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1 Introduction

Uncertainties, which could be caused by information incompleteness, data randomness
limitations of measuring instruments, etc., are pervasive in many complicated problems
in biology, engineering, economics, environment, medical science and social science. We
cannot successfully use the classical methods for these problems. To solve this problem,
the concept of fuzzy sets was introduced by Zadeh [15] in 1965 where each element have
a degree of membership and has been extensively applied to many scientific fields. As a
generalization of fuzzy sets, the intuitionistic fuzzy set was introduced by Atanassov [1]
in 1986, where besides the degree of membership of each element there was considered
a degree of non-membership with (membership value + non-membership value) ≤ 1.

There are also several well-known theories, for instances, rough sets, vague sets,
interval-valued sets etc. which can be considered as mathematical tools for dealing with
uncertainties. In 1995, inspired from the sport games (winning/tie/defeating), votes,
from (yes/NA/no), from decision making (making a decision/ hesitating/not making),
from (accepted/pending/rejected) etc. and guided by the fact that the law of excluded
middle did not work any longer in the modern logics, F. Smarandache [14] combined
the non-standard analysis [4, 11] with a tri-component logic/set/probability theory and
with philosophy and introduced Neutrosophic set which represents the main distinction
between fuzzy and intuitionistic fuzzy logic/set. Here he included the middle compo-
nent. i.e. the neutral/ indeterminate/unknown part (besides the truth/membership

1Corresponding Author



Journal of New Results in Science 6 (2014) 51-61 52

and falsehood/non-membership components that both appear in fuzzy logic/set) to
distinguish between ’absolute membership and relative membership’ or ’absolute non-
membership and relative non-membership’(see, [6, 13]). There are also several authors
[2, 3, 8] who have enriched the theory of neutrosophic sets.

Inspired from the above idea and motivated by the fact that ’semirings arise natu-
rally in combinatorics, mathematical modelling, graph theory, automata theory, parallel
computation system etc.’, in the paper, I have used that to study the ideals, which play
a central role in the structure theory and useful for many purposes, of Γ-semirings[10]
- a generalization of semirings [5, 7] and obtain some of its characterizations.

2 Preliminaries

We recall the following results for subsequent use.

Definition 2.1. Let S and Γ be two additive commutative semigroups with zero. Then
S is called a Γ-semiring if there exists a mapping S × Γ × S → S ( (a,α,b) 7→ aαb)
satisfying the following conditions:

(i) (a + b)αc = aαc + bαc

(ii) aα(b + c) = aαb + aαc

(iii) a(α + β)b = aαb + aβb

(iv) aα(bβc) = (aαb)βc

(v) 0Sαa = 0S = aα0S

(vi) a0Γb = 0S = b0Γa

for all a, b, c ∈ S and for all α, β ∈ Γ.
For simplification we write 0 instead of 0S and 0Γ.

Definition 2.2. A left ideal I of Γ-semiring S is a nonempty subset of S satisfying the
following conditions:

(i) If a, b ∈ I then a + b ∈ I

(ii) If a ∈ I, s ∈ S and γ ∈ Γ then sγa ∈ I

(iii) I 6= S.

A right ideal of S is defined in an analogous manner and an ideal of S is a nonempty
subset which is both a left ideal and a right ideal of S.

Definition 2.3. Let R, S be two Γ-semirings and a, b ∈ R, γ ∈ Γ. A function f : R →
S is said to be a homomorphism if

(i) f(a + b) = f(a) + f(b)

(ii) f(aγb) = f(a)γf(b)
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(iii) f(0R) = 0S where 0R and 0S are the zeroes of R and S respectively.

Definition 2.4. A neutrosophic set A on the universe of discourse X is defined as
A = {< x, AT (x), AI(x), AF (x) >, x ∈ X}, where AT , AI , AF : X →]−0, 1+[ and −0 ≤
AT (x) + AI(x) + AF (x) ≤ 3+ . From philosophical point of view, the neutrosophic set
takes the value from real standard or non-standard subsets of ]−0, 1+[. But in real life
application in scientific and engineering problems it is difficult to use neutrosophic set
with value from real standard or non-standard subset of ]−0, 1+[. Hence we consider the
neutrosophic set which takes the value from the subset of [0, 1].

3 Main Results

Throughout this section unless otherwise mentioned S denotes a Γ-semiring.

Definition 3.1. Let µ = (µT , µI , µF ) be a non-empty neutrosophic subset of a Γ-
semiring S (i.e. anyone of µT (x), µI(x) or µF (x) not equal to zero for some x ∈ S).
Then µ is called a neutrosophic left ideal of S if

(i) µT (x + y) ≥ min{µT (x), µT (y)}, µT (xγy) ≥ µT (y)

(ii) µI(x + y) ≥ µI(x)+µI(y)
2

, µI(xγy) ≥ µI(y)

(iii) µF (x + y) ≤ max{µF (x), µF (y)}, µF (xγy) ≤ µF (y).

for all x, y ∈ S and γ ∈ Γ.
Similarly we can define neutrosophic right ideal of S.

Example 3.2. Let S be the additive commutative semigroup of all non-positive integers
and Γ be the additive commutative semigroup of all non-positive even integers. Then S
is a Γ-semiring if aγb denotes the usual multiplication of integers a, γ, b where a, b ∈ S
and γ ∈ Γ. Define a neutrosophic subset µ of S as follows

µ(x) =





(1, 0, 0) if x = 0
(0.8, 0.3, 0.4) if x is even
(0.3, .02, 0.7) if x is odd

Then the neutrosophic set µ of S is a neutrosophic ideal of S.

Theorem 3.3. A neutrosophic set µ of a Γ-semiring S is a neutrosophic left ideal of
S if and only if any level subsets µT

t := {x ∈ S : µT (x) ≥ t, t ∈ [0, 1]}, µI
t := {x ∈ S :

µI(x) ≥ t, t ∈ [0, 1]} and µF
t := {x ∈ S : µF (x) ≤ t, t ∈ [0, 1]} are left ideals of S.

Proof. Assume that the neutrosophic set µ of S is a neutrosophic left ideal of S. Then
anyone of µT , µI or µF is not equal to zero for some x ∈ S i.e., in other words anyone
of µT

t , µI
t or µF

t is not equal to zero for all t ∈ [0, 1]. So it is sufficient to consider that
all of them are not equal to zero.
Suppose x, y ∈ µt = (µT

t , µI
t , µF

t ), s ∈ S and γ ∈ Γ. Then

µT (x + y) ≥ min{µT (x), µT (y)} ≥ min{t, t} = t

µI(x + y) ≥ µI(x)+µI(y)
2

≥ t+t
2

= t
µF (x + y) ≤ max{µF (x), µF (y)} ≤ max{t, t} = t
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which implies x + y ∈ µT
t , µI

t , µ
F
t i.e., x + y ∈ µt. Also

µT (sγx) ≥ µT (x) ≥ t
µI(sγx) ≥ µI(x) ≥ t
µF (sγx) ≤ µF (x) ≤ t

Hence sγx ∈ µt.
Therefore µt is a left ideal of S.
Conversely, suppose µt(6= φ) is a left ideal of S. If possible µ is not a neutrosophic left
ideal. Then for x, y ∈ S anyone of the following inequality is true.

µT (x + y) < min{µT (x), µT (y)}
µI(x + y) < µI(x)+µI(y)

2

µF (x + y) > max{µF (x), µF (y)}
For the first inequality, choose t1 = 1

2
[µT (x+y)+min{µT (x), µT (y)}]. Then µT (x+y) <

t1 < min{µT (x), µT (y)} which implies x, y ∈ µT
t1

but x + y 6∈ µT
t1

- a contradiction.
For the second inequality, choose t2 = 1

2
[µI(x+y)+min{µI(x), µI(y)}]. Then µI(x+y) <

t2 < µI(x)+µI(y)
2

which implies x, y ∈ µI
t2

but x + y 6∈ µI
t2

- a contradiction.
For the third inequality, choose t3 = 1

2
[µF (x + y) + max{µF (x), µF (y)}]. Then µF (x +

y) > t3 > max{µF (x), µF (y)} which implies x, y ∈ µF
t3

but x+y 6∈ µF
t3

- a contradiction.
So, in any case we have a contradiction to the fact that µt is a left ideal of S.
Hence the result follows.

Definition 3.4. [9] Let µ and ν be two neutrosophic subsets of S. The intersection of
µ and ν is defined by

(µT ∩ νT )(x) = min{µT (x), νT (x)}
(µI ∩ νI)(x) = min{µI(x), νI(x)}

(µF ∩ νF )(x) = max{µF (x), νF (x)}
for all x ∈ S.

Proposition 3.5. Intersection of a non-empty collection of neutrosophic left ideals is
also a neutrosophic left ideal of S.

Proof. Let {µi : i ∈ I} be a non-empty family of neutrosophic left ideals of a Γ-semiring
S and x, y ∈ S, γ ∈ Γ. Then

( ∩
i∈I

µT
i )(x + y) = inf

i∈I
µT

i (x + y) ≥ inf
i∈I
{min{µT

i (x), µT
i (y)}}

= min{inf
i∈I

µT
i (x), inf

i∈I
µT

i (y)}
= min{( ∩

i∈I
µT

i )(x), ( ∩
i∈I

µT
i )(y)}.

( ∩
i∈I

µI
i )(x + y) = inf

i∈I
µI

i (x + y) ≥ inf
i∈I

µI
i (x)+µI

i (y)

2

=
inf
i∈I

µI
i (x)+inf

i∈I
µI

i (y)

2

=
∩

i∈I
µI

i (x)+ ∩
i∈I

µI
i (y)

2
.
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( ∩
i∈I

µF
i )(x + y) = sup

i∈I
µF

i (x + y) ≤ sup
i∈I

{max{µF
i (x), µF

i (y)}}
= max{sup

i∈I
µF

i (x), sup
i∈I

µF
i (y)}

= max{( ∩
i∈I

µF
i )(x), ( ∩

i∈I
µF

i )(y)}.

( ∩
i∈I

µT
i )(xγy) = inf

i∈I
µT

i (xγy) ≥ inf
i∈I

µT
i (y) = ( ∩

i∈I
µT

i )(y).

( ∩
i∈I

µI
i )(xγy) = inf

i∈I
µI

i (xγy) ≥ inf
i∈I

µI
i (y) = ( ∩

i∈I
µI

i )(y).

( ∩
i∈I

µF
i )(xγy) = sup

i∈I
µF

i (xγy) ≤ sup
i∈I

µF
i (y) = ( ∩

i∈I
µF

i )(y).

Hence ∩
i∈I

µi is a neutrosophic left ideal of S.

Proposition 3.6. Let f : R → S be a morphism of Γ-semirings. Then

(i) If φ is a neutrosophic left ideal of S, then f−1(φ) [12] is a neutrosophic left ideal
of R.

(ii) If f is surjective morphism and µ is a neutrosophic left ideal of R, then f(µ) [12]
is a neutrosophic left ideal of S.

Proof. Let f : R → S be a morphism of Γ-semirings.
(i) Let φ be a neutrosophic left ideal of S and r, s ∈ R, γ ∈ Γ.

f−1(φT )(r + s) = φT (f(r + s)) = φT (f(r) + f(s))
≥ min{φT (f(r)), φT (f(s))} = min{(f−1(φT ))(r), (f−1(φT ))(s)}.

f−1(φI)(r + s) = φI(f(r + s)) = φI(f(r) + f(s))

≥ φI(f(r))+φI(f(s))
2

= (f−1(φI))(r)+(f−1(φI))(s)
2

.

f−1(φF )(r + s) = φF (f(r + s)) = φF (f(r) + f(s))
≤ max{φF (f(r)), φF (f(s))} = max{(f−1(φF ))(r), (f−1(φF ))(s)}.

Again
(f−1(φT ))(rγs) = φT (f(rγs)) = φT (f(r)γf(s))

≥ φT (f(s)) = (f−1(φT ))(s).

(f−1(φI))(rγs) = φI(f(rγs)) = φI(f(r)γf(s))
≥ φI(f(s)) = (f−1(φI))(s).

(f−1(φF ))(rγs) = φF (f(rγs)) = φF (f(r)γf(s))
≤ φF (f(s)) = (f−1(φF ))(s).

Thus f−1(φ) is a neutrosophic left ideal of R.
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(ii) Suppose µ be a neutrosophic left ideal of R and x
′
, y

′ ∈ S, γ ∈ Γ. Then

(f(µT ))(x
′
+ y

′
) = sup µT (z)

z∈f−1(x
′
+y

′
)

≥ sup µT (x + y)
x∈f−1(x

′
),y∈f−1(y

′
)

≥ sup{min{µT (x), µT (y)}}

= min{sup µT (x)
x∈f−1(x

′
)

, sup µT (y)
y∈f−1(y

′
)

} = min{(f(µT ))(x
′
), (f(µT ))(y

′
)}.

(f(µI))(x
′
+ y

′
) = sup µI(z)

z∈f−1(x′+y′ )
≥ sup µI(x + y)

x∈f−1(x′ ),y∈f−1(y′ )
≥ sup µI(x)+µI(y)

2

= 1
2
[sup µI(x)

x∈f−1(x′ )
+ sup µI(y)

y∈f−1(y′ )
] = 1

2
[(f(µI))(x

′
) + (f(µI))(y

′
)].

(f(µF ))(x
′
+ y

′
) = inf µF (z)

z∈f−1(x′+y′ )
≤ inf µF (x + y)

x∈f−1(x′ ),y∈f−1(y′ )
≤ inf{max{µF (x), µF (y)}}

= max{inf µF (x)
x∈f−1(x′ )

, inf µF (y)
y∈f−1(y′ )

} = max{(f(µF ))(x
′
), (f(µF ))(y

′
)}.

Again
f(µT )(x

′
γy

′
) = sup µT (z)

z∈f−1(x
′
γy
′
)

≥ sup µT (xγy)
x∈f−1(x

′
),y∈f−1(y

′
)

≥ sup µT (y)
y∈f−1(y

′
)

= f(µT )(y
′
).

f(µI)(x
′
γy

′
) = sup µI(z)

z∈f−1(x′γy′ )
≥ sup µI(xγy)

x∈f−1(x′ ),y∈f−1(y′ )

≥ sup µI(y)
y∈f−1(y′ )

= f(µI)(y
′
).

f(µF )(x
′
γy

′
) = inf µF (z)

z∈f−1(x
′
γy
′
)

≤ inf µF (xγy)
x∈f−1(x

′
),y∈f−1(y

′
)

≤ inf µF (y)
y∈f−1(y

′
)

= f(µF )(y
′
).

Thus f(µ)is a neutrosophic left ideal of S.

Definition 3.7. [9] Let µ and ν be two neutrosophic subsets of S. The cartesian product
of µ and ν is defined by

(µT × νT )(x, y) = min{µT (x), νT (y)}

(µI × νI)(x, y) =
µI(x) + νI(y)

2

(µF × νF )(x, y) = max{µF (x), νF (y)}
for all x, y ∈ S.

Theorem 3.8. Let µ and ν be two neutrosophic left ideals of S. Then µ × ν is a
neutrosophic left ideal of S × S.
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Proof. Let (x1, x2), (y1, y2) ∈ S × S and γ ∈ Γ. Then

(µT × νT )((x1, x2) + (y1, y2)) = (µT × νT )(x1 + y1, x2 + y2)
= min{µT (x1 + y1), ν

T (x2 + y2)}
≥ min{min{µT (x1), µ

T (y1)}, min{νT (x2), ν
T (y2)}}

= min{min{µT (x1), ν
T (x2)}, min{µT (y1), ν

T (y2)}}
= min{(µT × νT )(x1, x2), (µ

T × νT )(y1, y2)}.

(µI × νI)((x1, x2) + (y1, y2)) = (µI × νI)(x1 + y1, x2 + y2)

= µI(x1+y1)+νI(x2+y2)
2

≥ 1
2
{µI(x1)+µI(y1)

2
+ νI(x2)+νI(y2)

2
}

= 1
2
{µI(x1)+νI(x2)

2
+ µI(y1)+νI(y2)

2
}

= 1
2
{(µI × νI)(x1, x2) + (µI × νI)(y1, y2)}.

(µF × νF )((x1, x2) + (y1, y2)) = (µF × νF )(x1 + y1, x2 + y2)
= max{µF (x1 + y1), ν

F (x2 + y2)}
≤ max{max{µF (x1), µ

F (y1)}, max{νF (x2), ν
F (y2)}}

= max{max{µF (x1), ν
F (x2)}, max{µF (y1), ν

F (y2)}}
= max{(µF × νF )(x1, x2), (µ

F × νF )(y1, y2)}.

(µT × νT )((x1, x2)γ(y1, y2)) = (µT × νT )(x1γy1, x2γy2) = min{µT (x1γy1), ν
T (x2γy2)}

≥ min{µT (y1), ν
T (y2)} = (µT × νT )(y1, y2).

(µI × νI)((x1, x2)γ(y1, y2)) = (µI × νI)(x1γy1, x2γy2) = µI(x1γy1)+νI(x2γy2)
2

≥ µI(y1)+νI(y2)
2

= (µI × νI)(y1, y2).

(µF × νF )((x1, x2)γ(y1, y2)) = (µF × νF )(x1γy1, x2γy2) = max{µF (x1γy1), ν
F (x2γy2)}

≤ max{µF (y1), ν
F (y2)} = (µF × νF )(y1, y2).

Hence µ× ν is a neutrosophic left ideal of S × S.

Theorem 3.9. Let µ be a neutrosophic subset of S. Then µ is a neutrosophic left ideal
of S if and only if µ× µ is a neutrosophic left ideal of S × S.

Proof. Suppose µ be a neutrosophic subset of S. If µ is a neutrosophic left ideal of S
then by Theorem 3.8, µ× µ is a neutrosophic left ideal of S × S.
Conversely, suppose µ × µ is a neutrosophic left ideal of S × S and x1, x2, y1, y2 ∈ S,
γ ∈ Γ. Then

min{µT (x1 + y1), µ
T (x2 + y2)} = (µT × µT )(x1 + y1, x2 + y2)

= (µT × µT )((x1, x2) + (y1, y2))
≥ min{(µT × µT )(x1, x2), (µ

T × µT )(y1, y2)}
= min{min{µT (x1), µ

T (x2)}, min{µT (y1), µ
T (y2)}}.
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µI(x1+y1)+µI(x2+y2)
2

= (µI × µI)(x1 + y1, x2 + y2)
= (µI × µI)((x1, x2) + (y1, y2))

≥ (µI×µI)(x1,x2)+(µI×µI)(y1,y2)
2

= 1
2
[µI(x1)+µI(x2)

2
+ µI(y1)+µI(y2)

2
].

max{µF (x1 + y1), µ
F (x2 + y2)} = (µF × µF )(x1 + y1, x2 + y2)

= (µF × µF )((x1, x2) + (y1, y2))
≤ max{(µF × µF )(x1, x2), (µ

F × µF )(y1, y2)}
= max{max{µF (x1), µ

F (x2)}, max{µF (y1), µ
F (y2)}}.

Now, putting x1 = x, x2 = 0, y1 = y and y2 = 0, in the above inequalities and noting
that µT (0) ≥ µT (x), µI(0) = 0 and µF (0) ≤ µF (x) for all x ∈ S we obtain

µT (x + y) ≥ min{µT (x), µT (y)}
µI(x + y) ≥ µI(x)+µI(y)

2

µF (x + y) ≤ max{µF (x), µF (y)}.

Next, we have

min{µT (x1γy1), µ
T (x2γy2)} = (µT × µT )(x1γy1, x2γy2) = (µT × µT )((x1, x2)γ(y1, y2))

≥ (µT × µT )(y1, y2) = min{µT (y1), µ
T (y2)}.

µI(x1γy1)+νI(x2γy2)
2

= (µI × µI)((x1, x2)γ(y1, y2))
≥ (µI × µI)(y1, y2)

= µI(y1)+µI(y2)
2

.

max{µF (x1γy1), µ
F (x2γy2)} = (µF × µF )(x1γy1, x2γy2) = (µF × µF )((x1, x2)γ(y1, y2))

≤ (µF × µF )(y1, y2) = max{µF (y1), µ
F (y2)}.

Taking x1 = x, x2 = 0, y1 = y and y2 = 0, we obtain

µT (xγy) ≥ µT (y)
µI(xγy) ≥ µI(y)
µF (xγy) ≤ µF (y).

Hence µ is a neutrosophic left ideal of S.

Definition 3.10. Let µ and ν be two neutrosophic sets of a Γ-semiring S. Define
composition of µ and ν by

µT oνT (x) = sup

x=

n∑
i=1

aiγibi

{min
i
{µT (ai), ν

T (bi)}}

= 0, if x cannot be expressed as above
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µIoνI(x) = sup

x=

n∑
i=1

aiγibi

∑n
i=1

µI(ai)+νI(bi)
2

= 0, if x cannot be expressed as above

µF oνF (x) = inf

x=

n∑
i=1

aiγibi

{max
i
{µF (ai), ν

F (bi)}}

= 0, if x cannot be expressed as above

where x, ai, bi ∈ S and γi ∈ Γ, for i = 1, ..., n.

Theorem 3.11. If µ and ν be two neutrosophic left ideals of S then µoν is also a
neutrosophic left ideal of S.

Proof. Suppose µ, ν be two neutrosophic ideals of S and x, y ∈ S, γ ∈ Γ. If x + y
cannot be expressed as

∑n
i=1 aiγibi, for ai, bi ∈ S and γi ∈ Γ, then there is nothing to

prove. So, assume that x + y have such an expression. Then

(µT oνT )(x + y)
= sup

x+y=

n∑
i=1

aiγibi

{min
i
{µT (ai), ν

T (bi)}}

≥ sup

x=

n∑
i=1

ciδidi, y =
n∑

i=1

eiηifi

{min
i
{µT (ci), ν

T (di), µ
T (ei), ν

T (fi)}}

= min{ sup

x=

n∑
i=1

ciδidi

{min
i
{µT (ci), ν

T (di)}}, sup

y=

n∑
i=1

eiηifi

{min
i
{µT (ei), ν

T (fi)}}}

= min{(µT oνT )(x), (µT oνT )(y)}.

(µIoνI)(x + y)

= sup

x+y=

n∑
i=1

aiγibi

∑n
i=1

µI(ai)+νI(bi)
2

≥ sup

x=

n∑
i=1

ciδidi, y =
n∑

i=1

eiηifi

∑n
i=1

µI(ci)+νI(di)+µI(ei)+νI(fi)
2

≥ 1
2
[ sup

x=

n∑
i=1

ciδidi

∑n
i=1

µI(ci)+νI(di)
2

, sup

y=

n∑
i=1

eiηifi

∑n
i=1

µI(ei)+νI(fi)
2

]

= (µIoνI)(x)+(µIoνI)(y)
2

.
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(µF oνF )(x + y)
= inf

x+y=

n∑
i=1

aiγibi

{max
i
{µF (ai), ν

F (bi)}}

≤ inf

x=

n∑
i=1

ciδidi, y =
n∑

i=1

eiηifi

{max
i
{µF (ci), ν

F (di), µ
F (ei), ν

F (fi)}}

= max{ inf

x=

n∑
i=1

ciδidi

{max
i
{µF (ci), ν

F (di)}}, inf

y=

n∑
i=1

eiηifi

{max
i
{µF (ei), ν

F (fi)}}}

= max{(µF oνF )(x), (µF oνF )(y)}.
(µT oνT )(xγy) = sup

xγy=

n∑
i=1

aiαibi

{min
i
{µT (ai), ν

T (bi)}}

≥ sup

xγy=

n∑
i=1

xγeiηifi

{min
i
{µT (xγei), ν

T (fi)}}

≥ sup

y=

n∑
i=1

eiηifi

{min
i
{µT (ei), ν

T (fi)}} = (µT oνT )(y).

(µIoνI)(xγy) = sup

xγy=

n∑
i=1

aiαibi

∑n
i=1

µI(ai)+νI(bi)
2

≥ sup

xγy=

n∑
i=1

xγeiηifi

∑n
i=1

µI(xγei)+νI(fi)
2

≥ sup

y=

n∑
i=1

eiηifi

∑n
i=1

µI(ei)+νI(fi)
2

= (µIoνI)(y).

(µF oνF )(xγy) = inf

xγy=

n∑
i=1

aiαibi

{max
i
{µF (ai), ν

F (bi)}}

≤ inf

xγy=

n∑
i=1

xγeiηifi

{max
i
{µF (xγei), ν

F (fi)}}

≤ inf

y=

n∑
i=1

eiηifi

{max
i
{µF (ei), ν

F (fi)}} = (µF oνF )(y).

Hence µoν is a neutrosophic left ideal of S.
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4 Conclusion

In this paper, we have studied neutrosophic ideals of Γ-semirings in the sense of
Smarandache[14] with some operations on them and obtain some of its characteri-
zations. Our next aim is to use these results to study some other properties such prime
neutrosophic ideal, semiprime neutrosophic ideal, radicals etc..
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