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Abstract - In this paper we introduce the notion of r-τ12-fuzzy
semiopen sets in smooth supra topological space (X, τ12) which is
induced from smooth bitopological space (X, τ1, τ2) [1]. We show
the present notion of fuzzy semiopen set and the notion of r(i, j)-
fuzzy semiopen in [25] are independent. In addition by using this
new class of r-τ12-fuzzy semiopen sets we constructed a new type
of supra fuzzy closure operator which create a new smooth supra
topological space τS

12 finer than τ12. Finally, we introduce and
study different types of fuzzy semi continuity, which are related
to the constructed closure operator and their induced topologies.
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1 Introduction

The concept of fuzzy sets was introduced by Zadeh in his classical paper [34]. There-
after many investigation have been carried out in the general theoretical field and also in
different application sides, based on this concept. Change [7] used the concept of fuzzy
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sets to introduce fuzzy topological spaces and several authors continued the investiga-
tion of such space. A cording to Šostak and Badard, the definition of fuzzy topology is a
crisp subfamily of fuzzy sets and fuzziness in the concept of openness of a fuzzy set has
not been considered, which seems to be a drawback in the process of fuzzifications of
the concept of topological spaces. Therefore, Šostak in [30] introduced a new definition
of fuzzy topology as an extension of both crisp topology and Chang’s fuzzy topology, in
the sense that not only the object were fuzzified, but also the axiomatic. Badard in [5]
introduce the concept of smooth structure and gives some rules and shows how such an
extension can be realized. Chattopdhyay et al. [8, 9] have redefined the similar concept
of fuzzy topology in Šostak sense under the name ”gradation of openness”. In [10, 23]
Ramadan gave a similar definition namely ”smooth topology” for lattice L = [0, 1], it
has developed in many direction [3, 13, 16, 18, 22, 31, 32]. It worths to mention that
the terms fuzzy topology in Šostak sense, gradation of openness and smooth topology
are all more or less referring to the same concept. In our paper, we choose the term
smooth topology. Lee et al. [20] introduced the concept of smooth bitopological space
(smooth bts, for short) as a generalization of smooth topological space and Kandil’s
fuzzy bitopological space [14].

The so-called supra topology was established by Mashhour et al. [21] (recall that
a supra topology on a set X is a collection of subsets of X, which is closed under
arbitrary unions). Abd El-Monsef and Ramadan in [2] introduced the concept supra
fuzzy topology, followed by Ghanim et al. [12] who introduced the supra fuzzy topology
in Šostak sense. Abbas [1] generated the supra fuzzy topology from fuzzy bitopological
spaces in Šostak sense as an extension of generated supra fuzzy topology in the sense
of Kandil et al. [15].

The concept of fuzzy semiopen sets and fuzzy semicontinuous mapping in fuzzy
topological spaces was studied by Azad [4]. Kumar in [29] generalize the concepts of
fuzzy semiopen sets, fuzzy semi-continuous mappings into fuzzy bitopological spaces. In
[17] and [19] the authors introduced the notion of fuzzy r-semiopen sets and fuzzy r-semi-
continuous maps in smooth topological space which are generalization of fuzzy semiopen
sets and fuzzy semi-continuous maps in Chang’s fuzzy topology. In [25] Ramadan and
Abbas introduced the notion of r-fuzzy semiopen in smooth bts. And in [11] El-sheikh
characterized the notion of r-fuzzy semiopen sets in [25] and generalized the notions
that introduced in [24], [28], [29] to smooth bts. Recently in [33] we introduced the
concept of generalized fuzzy closed set in smooth bts.

In this paper we define r − τ12-fuzzy semiopen sets in smooth supra topological
space (X, τ12) induced by smooth fuzzy bitopological space (X, τ1, τ2) and we study
some properties of them, we show the present notion of fuzzy semiopen set and the
notion of r(i, j)-fuzzy semiopen in [25] are independent. By using this new class of r-
τ12-fuzzy semiopen sets we define fuzzy semiclosure operator in smooth supra topological
space associated with smooth fuzzy bitopological space, we show that it is supra fuzzy
closure operator. Moreover it create a smooth supra topology which is finer than a
given smooth supra topology τ12 induced by τ1, τ2. We investigate some properties of
the supra fuzzy semiclosure operator. Finally, we use smooth supra topological spaces
which are induced from smooth bitopological spaces and constructed supra semiclosure
operators and their induced topologies to introduce and study fuzzy semi continuous
(resp., open, closed) mappings and fuzzy irresolute, fuzzy irresolute open (resp., closed)
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mappings in smooth bitopological spaces.

2 Preliminary

Throughout this paper, let X be a nonempty set, I = [0, 1], I0 = (0, 1]. A fuzzy set
µ of X is a mapping from X to I, the family of all fuzzy sets of X is denoted by IX .
For α ∈ I, ᾱ(x) = α for all x ∈ X. By 0̄ and 1̄ we denote constant maps on X with
value 0 and 1, respectively. For any fuzzy set µ ∈ IX the complement of µ, denoted by
1̄− µ. For x ∈ X and t ∈ I0, a fuzzy point xt is defined by t if x = y and 0 otherwise,
for all y ∈ X. Let Pt(X) be the family of all fuzzy points in X. A fuzzy point xt is said
to be belong to a fuzzy set λ, denoted xt ∈ λ if and only if λ(x) ≥ t. For µ, λ ∈ IX , µ
is called quasi-coincident with λ, denoted by µ q λ, if µ(x) + λ(x)> 1 for some x ∈ X,
otherwise we write µ q̄ λ. And µ q λ if and only if ∃xt; xt ∈ µ, xt q λ. FP (resp., FP ∗)
stand for fuzzy pairwise (resp., fuzzyP ∗). The indices i, j ∈ {1, 2} and i 6= j.

Definition 2.1. [5, 8, 23, 30] A smooth topology on X is a mapping τ : IX → I which
satisfies the following properties.

1. τ(0̄) = τ(1̄) = 1,
2. τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), ∀ µ1, µ2 ∈ IX ,
3. τ(

∨
i∈J µi) ≥

∧
i∈J τ(µi), for any {µi : i ∈ J} ⊆ IX .

The pair (X, τ) is called a smooth topological space. For r ∈ I0, µ is r-open fuzzy
set of X if τ(µ) ≥ r, and µ is r-closed fuzzy set of X if τ(1̄− µ) ≥ r.

In [30], Šostak used the term ”fuzzy topology” and in [8], Chattopadhyay et al. used
the term ”gradation of openness” for a smooth topology τ .

If τ satisfies conditions (1) and (3), then τ is said to be a smooth supra topology
and (X, τ) is said to be a smooth supra topological space [12].

Definition 2.2. [20, 30] A triple (X, τ1, τ2) consisting of the set X endowed with smooth
topologies τ1 and τ2 on X is called a smooth bitopological space (smooth bts, for short).
For λ ∈ IX and r ∈ I0, r-τi-open (respectively, closed) fuzzy set denotes the r-open
(respectively, closed) fuzzy set in (X, τi), for i = 1, 2.

The concepts of fuzzy closure (resp., interior) for any fuzzy set in smooth topological
space is given in the following definition.

Definition 2.3. [9] Let (X, τ) be a smooth topological space. A fuzzy closure is a
mapping Cτ : IX × I0 → IX such that

Cτ (λ, r) =
∧
{µ ∈ IX | µ ≥ λ, τ(1̄− µ) ≥ r},∀λ ∈ IX and ∀r ∈ I0. (1)

And, a fuzzy interior is a mapping Iτ : IX × I0 → IX defined as:

Iτ (λ, r) =
∨
{µ ∈ IX | µ ≤ λ, τ(µ) ≥ r}, ∀λ ∈ IX and ∀r ∈ I0, (2)

satisfies
Iτ (1̄− λ, r) = 1̄− Cτ (λ, r). (3)
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Definition 2.4. [9] A mapping C : IX × I0 → IX is called a fuzzy closure operator if,
for λ, µ ∈ IX and r, s ∈ I0, the mapping C satisfies the following conditions.

(C1) C(0̄, r) = 0̄,
(C2) λ ≤ C(λ, r),
(C3) C(λ, r) ∨ C(µ, r) = C(λ ∨ µ, r),
(C4) C(λ, r) ≤ C(λ, s) if r ≤ s,
(C5) C(C(λ, r), r) = C(λ, r).
The fuzzy closure operator C generates a smooth topology τC : IX −→ I defined as

follows

τC(λ) =
∨
{r ∈ I| C(1̄− λ, r) = 1̄− λ} (4)

such that C = CτC
. If the map C : IX × I0 → IX satisfied the conditions (C1) −

(C4) only, then the pair (X, C) is called fuzzy closure space, such that the fuzzy closure
operator C and the fuzzy closure CτC

are not coincide.
If C satisfies conditions (C1),(C2),(C4),(C5) and the following inequality
(C3)∗ C(λ, r) ∨ C(µ, r) ≤ C(λ ∨ µ, r) ,
then C is called supra fuzzy closure operator on X [1]. and it generates a smooth

supra topology τC : IX −→ I as (4)

By applying (3) in Definition 2.4, the definitions of fuzzy interior operator and supra
fuzzy interior operator are obtained.

The following theorems show how to generate a supra fuzzy closure operator from
a smooth bts (X, τ1, τ2).

Theorem 2.5. [1] Let (X, τ1, τ2) be a smooth bts. For each λ ∈ IX , r ∈ I0.

1. The mapping C12 : IX × I0 → IX such that C12(λ, r) = Cτ1(λ, r) ∧ Cτ2(λ, r) is a
supra fuzzy closure operator on X.

2. The mapping I12 : IX×I0 → IX which is defined as I12(λ, r) = Iτ1(λ, r)∨Iτ2(λ, r)
is a supra fuzzy interior operator on X, satisfies I12(1̄− λ, r) = 1̄− C12(λ, r).

Theorem 2.6. [1] Let (X, τ1, τ2) be a smooth bts and (X,C12) be a supra fuzzy closure
space. Define the mapping τS : IX → I on X by

τS(λ) =
∨
{τ1(λ1) ∧ τ2(λ2) : λ = λ1 ∨ λ2, λ1, λ2 ∈ IX}

where
∨

is taken over all families {λ1, λ2 ∈ IX : λ = λ1 ∨ λ2}. Then
1. τS = τC12 is the coarsest smooth supra topology on X which is finer than τ1 and

τ2.
2. C12 = Cτs = CτC12

.

Remark 2.7. In this paper we will denote to τC12 by τ12.

Definition 2.8. [16] A mapping f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) from a smooth bts
(X, τ1, τ2) to another smooth bts (Y, τ ∗1 , τ ∗2 ) is said to be

1. FP -continuous if and only if τi(f
−1(µ)) ≥ τ ∗i (µ) for each µ ∈ IY and i = 1, 2, (or

in other words a mapping f is said to be FP -continuous iff f : (X, τi) −→ (Y, τ ∗i ))
is f -continuous, i = 1, 2).
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2. FP -open (resp., closed) if and only if τ ∗i (f(µ)) ≥ τi(µ) (resp., τ ∗i (f(1̄ − µ)) ≥
τi(1̄− µ)) for each µ ∈ IX and i = 1, 2.

3. FP ∗-continuous (resp., FP ∗-open, FP ∗-closed) if and only if f : (X, τ12) −→
(Y, τ ∗12) is F -continuous (resp., F -open, F -closed) [26].

Definition 2.9. [17, 19] Let (X, τ) be a smooth topological space, let λ ∈ IX and r ∈ I0.
Then λ is said to be

1. r-fuzzy semiopen set (r-fso set, for short) if there exists r-open fuzzy set µ in X
such that µ ≤ λ ≤ Cτ (µ, r).

2. r-fuzzy semiclosed set (r-fsc set, for short) if there exists r-closed fuzzy set µ in
X such that Iτ (µ, r) ≤ λ ≤ µ.

Definition 2.10. [19] Let (X, τ) be a smooth topological space. For each λ ∈ IX and
for each r ∈ I0, the r-fuzzy semiclosure of λ is defined by

SCτ (λ, r) =
∧{ρ ∈ IX | ρ ≥ λ, ρ is r-fsc set },

and the r-fuzzy semiinterior of λ is defined by
SIτ (λ, r) =

∨{ρ ∈ IX | ρ ≤ λ, ρ is r-fso set }.
Obviously SCτ (λ, r) is the smallest r-fuzzy semiclosed set which contains λ and

SIτ (λ, r) is the greatest r-fuzzy semiopen set which contained in λ. Also, SCτ (λ, r) = λ
for any r-fuzzy semiclosed set µ and SIτ (µ, r) = µ for any r-fuzzy semiopen set µ.
Moreover we have

Iτ (λ, r) ≤ SIτ (λ, r) ≤ λ ≤ SCτ (λ, r) ≤ Cτ (λ, r).

It is obvious that any r-open (resp., closed) fuzzy set is r-fuzzy semiopen (resp., semi-
closed) set. But the converse need not true. The intersection (union) of any two r-fuzzy
semiopen (resp., r-fuzzy semiclosed) sets need not to be r-fuzzy semiopen (resp., r-fuzzy
semiclosed).

Theorem 2.11. [17] Let (X, τ) be a smooth topological space. For each λ ∈ IX , and
r ∈ I0 it satisfies the following statements.

1. SCτ (0̄, r) = 0̄.
2. SCτ (SCτ (λ, r), r) = SCτ (λ, r).
3. SIτ (SIτ (λ, r), r) = SIτ (λ, r).
4. SIτ (1̄− λ, r) = 1̄− SCτ (λ, r).

Definition 2.12. [11, 25] Let (X, τ1, τ2) be a smooth bts, let λ ∈ IX and r ∈ I0. Then
λ is called

1. r(i, j)-fuzzy semiopen set (r(i, j)-fso, for short) if there exists υ ∈ IX with τi(υ) ≥
r and υ ≤ λ ≤ Cτj

(υ, r), i, j = 1, 2, i 6= j.

2. r(i, j)-fuzzy semiclosed set (r(i, j)-fsc, for short) if there exists υ ∈ IX with τi(1̄−
υ) ≥ r and Iτj

(υ, r) ≤ λ ≤ υ, i, j = 1, 2, i 6= j.

Definition 2.13. Let (X, τ) and (Y, τ ∗) be smooth topological spaces. A mapping f :
(X, τ) −→ (Y, τ ∗) is said to be
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1. fuzzy semicontinuous (fs-continuous, for short) iff f−1(µ) is r-fso set in X for
each µ ∈ IY , τ ∗(µ) ≥ r [17].

2. fuzzy semiopen (fs-open, for short)(resp., semiclosed (fs-closed, for short)) iff f(λ)
is r-fso (resp., r-fsc) set in Y for each µ ∈ IX , τ(µ) ≥ r (resp., τ(1̄ − µ) ≥ r)
[17].

3. fuzzy irresolute (f-irresolute, for short) iff f−1(µ) is r-fso set in X for each µ is
r-fso set in Y [24].

4. fuzzy irresolute open (f-irresolute open, for short) (resp., irresolute closed (f-
irresolute closed, for short)) iff f(λ) is r-fso(resp., r-fsc) set in Y for each µ
is r-fso(resp., r-fsc) set in X [24].

3 CS
12-supra fuzzy semiclosure operator

In this section we use smooth supra topological space (X, τ12) which induced from
smooth bts (X, τ1, τ2), to introduce and study the concept of fuzzy semiopen sets in
smooth bts (X, τ1, τ2). By using this new class of fuzzy semiopen sets we introduce the
supra fuzzy semiclosure operator.

Definition 3.1. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then λ is called

1. r-τ12-fuzzy semiopen set (r-τ12-fso set, for short) in X if there is µ ∈ IX with
τ12(µ) ≥ r such that µ ≤ λ ≤ C12(µ, r).

2. r-τ12-fuzzy semiclosed set (r-τ12-fsc set , for short) in X if there is µ ∈ IX with
τ12(1̄− µ) ≥ r such that I12(µ, r) ≤ λ ≤ µ.

Proposition 3.2. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0.
1. If τ12(λ) ≥ r then λ is r-τ12-fso set.
2. If τ12(1̄− λ) ≥ r then λ is r-τ12-fsc set.
3. If τ1(λ) ≥ r or τ2(λ) ≥ r then λ is r-τ12-fso set.
4. If τ1(1̄− λ) ≥ r or τ2(1̄− λ) ≥ r then λ is r-τ12-fsc set.

Proof. (1) Let λ ∈ IX such that τ12(λ) ≥ r. Since, λ ≤ λ and λ ≤ C12(λ, r) then
λ ≤ λ ≤ C12(λ, r), implies λ is r-τ12-fso set. To proof (2), let λ ∈ IX such that
τ12(1̄− λ) ≥ r. Since I12(λ, r) ≤ λ ≤ λ then λ is r-τ12-fsc set. Finally, the proof of (3)
and (4) are obtained from Theorem 2.6 that is τ12 finer than τi, i = 1, 2 and then by
using part (1) and (2) respectively.

Remark 3.3. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0.
1. The converse of Proposition 3.2 is not true for all it’s parts.
2. If λ is r-fso set in (X, τ1) or (X, τ2) then λ need not r-τ12-fso set, and conversely.
3. If λ is r(i, j)-fso set in (X, τ1, τ2) then λ need not r-τ12-fso set, and conversely

(that is mean the concept of r(i, j)-fso set and r-τ12-fso set are independent).

Now, we give an Examples to explain Remark 3.3.
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Example 3.4. Let X = {a, b}. Define λ1, λ2 ∈ IX as follows:

λ1 = a 1
2
∨ b 1

3
, λ2 = a 1

3
∨ b 1

2

We define smooth topologies τ1, τ2 : IX −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄

0.2 if λ = λ1

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄

0.3 if λ = λ2

0 o.w

The associated smooth supra topological space of (X, τ1, τ2), is defined as follows: τ12 :
IX −→ I such that

τ12(λ) =





1 if λ = 0̄, 1̄

0.2 if λ = λ1

0.3 if λ = λ2

0.2 if λ = λ1 ∨ λ2

0 o.w

To show the converse of Proposition 3.2 part (1) is not true, let ρ = a0.4 ∨ b 1
2
∈ IX ,

it is clear that ρ is 0.3-τ12-fso set, since there exists λ2 ∈ IX such that τ12(λ2) ≥ 0.3 and
λ2 ≤ ρ ≤ C12(λ2, 0.3) = a 2

3
∨ b 1

2
. But ρ is not 0.3-open fuzzy set since τ12(ρ) = 0 ≯ 0.3.

Also, the converse of Proposition 3.2 part (3) is not true, since there exists ρ = a0.4∨b 1
2
∈

IX is 0.3-τ12-fso set, but τ1(ρ) = 0 ≯ 0.3 and τ2(ρ) = 0 ≯ 0.3.
Now, to show part (2) in Remark 3.3 , let η = a 1

2
∨ b 2

3
∈ IX it’s clear that η is

0.2-fso set in (X, τ1). But not 0.2-τ12-fso set in (X, τ12).
Finally, to explain part (3) in Remark 3.3 , let υ = a 2

3
∨ b 1

2
∈ IX it is clear that υ is

0.2(1, 2)-fso set in (X, τ1, τ2). But υ is not 0.2-τ12-fso set, since ∀ λ ∈ IX ; τ12(λ) ≥ 0.2
such that λ ≤ η, implies η � C12(λ, 0.2).

Example 3.5. Let X = {a, b, c}. Define λ1, λ2, λ3, λ4 ∈ IX as follows:

λ1 = a1, λ2 = b1 ∨ c1, λ3 = b1, λ4 = a1 ∨ c1

We define smooth topologies τ1, τ2 : IX −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄
1
4

if λ = λ1

1
2

if λ = λ2

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄
1
4

if λ = λ3

1
2

if λ = λ4

0 o.w

The associated smooth supra topological space of (X, τ1, τ2), is defined as follows: τ12 :
IX −→ I such that

τ12(λ) =





1 if λ = 0̄, 1̄
1
4

if λ = λ1, λ3

1
2

if λ = λ2, λ4

1
4

if λ = λ1 ∨ λ3 = a1 ∨ b1

0 o.w
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To explain the conversely of part (2) and (3), respectively in Remark 3.3. Consider
λ = a1 ∨ b1 is 1

4
-τ12-fso set but it is not 1

4
-τi-fso set and not r(i, j)-fso set in (X, τ1, τ2),

i = 1, 2.

Theorem 3.6. Let (X, τ1, τ2) be a smooth bts, let λ ∈ IX and r ∈ I0. Then the
following statements are equivalent.

1. λ is r-τ12-fso set.
2. λ ≤ C12(I12(λ, r), r).
3. C12(λ, r) = C12(I12(λ, r), r).
4. 1̄− λ is r-τ12-fsc set.
5. I12(C12(1̄− λ, r), r) ≤ 1̄− λ.
6. I12(1̄− λ, r) = I12(C12(1̄− λ, r), r).

Proof. (1) =⇒ (2) Let λ is r-τ12-fso set. Then there exists µ ∈ IX , with τ12(µ) ≥ r
such that µ ≤ λ ≤ C12(µ, r). Since µ ≤ λ then I12(µ, r) ≤ I12(λ, r), this mean µ ≤
I12(λ, r), implies C12(µ, r) ≤ C12(I12(λ, r), r) and since λ ≤ C12(µ, r). Then, we have
λ ≤ C12(I12(λ, r), r).

(2) =⇒ (3) Since λ ≤ C12(I12(λ, r), r). Then, we have C12(λ, r) ≤ C12(I12(λ, r), r).
On the other hand since I12(λ, r) ≤ λ, then C12(I12(λ, r), r) ≤ C12(λ, r). Hence
C12(λ, r) = C12(I12(λ, r), r).

(3) =⇒ (1) Let µ = I12(λ, r) implies µ ≤ λ, then we have µ ≤ λ ≤ C12(λ, r) =
C12(I12(λ, r), r) = C12(µ, r), implies µ ≤ λ ≤ C12(µ, r). Hence λ is r-τ12-fso set.

The implications, (1) ⇐⇒ (4), (2) ⇐⇒ (5), (3) ⇐⇒ (6) follow immediately by
taking the complement of two sides.

Theorem 3.7. Let (X, τ1, τ2) be a smooth bts and r ∈ I0. Then
1. any union of r-τ12-fso sets is r-τ12-fso set.
2. any intersection of r-τ12-fsc sets is r-τ12-fsc set.

Proof. (1) Let {λα|α ∈ Λ} be a family of r-τ12-fso sets. Then, for each α ∈ Λ there
exists µα ∈ IX with τ12(µα) ≥ r such that µα ≤ λα ≤ C12(µα, r). Since {µα|α ∈ Λ} is r-
τ12−fuzzy open sets, then τ12(

∨
α∈Λ µα) ≥ ∧

α∈Λ τ12(µα). Then,
∨

α∈Λ µα is r-τ12−fuzzy
open set. Let µ =

∨
α∈Λ µα such that

∨
α∈Λ µα ≤ ∨

α∈Λ λα ≤ ∨
α∈Λ C12(µα, r) ≤

C12(
∨

α∈Λ µα). Implies µ ≤ ∨
α∈Λ λα ≤ C12(µ, r). Thus

∨
α∈Λ λα r-τ12-fso set.

(2) Let {λα|α ∈ Λ} be a family of r-τ12-fsc sets. For each α ∈ Λ, since λα is r-τ12-fsc
set, then 1̄−λα is r-τ12-fso set, from part (1) we get

∨
α∈Λ 1̄−λα is r-τ12-fso set, implies

1̄− (
∨

α∈Λ 1̄− λα) =
∧

α∈Λ λα is r-τ12-fsc set.

Remark 3.8. 1. The intersection of any two r-τ12-fso sets need not to be r-τ12-fso set
.

2. The union of any two r-τ12-fsc sets need not to be r-τ12-fsc set .

In Example 3.4, let ρ1 = a0.4 ∨ b 1
2

and ρ2 = a 1
2
∨ b0.4 ∈ IX , such that ρ1 and ρ2 are

0.2-τ12-fso sets, since ∃ λ2 ≤ ρ1 ≤ C12(λ2, 0.2) = a 1
2
∨ b 1

2
and ∃ λ1 ≤ ρ2 ≤ C12(λ1, 0.2) =

a 1
2
∨ b 1

2
. But ρ1 ∧ ρ2 = a0.4 ∨ b0.4 is not 0.2-τ12-fso set, since 0̄ is the only 0.2-τ12-open

fuzzy set such that 0̄ ≤ ρ1 ∧ ρ2 � C12(0̄, 0.2) = 0̄.
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Proposition 3.9. Let (X, τ1, τ2) be a smooth bts, let λ ∈ IX and r ∈ I0. Then
1. I12(λ, r) is r-τ12-fso set.
2. C12(λ, r) is r-τ12-fsc set.
3. if λ is r-τ12-fso set and I12(λ, r) ≤ µ ≤ C12(λ, r), then µ is r-τ12-fso set.
4. if λ is r-τ12-fsc set and I12(λ, r) ≤ µ ≤ C12(λ, r), then µ is r-τ12-fsc set.

Proof. The proof of part(1) and (2) are direct.
(3) Let λ is r-τ12-fso set, implies there exists η ∈ IX with τ12(η) ≥ r such that

η ≤ λ ≤ C12(η, r). It implies η = I12(η, r) ≤ I12(λ, r) and since λ ≤ C12(η, r), then
C12(λ, r) ≤ C12(η, r). Thus, η ≤ µ ≤ C12(η, r). therefore, µ is r-τ12-fso set.

(4) Let λ is r-τ12-fsc set implies 1̄−λ is r-τ12-fso set. Since I12(λ, r) ≤ µ ≤ C12(λ, r),
then by take the complement of the last inequality we get, I12(1̄ − λ, r) ≤ 1̄ − µ ≤
C12(1̄ − λ, r). And by applying (3) we have 1̄ − µ is r-τ12-fso set which is mean µ is
r-τ12-fsc set.

Next the concepts of fuzzy semiclosure (resp., semiinterior) are given in following
definition.

Definition 3.10. Let (X, τ1, τ2) be a smooth bts, for λ ∈ IX and r ∈ I0. The fuzzy
semiclosure CS

12(λ, r) of a fuzzy set λ is defined by

CS
12(λ, r) =

∧
{ρ ∈ IX | ρ ≥ λ, ρ is r-τ12-fsc set},

and the fuzzy semiinterior IS
12(λ, r) of a fuzzy set λ is defined by

IS
12(λ, r) =

∨
{ρ ∈ IX | ρ ≤ λ, ρ is r-τ12-fso set}.

The following proposition gives the basic properties of CS
12 and IS

12.

Proposition 3.11. Let (X, τ1, τ2) be a smooth bts, let µ, λ ∈ IX and r ∈ I0. Then
1. IS

12(1̄− λ, r) = 1̄− CS
12(λ, r).

2. if µ ≤ λ, then IS
12(µ, r) ≤ IS

12(λ, r).
3. if µ ≤ λ, then CS

12(µ, r) ≤ CS
12(λ, r).

4. λ is r-τ12-fso set if and only if IS
12(λ, r) = λ.

5. λ is r-τ12-fsc set if and only if CS
12(λ, r) = λ.

Proof. (1) From Definition 3.10, we have

1̄− CS
12(λ, r) = 1̄−

∧
{ρ ∈ IX | ρ ≥ λ, ρ is r-τ12-fsc set}

=
∨
{1̄− ρ ∈ IX | 1̄− ρ ≤ 1̄− λ, 1̄− ρ is r-τ12-fso set}

= IS
12(1̄− λ, r)

(2) Let xt ∈ IS
12(µ, r). Then there exists ρ ∈ IX such that xt ∈ ρ, ρ ≤ µ and ρ is

r-τ12-fso set. Since ρ ≤ µ ≤ λ, then there exists ρ is r-τ12-fso set such that ρ ≤ λ and
xt ∈ ρ. Hence xt ∈ IS

12(λ, r).
(3) Follows by taking the complement of (2) and using (1).
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(4) Suppose λ is r-τ12-fso set. From Definition of IS
12(λ, r), we have, IS

12(λ, r) ≤ λ.
On the other hand. Since λ is r-τ12-fso set and λ ≤ λ, then λ ≤ IS

12(λ, r). Thus
IS
12(λ, r) = λ.

Conversely, follows direct from Definition of IS
12(λ, r).

(5) Taking 1̄− λ as a r-τ12-fso then apply (4), we get the result.

Definition 3.12. Let (X, τ1, τ2) be a smooth bts, let xt ∈ Pt(X) and r ∈ I0. Then
Qτ12(xt, r) = {µ ∈ IX | xt q µ, τ12(µ) ≥ r}.
N S

τ12
(xt, r) = {µ ∈ IX | xt ∈ µ, µ is r-τ12-fso set}.

QS
τ12

(xt, r) = {µ ∈ IX | xt q µ, µ is r-τ12-fso set}.
Theorem 3.13. A fuzzy set λ in a smooth bts (X, τ1, τ2) is r-τ12-fso set if and only if
for each fuzzy point xt ∈ λ there exists µ ∈ N S

τ12
(xt, r) such that µ ≤ λ.

Proof. (=⇒) It is obvious.
(⇐=) Since, for each fuzzy point xt ∈ λ there exists µi ∈ N S

τ12
(xt, r) such that

µi ≤ λ, then from Theorem 3.7 part(1),
∨

µi is r-τ12-fso set. That means for each fuzzy
point xt ∈ λ there exists µi ∈ N S

τ12
(xt, r) such that xt ∈ µi ≤

∨
µi, implies λ ≤ ∨

µi.
On the other hand let xs ∈

∨
µi implies xs ∈ µi for some i, and since µi ≤ λ, then

xs ∈ µi ≤ λ, this yields
∨

µi ≤ λ. Thus λ =
∨

µi and hence λ is r-τ12-fso set.

Theorem 3.14. Let (X, τ1, τ2) be a smooth bts, let λ ∈ IX and r ∈ I0. Then xt ∈
CS

12(λ, r) if and only if for each µ ∈ QS
τ12

(xt, r), µ q λ.

Proof. Let xt ∈ CS
12(λ, r) and suppose there exists µ ∈ QS

τ12
(xt, r) such that µ q̄ λ,

implies λ ≤ 1̄ − µ and since µ is r-τ12-fso set, then 1̄ − µ is r-τ12-fsc set, implies
CS

12(λ, r) ≤ CS
12(1̄ − µ, r) = 1̄ − µ, this yields CS

12(λ, r)(x) ≤ 1̄ − µ(x) < t, thus
xt /∈ CS

12(λ, r) which is a contradiction.
Conversely, Suppose xt /∈ CS

12(λ, r), then ∃ ρ is r-τ12-fsc set such that ρ ≥ λ and
xt /∈ ρ, implies xt q 1̄−ρ, and since ρ ≥ λ then, λ q̄ 1̄−ρ such that 1̄−ρ is r-τ12-fso set.
That mean, there exists 1̄−ρ ∈ QS

τ12
(xt, r) such that 1̄−ρ q̄ λ which is a contradiction.

Hence xt ∈ CS
12(λ, r).

Theorem 3.15. Let (X, τ1, τ2) be a smooth bts. Then
1. CS

12 is a supra fuzzy closure operator such that CS
12(λ, r) ≤ C12(λ, r), for all

λ ∈ IX and r ∈ I0.
2. IS

12 is a supra fuzzy interior operator such that I12(λ, r) ≤ IS
12(λ, r), for all

λ ∈ IX and r ∈ I0.

Proof. We show (1) and in a similar way one can obtain (2). To prove (1), we need to
satisfy conditions (C1), (C2), (C3)∗, (C4) and (C5) in Definition 2.4.

(C1) Since 0̄ is r-τ12-fsc, then by Proposition 3.11 part (5), CS
12(0̄, r) = 0̄.

(C2) Follows immediately from the Definition of CS
12.

(C3)∗ Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, then from Proposition 3.11 part (3),

CS
12(λ, r) ≤ CS

12(λ ∨ µ, r) and CS
12(µ, r) ≤ CS

12(λ ∨ µ, r).

This implies, CS
12(λ, r) ∨ CS

12(µ, r) ≤ CS
12(λ ∨ µ, r).
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(C4) Assume that CS
12(λ, r) > CS

12(λ, s) for r ≤ s. Then, there exists xt ∈ Pt(X)
such that xt ∈ CS

12(λ, r) and xt /∈ CS
12(λ, s). This means, there exists µ ∈ QS

τ12
(xt, s)

such that µ q̄ λ. Since r ≤ s, then µ ∈ QS
τ12

(xt, r) implies xt /∈ CS
12(λ, r), which is a

contradiction.
(C5) From (C2), we have that

CS
12(λ, r) ≤ CS

12(C
S
12(λ, r), r).

Suppose now CS
12 (CS

12 (λ, r), r) > CS
12(λ, r), then there exists xt ∈ Pt(X) such that

xt ∈ CS
12(C

S
12(λ, r), r) and xt /∈ CS

12(λ, r). Hence, ∃ r-τ12-fsc µ, such that xt /∈ µ and
µ ≥ λ. Since CS

12(λ, r)(x) ≤ µ(x) < t, then from Proposition 3.11 part (3) and (5), we
have that

CS
12(C

S
12(λ, r), r)(x) ≤ CS

12(µ, r)(x) = µ(x) < t.

Consequently, we get xt /∈ CS
12(C

S
12(λ, r), r) which is a contradiction. Thus CS

12 is
a supra fuzzy closure operator. Since every r-τ12-closed fuzzy set is r-τ12-fsc, then
CS

12(λ, r) ≤ C12(λ, r).

Theorem 3.16. Let (X, τ1, τ2) be a smooth bts. Define a mapping τS
12 : IX −→

I on X by

τS
12(λ) =

∨
{r ∈ I| CS

12(1̄− λ, r) = 1̄− λ} =
∨
{r ∈ I| IS

12(λ, r) = λ}.
Then τS

12 is a smooth supra topology on X such that τ12(λ) ≤ τS
12(λ), for all λ ∈ IX . The

pair (X, τS
12) is called semi smooth supra topological space (S-smooth supra topological

space, for short).

Proof. By Theorem 3.15, CS
12 is supra fuzzy closure operator. Thus by Definition 2.4,

τS
12 is a smooth supra fuzzy topology on X. Now, to prove τ12(λ) ≤ τS

12(λ). By Theorem
3.15, since CS

12(λ, r) ≤ C12(λ, r). So, if C12(1̄−λ, r) = 1̄−λ, then CS
12(1̄−λ, r) = 1̄−λ.

Thus τ12(λ) ≤ τS
12(λ) for all λ ∈ IX .

Remark 3.17. Let (X, τ1, τ2) be a smooth bts, let µ, η ∈ IX and r ∈ I0, then CS
12(µ, r)∨

CS
12(η, r) 6= CS

12(µ ∨ η, r).

Example 3.18. Let X = {a, b, c}. Define λ1, λ2 ∈ IX as follows:

λ1 = a0.8 ∨ b0.7 ∨ c1 , λ2 = a0.5 ∨ b0.9 ∨ c1

We define smooth topologies τ1, τ2 : IX −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄

0.3 if λ = λ1

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄

0.4 if λ = λ2

0 o.w

The associated smooth supra topological space of (X, τ1, τ2), is defined as follows: τ12 :
IX −→ I such that

τ12(λ) =





1 if λ = 0̄, 1̄

0.3 if λ = λ1

0.4 if λ = λ2

0.3 if λ = λ1 ∨ λ2

0 o.w
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The S-smooth supra topological space (X, τS
12) defined as follows:

τS
12(λ) =





1 if λ = 0̄, 1̄

0.3 if λ = {ar1 ∨ br2 ∨ c1; 0.8 ≤ r1 ≤ 1, 0.7 ≤ r2 ≤ 0.9}
0.4 if λ = {ar1 ∨ br2 ∨ c1; 0.5 ≤ r1 ≤ 1, 0.9 ≤ r2 ≤ 1}
0 o.w

Let r = 0.3, and µ = a0.2 ∨ b0.3 ∨ c0, η = a0.5 ∨ b0.1 ∨ c0. Then
CS

12(µ, 0.3) = µ, CS
12(η, 0.3) = η and CS

12(µ ∨ η, 0.3) = 1̄, therefore we have
CS

12(µ ∨ η, 0.3) 6= CS
12(µ, 0.3) ∨ CS

12(η, 0.3).

4 Fuzzy semi continuous and fuzzy irresolute map-

pings in smooth bts

In this section we use smooth supra topological spaces (X, τ12) and (Y, τ ∗12) which
are induced from smooth bitopological spaces (X, τ1, τ2) and (Y, τ ∗1 , τ ∗2 ) respectively, to
introduce and study fuzzy semi continuous (resp., open, closed) mappings and fuzzy
irresolute, fuzzy irresolute open (resp., closed) mappings in smooth bitopological spaces.
Throughout this section the supra fuzzy closure operators of (X, τ12) and (Y, τ ∗12) are
denoted by C12 and C∗

12, respectively.

Definition 4.1. A mapping f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) is said to be

1. FP ∗-semi continuous (FP ∗S-continuous, for short) iff if f−1(µ) is r-τ12-fso set
in X for all µ ∈ IY , τ ∗12(µ) ≥ r.

2. FP ∗-semi open (FP ∗S-open, for short) iff f(µ) is r-τ ∗12-fso set in Y for all µ ∈ IX ,
τ12(µ) ≥ r.

3. FP ∗-semi closed (FP ∗S-closed, for short) iff f(µ) is r-τ ∗12-fsc set in Y for all
µ ∈ IX , τ12(1̄− µ) ≥ r.

4. FP ∗-irresolute iff f−1(µ) is r-τ12-fso set in X for each r-τ ∗12-fso set µ in Y .

5. FP ∗-irresolute open iff f(µ) is r-τ ∗12-fso set in Y for each r-τ12-fso set µ in X.

6. FP ∗-irresolute closed iff f(µ) is r-τ ∗12-fsc set in Y for each r-τ12-fsc set µ in X.

Proposition 4.2. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then

1. f is FP ∗S-continuous iff f : (X, τ12) −→ (Y, τ ∗12) is fs-continuous.

2. f is FP ∗S-open (resp., FP ∗S-closed) iff f : (X, τ12) −→ (Y, τ ∗12) is fs-open (resp.,
fs-closed).

3. f is FP ∗-irresolute iff f : (X, τ12) −→ (Y, τ ∗12) is f-irresolute.

4. f is FP ∗-irresolute open (resp., FP ∗-irresolute closed) iff f : (X, τ12) −→ (Y, τ ∗12)
is f-irresolute open (resp., f-irresolute closed).
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Proof. Follows direct from Definition 4.1.

Theorem 4.3. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then the following are
equivalent.

1. f is FP ∗S-continuous.
2. f−1(µ) is r-τ12-fsc set in X for each τ ∗12(1̄− µ) ≥ r.

Proof. It is clear.

Theorem 4.4. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping.
1. If f is FP ∗- continuous then it’s FP ∗S- continuous.
2. If f is FP ∗- open (resp., closed) then it’s FP ∗S- open (resp., FP ∗S- closed).

Proof. (1) Let µ ∈ IY such that τ ∗12(µ) ≥ r. Since f is FP ∗- continuous then τ12(f
−1(µ)) ≥

r, implies f−1(µ) is r-τ12-open fuzzy set in X and therefore f−1(µ) is r-τ12-fso set in X.
Thus f is FP ∗S- continuous.

(2) We prove f is FP ∗S- open and the prove of f is FP ∗S- closed is similar. Let
µ ∈ IX such that τ12(µ) ≥ r, since f is FP ∗−open, then τ ∗12(f(µ)) ≥ r, implies f(µ) is
r-τ ∗12-fso set in Y . Thus f is FP ∗S- open.

The following example show the converse of Theorem 4.4 part(1) is not true.

Example 4.5. Let X = {a, b} and Y = {p, q}. Define λ1, λ2 ∈ IX and µ1, µ2 ∈ IY as
follows:

λ1 = a 1
2
∨ b 2

3
, λ2 = a 2

3
∨ b 1

2

µ1 = p 3
4
∨ q 1

2
, µ2 = p 1

2
∨ q 3

4

We define smooth topologies τ1, τ2 : IX −→ I and τ ∗1 , τ ∗2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄
1
2

if λ = λ1

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄
1
3

if λ = λ2

0 o.w

τ ∗1 (µ) =





1 if µ = 0̄, 1̄
1
2

if µ = µ1

0 o.w

, τ ∗2 (µ) =





1 if µ = 0̄, 1̄
1
3

if µ = µ2

0 o.w

From smooth bts’s (X, τ1, τ2) and (Y, τ ∗1 , τ ∗2 ) we can induce smooth supra topologies τ12

and τ ∗12 as follows:

τ12(λ) =





1 if λ = 0̄, 1̄
1
2

if λ = λ1

1
3

if λ = λ2

1
3

if λ = λ1 ∨ λ2

0 o.w

, τ ∗12(µ) =





1 if µ = 0̄, 1̄
1
2

if µ = µ1

1
3

if µ = µ2

1
3

if µ = µ1 ∨ µ2

0 o.w

consider the mapping f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) defined by f(a) = q, f(b) = p. Then
f is FP ∗S- continuous but not FP ∗−continuous since there exists µ1∨µ2 is 1

3
-τ ∗12-open

fuzzy set in Y , but τ12(f
−1(µ1 ∨ µ2)) = τ12(a 3

4
∨ b 3

4
) = 0 � 1

3
.
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Also, the converse of Theorem 4.4 part(2) is not true, as the following example show.

Example 4.6. Let X = {a, b} and Y = {p, q}. Define λ1, λ2 ∈ IX and µ1, µ2 ∈ IY as
follows:

λ1 = a0.3 ∨ b0.7 , λ2 = a0.7 ∨ b0.3

µ1 = p0.1 ∨ q0.3 , µ2 = p0.3 ∨ q0.1

We define smooth topologies τ1, τ2 : IX −→ I and τ ∗1 , τ ∗2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄
1
2

if λ = λ1

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄
1
3

if λ = λ2

0 o.w

τ ∗1 (µ) =





1 if µ = 0̄, 1̄
1
2

if µ = µ1

0 o.w

, τ ∗2 (µ) =





1 if µ = 0̄, 1̄
1
3

if µ = µ2

0 o.w

From smooth bts’s (X, τ1, τ2) and (Y, τ ∗1 , τ ∗2 ) we can induce smooth supra topologies τ12

and τ ∗12 as follows:

τ12(λ) =





1 if λ = 0̄, 1̄
1
2

if λ = λ1

1
3

if λ = λ2

1
3

if λ = λ1 ∨ λ2

0 o.w

, τ ∗12(µ) =





1 if µ = 0̄, 1̄
1
2

if µ = µ1

1
3

if µ = µ2

1
3

if µ = µ1 ∨ µ2

0 o.w

consider the mapping f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) defined by: f(a) = q, f(b) = p. Then
f is FP ∗S- open but not FP ∗−open since there exists λ1 is 1

2
-τ12-open fuzzy set in X,

but τ ∗12(f(λ1)) = τ ∗12(p0.7 ∨ q0.3) = 0 < 1
2
.

Also, in the same example we can show f is FP ∗S- closed but not FP ∗−closed. Since
there exists 1̄−λ1 is 1

2
-τ12-closed fuzzy set in X, but τ ∗12(f(1̄−λ1)) is not 1

2
-closed fuzzy

set in Y since τ ∗12(1̄− f(1̄− λ1)) = τ ∗12(f(λ1)) = 0 < 1
2
.

Theorem 4.7. If f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) is FP ∗- irresolute then it is FP ∗S-
continuous.

Proof. Let µ ∈ IY such that τ ∗12(µ) ≥ r, implies µ is r- τ ∗12-fso set in Y and since f is
FP ∗- irresolute, then f−1(µ) is r- τ12-fso set in X. Thus f is FP ∗S- continuous.

The converse of Theorem 4.7 is not true as the following example show.

Example 4.8. Let X = {a, b} and Y = {p, q}. Define λ1, λ2 ∈ IX and µ1, µ2 ∈ IY as
follows:

λ1 = a0.1 ∨ b0.2 , λ2 = a0.2 ∨ b0.1

µ1 = p0.6 ∨ q0.7 , µ2 = p0.7 ∨ q0.6
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We define smooth topologies τ1, τ2 : IX −→ I and τ ∗1 , τ ∗2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄
2
3

if λ = λ1

0 o.w

, τ2(λ) =





1 if λ = 0̄, 1̄
1
4

if λ = λ2

0 o.w

τ ∗1 (µ) =





1 if µ = 0̄, 1̄
2
3

if µ = µ1

0 o.w

, τ ∗2 (µ) =





1 if µ = 0̄, 1̄
1
4

if µ = µ2

0 o.w

From smooth bts’s (X, τ1, τ2) and (Y, τ ∗1 , τ ∗2 ) we can induce smooth supra topologies τ12

and τ ∗12 as follows:

τ12(λ) =





1 if λ = 0̄, 1̄
2
3

if λ = λ1

1
4

if λ = λ2

1
4

if λ = λ1 ∨ λ2

0 o.w

, τ ∗12(µ) =





1 if µ = 0̄, 1̄
2
3

if µ = µ1

1
4

if µ = µ2

1
4

if µ = µ1 ∨ µ2

0 o.w

consider the mapping f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) defined by: f(a) = q, f(b) = p. Then
f is FP ∗S- continuous but not is FP ∗- irresolute, since there exists µ ∈ IY such that
µ = p0.9 ∨ q0.9 and µ is 2

3
-τ ∗12-fso set but f−1(µ) = a0.9 ∨ b0.9 is not 2

3
-τ12-fso set.

Theorem 4.9. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗S-continuous.
2. f(CS

12(λ, r)) ≤ C∗
12(f(λ), r), for each λ ∈ IX

3. CS
12(f

−1(µ), r) ≤ f−1(C∗
12(µ, r)), for each µ ∈ IY .

Proof. (1) =⇒ (2) Suppose f(CS
12)(λ, r)) > C∗

12(f(λ), r). So there exists y ∈ Y and t ∈
I0 such that

f(CS
12(λ, r))(y) > t > C∗

12(f(λ), r)(y). (5)

If f−1(y) = ∅, then f(CS
12(λ, r))(y) = 0, which is a contradiction with (5), hence there

exists x ∈ f−1(y) such that

f(CS
12(λ, r))(y) > CS

12(λ, r)(x) > t > C∗
12(f(λ), r)(y). (6)

Since C∗
12(f(λ), r)(y) < t, then yt /∈ C∗

12(f(λ), r). This yields, that there exists µ ∈
IY such that τ ∗12(1̄ − µ) ≥ r, f(λ) ≤ µ and yt /∈ µ (i.e., µ(y) < t). Therefore,
C∗

12(f(λ), r)(y) < µ(y) < t which means C∗
12(f(λ), r)(f(x)) < µ(f(x)) < t. Moreover,

f(λ) ≤ µ (i.e., λ ≤ f−1(µ)). This yields, 1̄ − f−1(µ) ≤ 1̄ − λ, i.e., f−1(1̄ − µ) ≤
1̄ − λ. From the fact that f is FP ∗S−continuous, we have f−1(1̄ − µ) is r-τ12-fso in
X. Thus, IS

12(f
−1(1̄ − µ), r) ≤ IS

12(1̄ − λ, r) which yields f−1(1̄ − µ) ≤ IS
12(1̄ − λ, r),

i.e., 1̄ − IS
12(1̄ − λ, r) ≤ 1̄ − f−1(1̄ − µ). Hence, CS

12(λ, r) ≤ f−1(µ), and consequently,
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CS
12(λ, r)(x) ≤ f−1(µ)(x) = µ(f(x)) < t. This is a contradiction with (6). Thus

f(CS
12(λ, r)) ≤ C∗

12(f(λ), r).
(2) =⇒ (3), by letting λ = f−1(µ) in (2), we get

f(CS
12(f

−1(µ), r)) ≤ C∗
12(f(f−1(µ), r) ≤ C∗

12(µ, r).

Consequently, f−1(f(CS
12(f

−1(µ), r))) ≤ f−1(C∗
12(µ, r)) which yields CS

12 (f−1(µ), r) ≤
f−1(C∗

12(µ, r)).
(3) =⇒ (1), let µ ∈ IY such that τ ∗12(µ) ≥ r. Then, C∗S

12 (1̄ − µ, r) = 1̄ − µ. But
CS

12(f
−1(1̄−µ), r) ≤ f−1(C∗

12(1̄−µ, r)) = f−1(1̄−µ). This implies, CS
12(f

−1(1̄−µ), r) =
f−1(1̄−µ) = 1̄− f−1(µ) which gives 1̄− f−1(µ) is r-τ12-fsc in X. So, f−1(µ) is r-τ12-fso
in X. Hence, f is FP ∗S−continuous.

Theorem 4.10. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗S-open.
2. f(I12(λ, r)) ≤ I∗S12 (f(λ), r), λ ∈ IX .
3. I12(f

−1(µ), r) ≤ f−1(I∗S12 (µ, r)), µ ∈ IY .

Proof. (1) =⇒ (2), let λ ∈ IX . We know that I12(λ, r) ≤ λ, then f(I12(λ, r)) ≤
f(λ). Hence, I∗S12 (f(I12(λ, r))) ≤ I∗S12 (f(λ), r). Since f is FP ∗S−open, this implies
f(I12(λ, r)) ≤ I∗S12 (f(λ), r) as required.

(2) =⇒ (3), let µ ∈ IY such that f−1(µ) ∈ IX . Set λ = f−1(µ). This yields,

f(I12(f
−1(µ), r) ≤ I∗S12 (f(f−1(µ)), r) ≤ I∗S12 (µ, r).

Consequently, f−1(f(I12(f
−1(µ), r))) ≤ f−1(I∗S12 (µ, r)) which means I12(f

−1(µ), r) ≤
f−1(I∗S12 (µ, r)).

(3) =⇒ (1), let µ ∈ IX such that τ12(µ) ≥ r. Then f(µ) ∈ IY , and by (3) we
have that I12(f

−1(f(µ), r)) ≤ f−1(I∗S12 (f(µ), r)). This yields, µ ≤ f−1(I∗S12 (f(µ), r)). By
taking the image to both side of the last equality we obtain

f(µ) ≤ f(f−1(I∗S12 (f(µ), r))) ≤ I∗S12 (f(µ), r).

Thus, f(µ) ≤ I∗S12 (f(µ), r) which gives I∗S12 (f(µ), r) = f(µ). Hence, f(µ) is r-τ ∗12-fso set
in Y , i.e., f is FP ∗S−open.

Theorem 4.11. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗S-closed.
2. C∗S

12 (f(λ), r) ≤ f(C12(λ, r)), λ ∈ IX .

Proof. (1) =⇒ (2), Let λ ∈ IX since λ ≤ C12(λ, r), then f(λ) ≤ f(C12(λ, r)), such that
f(C12(λ, r)) is r-τ ∗12-fsc set, implies C∗S

12 (f(λ), r) ≤ C∗S
12 (f(C12(λ, r))), by(1) C∗S

12 (f(λ), r) ≤
f(C12(λ, r)).

(2) =⇒ (1), Let λ ∈ IX such that τ12(1̄ − λ) ≥ r Then f(λ) ∈ IY , and by (2)
we have C∗S

12 (f(λ), r) ≤ f(C12(λ, r)) = f(λ), since λ is r-τ12-fuzzy closed set, then
C∗S

12 (f(λ), r) ≤ f(λ) but clearly f(λ) ≤ C∗S
12 (f(λ), r), then C∗S

12 (f(λ), r) = f(λ) and
consequently f(λ) is r-τ ∗12-fsc set in Y .
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Theorem 4.12. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗-irresolute.
2. f(CS

12(λ, r)) ≤ C∗S
12 (f(λ), r), λ ∈ IX .

3. CS
12(f

−1(µ), r) ≤ f−1(C∗S
12 (µ, r)), µ ∈ IY .

Proof. The proof is similar to that of Theorem 4.9.

Theorem 4.13. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗-irresolute open.
2. f(IS

12(λ, r)) ≤ I∗S12 (f(λ), r), λ ∈ IX .
3. IS

12(f
−1(µ), r) ≤ f−1(I∗S12 (µ, r)), µ ∈ IY .

Proof. The proof is similar to that of Theorem 4.10.

Theorem 4.14. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f is FP ∗-irresolute closed.
2. C∗S

12 (f(λ), r) ≤ f(CS
12(λ, r)), λ ∈ IX .

Proof. The proof is similar to that of Theorem 4.11.

Theorem 4.15. Let f : (X, τ1, τ2) −→ (Y, τ ∗1 , τ ∗2 ) be a mapping. Then for each r ∈ I0,
the following statements are equivalent.

1. f : (X, τS
12) −→ (Y, (τ ∗S12 ) is F -continuous.

2. f(CS
12(λ, r)) ≤ C∗S

12 (f(λ), r), λ ∈ IX .
3. CS

12(f
−1(µ), r) ≤ f−1(C∗S

12 (µ, r)), µ ∈ IY .

Proof. The proof is similar to that of Theorem 4.9.
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[18] T. Kubiak and A. P. Šostak, Lower set valued fuzzy topologies, Quaestions Math-
ematicas 20 (1997), 423-429.

[19] S. J. Lee and E. P. Lee, Fuzzy r-semiopen sets and fuzzy r-semicontinuous maps,
proc. of Korea fuzzy logic and Intelligent systems society 7 (1997), 29-32.

[20] E. P. Lee, Y. B. Im, H. Han, Semiopen sets on smooth bitopological spaces, Far
East Journal of Mathematical Sciences 3 (2001), 493-521.

[21] A. S. Mashhour, A. A. Allam, F. S. Mohmoud, and F. H. Khedr, On supra topo-
logical spaces, Indian Journal of Pure and Applied Mathematics, 14 (4) (1983),
502-510.



Journal of New Results in Science 6 (2014) 76-94 94

[22] E. P. Lee, Preopen sets in smooth bitopological spaces, commun Korean Math.
Soc. 18 (3) (2003), 521-532.

[23] A. A. Ramadan, Smooth topological spaces, Fuzzy sets and systems 48 (1992),
371-375.

[24] A. A. Ramadan, S. E. Abbas and Y. C. Kim, Fuzzy irresolute mappings in smooth
topological spaces, The J. of Fuzzy Mathematics 9 (4) (2001), 865-877.

[25] A. A. Ramadan, S. E. Abbas, On several types of continuity in fbts’s, The J. of
Fuzzy Mathematics (9) (2) (2001), 399-412.

[26] A. A. Ramadan, S. E. Abbas and A. A. Abd El-Latif, On fuzzy bitopological
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