observe that iµ and cµ are idempotent and monotonic, where γ :
expX → expX is said to be idempotent if and only if for each A ⊆ X, γ(γ(A)) =
γ(A), and monotonic if and only if γ(A) ⊆ γ(B) whenever A ⊆ B ⊆ X. It is also well
known from [5, 8] that if µ is a GT on X and A ⊆ X, x ∈ X, then x ∈ cµ(A) if and
only if for each M ∈ µ with x ∈ M ⇒ M ∩ A 6= ∅ and that cµ(X \ A) = X \ iµ(A).

Hereafter, throughout the paper we shall use (X, τ) to mean a topological space and
(Y, µ), (Y, λ) to be generalized topological spaces unless otherwise stated.

2 Strongly faint (τ, µ)-continuous functions

Definition 2.1. A function f : (X, τ) → (Y, µ) is said to be strongly faint (τ, µ)-
continuous (resp. (τ, µ)-continuous [19]) if for each x ∈ X and each µ-open set V of
Y containing f(x), there exists a θ-open (resp. open) set U containing x such that
f(U) ⊆ V .

Theorem 2.2. For a function f : (X, τ) → (Y, µ), the followings are equivalent:
(i) f is strongly faint (τ, µ)-continuous;
(ii) f−1(V ) is θ-open in X for every µ-open set V of Y ;
(iii) f−1(F ) is θ-closed in X for every µ-closed set V of Y .

Proof: (i) ⇒ (ii) : Let V be a µ-open set of Y and x ∈ f−1(V ). Since f(x) ∈ V
and f is strongly (τ, µ)-continuous, there exists a θ-open set U of X containing x such
that f(U) ⊆ V . It then follows that x ∈ U ⊆ f−1(V ). Hence f−1(V ) is θ-open in X.

(ii) ⇒ (iii) : Obvious.
(iii) ⇒ (i) : Let x ∈ X and V be a µ-open set of Y containing f(x). Then by (iii),

f−1(Y \V ) = X \ f−1(V ) is θ-closed in X i.e., f−1(V ) is θ-open in X with x ∈ f−1(V ).
Thus there exists a θ-open set U containing x such that f(U) ⊆ V .

Remark 2.3. (i) It thus follows from the above theorem that if µ, λ be two GT’s on
Y such that µ ⊆ λ and if f : (X, τ) → (Y, λ) is strongly faint (τ, λ)-continuous then
f : (X, τ) → (Y, µ) is strongly faint (τ, µ)-continuous.
(ii) Let (Y, σ) be a topological space. Then we have
(a) σ ⊆ αO(Y ) ⊆ PO(Y ) ⊆ BO(Y ) ⊆ βO(Y );
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(b) σ ⊆ αO(Y ) ⊆ PO(Y ) ⊆ δPO(Y ) ⊆ eO(Y );
(c) σ ⊆ αO(Y ) ⊆ SO(Y ) ⊆ BO(Y ) ⊆ βO(Y );
(d) σ ⊆ αO(Y ) ⊆ SO(Y ) ⊆ eO(Y );
(e) θO(Y ) ⊆ SθO(Y ) ⊆ δSO(Y ) ⊆ SO(Y ).

Thus from Remark 2.3(i), we can deduce relations between different types of strongly
faint (τ, µ)-continuous functions.

Example 2.4. Let X = {a, b, c}, τ = {∅, X, {a}, {b, c}}, µ = {∅, {a, b}, {b, c}, X} and
λ = {∅, {b, c}}. Then µ and λ are two GT’s on X. The identity map f : (X, τ) →
(Y, λ) is strongly faint (τ, λ)-continuous but f : (X, τ) → (Y, µ) not is strongly faint
(τ, µ)-continuous.

We recall that a function f : ((Y, µ) → (Z, λ) is said to be a (µ, λ)-continuous [5] if
G ∈ λ implies that f−1(G) ∈ µ.

Theorem 2.5. If f : (X, τ) → (Y, µ) is strongly (τ, µ)-continuous and g : (Y, µ) →
(Z, λ) is (µ, λ)-continuous, then g ◦ f : (X, τ) → (Z, λ) is (τ, λ)-continuous.

Proof: Let G ∈ λ. Then g−1(G) is µ-open in Y . Hence (g ◦f)−1(G) = f−1(g−1(G))
is θ-open in X.

We recall that for any subset A of a topological space (X, τ), the θ-frontier of A [11]
is denoted by Fr

θ
(A) and defined by Fr

θ
(A) = cl

θ
(A) ∩ cl

θ
(X \ A).

Theorem 2.6. Let (X, τ) be a regular space. Then the set of all points x ∈ X at which
the function f : (X, τ) → (Y, µ) is not strongly (τ, µ)-continuous is identical with the
union of θ-frontier of the inverse images of µ-open subsets of Y containing f(x).

Proof: Suppose that f is not strongly (τ, µ)-continuous at x ∈ X. Then there exists
a µ-open set V of Y containing f(x) such that for each θ-open set U of X containing x,
f(U) * V . So U∩(X\f−1(V )) 6= ∅ for each θ-open set U of X containing x. Since X is
regular, x ∈ cl

θ
(X \ f−1(V )). Also, x ∈ f−1(V ) ⊆ cl

θ
(f−1(V )). Thus x ∈ Fr

θ
(f−1(V )).

Conversely, suppose that x ∈ Fr
θ
(f−1(V )) for some µ-open set V of Y containing

f(x). If possible, let f be strongly (τ, µ)-continuous at x. Then there exists a θ-
open set U of X containing x such that f(U) ⊆ V . Thus U ⊆ f−1(V ) and hence
x ∈ int

θ
(f−1(V )) ⊆ X \ Fr

θ
(f−1(V )). This is a contradiction. Thus f is strongly

(τ, µ)-continuous at x.

Definition 2.7. (i) A GTS (X, µ) is called
(i) µ-connected [22] if X cannot be written as union of two nonempty disjoint µ-open
sets.
(ii) µ-compact [20] if every µ-open cover of X has a finite subcover. A subset A of X
is said to be µ-compact relative to (X, µ) if every cover of A by µ-open sets of X has a
finite subcover.

Definition 2.8. A topological space (X, τ) is said to be
(i) θ-connected [11] if it can not be written as union of two nonempty disjoint θ-open
sets.
(ii) A subset A of a space (X, τ) is said to be θ-compact relative to (X, τ) [21] if every
cover of A by θ-open subsets of A has a finite subcover.
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It should be mentioned that θ-connected is equivalent with connected (see [11].

Theorem 2.9. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous surjection
and (X, τ) is θ-connected, then (Y, µ) is µ-connected.

Proof: Let us assume that (Y, µ) be not µ-connected. Then there exist nonempty
disjoint µ-open sets G1 and G2 such that Y = G1 ∪ G2 . Since f is strongly (τ, µ)-
continuous, f−1(G1) and f−1(G2) are θ-open in X (by Theorem 2.2). Also f−1(G1) ∩
f−1(G2) = ∅ and X = f−1(G1)∪f−1(G2). Thus X is not θ-connected - a contradiction
and hence (Y, µ) is µ-connected.

Theorem 2.10. If f : (X, τ) → (Y, µ) is strongly faint (τ, µ)-continuous then f(K) is
µ-compact relative to (Y, µ) for each subset K which is θ-compact relative to (X, τ).

Proof: Let {Vα : α ∈ Λ} be a cover of f(K) by µ-open sets of f(K). Then for each
x ∈ K, there exists αx ∈ Λ such that f(x) ∈ Vαx

. Since f is strongly (τ, µ)-continuous,
there exists a θ-open set Ux containing x such that f(Ux) ⊆ Vαx

. Then the family
{Ux : x ∈ K} is a cover of K by θ-open sets of (X, τ). Since K is θ-compact relative
to X, there exists a finite subset K0 of K such that K ⊆ ∪{Ux : x ∈ K0}. Thus
f(K) ⊆ ∪{f(Ux) : x ∈ K0} ⊆ ∪{Vαx

: x ∈ K0}. Thus f(K) is µ-compact relative to
(Y, µ).

Theorem 2.11. The surjective strongly faint (τ, µ)-continuous image of a θ-compact
space is µ-compact.

Proof: Follows from the above theorem.

3 Separation axioms

Definition 3.1. (a) A GTS (X, µ) is said to be
(i) µ-T1 [18] if x, y ∈ X, x 6= y implies the existence of K, K1 ∈ µ such that x ∈ K,
y 6∈ K and x 6∈ K1, y ∈ K1.
(ii) µ-T2 [9] if for any pair of distinct points x, y ∈ X, there exist two disjoint µ-open
sets U and V such that x ∈ U and y ∈ V .
(b) A topological space (X, τ) is called
(i) θ-T1 [6] if for any pair of distinct points x, y ∈ X there exist θ-open sets U and V
in X containing x and y respectively such that x 6∈ V and y 6∈ U .
(ii) θ-T2 [23] if for any pair of distinct points x, y ∈ X there exist disjoint θ-open sets
U and V in X containing x and y respectively.

We recall [6] that a space (X, τ) is T2 if and only if it is θ-T1.

Theorem 3.2. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous injection and
(Y, µ) is a µ-T1 space then X is a θ-T1 (i.e., T2) space.

Proof: Suppose that (Y, µ) is a µ-T1 space. Then for any pair of distinct points
x and y in X, there exist µ-open sets V1 , V2 of Y such that f(x) ∈ V1 , f(y) ∈ V2 ,
f(x) 6∈ V2 , f(y) 6∈ V1 . Since f is strongly faint (τ, µ)-continuous, f−1(V1) and f−1(V2)
are θ-open subsets of (X, τ) such that x ∈ f−1(V1), y ∈ f−1(V2), x 6∈ f−1(V2) and
y 6∈ f−1(V1). This shows that X is a θ-T1 space (equivalently a Hausdorff space).

It is known from [6] that If (X, τ) is θ-T2 then it is Urysohn.
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Theorem 3.3. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous injection and
(Y, µ) is a µ-T2 space then X is a θ-T2 space (and hence Urysohn).

Proof: Let us assume that Y be µ-T2. For any pair of distinct points x and y in
X, there exist µ-open sets V1 and V2 in Y such that f(x) ∈ V1 and f(y) ∈ V2 with
V1 ∩ V2 = ∅. Since f is strongly faint (τ, µ)-continuous, f−1(V1) and f−1(V2) are θ-
open in X containing x and y, respectively. Therefore, f−1(V2) ∩ f−1(V2) = ∅ because
V1 ∩ V2 = ∅. This shows that X is θ-T2.

Theorem 3.4. If f, g : (X, τ) → (Y, µ) are strongly faint (τ, µ)-continuous function
and (Y, µ) is a µ-T2 space, then E = {x ∈ X : f(x) = g(x)} is closed in X.

Proof: Suppose that x 6∈ E. Then f(x) 6= g(x). Since (Y, µ) is µ-T2, there exist
disjoint µ-open sets V1 and V2 in Y containing f(x) and g(x) respectively. Since f and
g are strongly faint (τ, µ)-continuous, there exist θ-open sets U1 and U2 of X containing
x such that f(U1) ⊆ V1 and g(U2) ⊆ V2 . Set D = U1 ∩ U2 . Then D ∩ E = ∅, with D
a θ-open subset and hence an open subset containing x. Then x 6∈ cl(E) and thus E is
closed in X.

Definition 3.5. A GTS (X, µ) is said to be
(i) µ-regular [18] if for each µ-closed set F and each point x 6∈ F , there exist disjoint
µ-open sets U and V such that x ∈ U , F ⊆ V .
(ii) µ-normal [18] if for any two disjoint µ-closed subsets F and K, there exist disjoint
µ-open sets U and V such that F ⊆ U , K ⊆ V .

Definition 3.6. A topological space (X, τ) is said to be
(i) θ-regular [4] if for each θ-closed set F and each point x 6∈ F , there exist disjoint
θ-open sets U and V such that x ∈ U , F ⊆ V .
(ii) θ-normal [4] if for any two disjoint θ-closed subsets F and K, there exist disjoint
θ-open sets U and V such that F ⊆ U , K ⊆ V .

Definition 3.7. A function f : (X, µ) → (Y, σ) is called (τ
θ
, µ)-open if for each θ-open

set V in X, f(V ) is µ-open in (Y, µ).

Theorem 3.8. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous (τ
θ
, µ)-open

injection from a regular space (X, τ) onto a space (Y, µ), then (Y, µ) is µ-regular.

Proof: Let F be a µ-closed subset of Y and y 6∈ F . Take y = f(x). Since f is
strongly faint (τ, µ)-continuous, f−1(F ) is θ-closed in X such that f−1(y) = x 6∈ f−1(F ).
Take G = f−1(F ). Thus we have x 6∈ G. Since X is θ-regular, then there exist disjoint
θ-open sets U and V in X such that G ⊆ U and x ∈ V . So F = f(G) ⊆ f(U) and
y = f(x) ∈ f(V ) such that f(U) and f(V ) are disjoint µ-open sets. This shows that Y
is µ-regular.

Theorem 3.9. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous (τ
θ
, µ)-open

injection from a θ-normal space (X, τ) onto a space (Y, µ), then Y is µ-normal.

Proof: Let F1 and F2 be disjoint µ-closed subsets of Y . Since f is strongly faint
(τ, µ)-continuous, f−1(F1) and f−1(F2) are θ-closed sets. Take V1 = f−1(F1) and V2 =
f−1(F2). So we have V1 ∩ V2 = ∅. Since X is θ-normal, there exist disjoint θ-open
sets G1 and G2 such that V1 ⊆ G1 and V2 ⊆ G2 . Thus F1 = f(V1) ⊆ f(G1) and
F2 = f(V2) ⊆ f(G2) such that f(G1) and f(G2) are disjoint µ-open sets and hence Y
is µ-normal.
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Definition 3.10. A graph G(f) of a function f : (X, τ) → (Y, µ) is said to be (µ, θ)-
closed if for each (x, y) ∈ (X × Y ) \ G(f), there exist a θ-open U set of X containing
x and a µ-open set V of Y containing y such that (U × V ) ∩G(f) = ∅.

Lemma 3.11. A graph G(f) of a function f : (X, τ) → (Y, µ) is (µ, θ)-closed in X×Y
if and only if for each (x, y) ∈ (X×Y )\G(f), there exist a θ-open set U of X containing
x and a µ-open set V of Y containing y such that f(U) ∩ V = ∅.

Theorem 3.12. If f : (X, τ) → (Y, µ) is a strongly faint (τ, µ)-continuous function
and (Y, µ) is µ-T2, then G(f) is (µ, θ)-closed.

Proof: Let (x, y) ∈ (X × Y ) \ G(f), then f(x) 6= y. Since Y is µ-T2, there exist
disjoint µ-open sets V1 and V2 in Y such that f(x) ∈ V1 and y ∈ V2 . Since f is strongly
faint (τ, µ)-continuous, f−1(V1) is θ-open in X containing x. Take U1 = f−1(V1). We
then have f(U1) ⊆ V1 . Hence f(U1) ∩ V2 = ∅. This shows that G(f) is (µ, θ)-closed.

Theorem 3.13. Let f : (X, τ) → (Y, µ) be such that it has a (µ, θ)-closed graph
G(f). If f is a strongly faint (τ, µ)-continuous injection, then (X, τ) is θ-T2 (and hence
Urysohn).

Proof: Let x and y be any two distinct points of X. Then since f is injective, we
have f(x) 6= f(y). Thus (x, f(y)) ∈ (X × Y ) \ G(f). By Lemma 3.11, there exist a θ-
open set U of X and a µ-open set V of Y such that (x, f(y)) ∈ U×V and f(U)∩V = ∅.
Hence U ∩ f−1(V ) = ∅ and y 6∈ U . Since f is strongly faint (τ, µ)-continuous, there
exists a θ-open set W of X containing y such that f(W ) ⊆ V . Therefore, we have
f(U) ∩ f(W ) = ∅. Since f is injective, we obtain U ∩W = ∅. This implies that X is
θ-T2.

Theorem 3.14. Let (Y, µ) be QTS. If f : (X, τ) → (Y, µ) has a (µ, θ)-closed graph,
then f(K) is µ-closed in (Y, µ) for each subset K which is θ-compact relative to X.

Proof: Suppose that y 6∈ f(K). Then (x, y) 6∈ G(f) for each x ∈ K. Since G(f) is
(µ, θ)-closed, there exist a θ-open Ux of X containing x and a µ-open Vx of Y containing
y such that f(Ux)∩Vx = ∅ (by Lemma 3.11). Then the family {Ux : x ∈ K} is a cover
of K by θ-open sets. Since K is θ-compact relative to (X, τ), there exists a finite subset
K0 of K such that K ⊆ ∪{Ux : x ∈ K0}. Set V = ∩{Vx : x ∈ K0}. Then V is a
µ-open set in Y containing y. Therefore we have f(K) ∩ V ⊆ ∪[f(Ux) : x ∈ K0 ] ∩ V ⊆
∪[f(Ux) ∩ V : x ∈ K0 ] = ∅. It then follows that y 6∈ cµ(f(K)). Therefore, f(K) is
µ-closed in (Y, µ).

Corollary 3.15. Let (Y, µ) be a QTS. If f : (X, τ) → (Y, µ) is strongly faint (τ, µ)-
continuous and (Y, µ) is µ-T2, then f(K) is µ-closed in (Y, µ) for each subset K which
is θ-compact relative to (X, τ).

Proof: The proof follows from Theorems 3.12 and 3.14.
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[5] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96,
351-357, 2002.
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