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Abstract - The present note introduces new classes of
functions called almost γ-irresolute functions and almost α-γ-
irresolute functions in topological spaces. We obtain several char-
acterizations of these classes and study their properties and inves-
tigate the relationships with the known non-continuous functions.
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1 Introduction

Crossley and Hildebrand (1972) introduced the notion of irresolute functions in topo-
logical spaces. The class of almost irresolute functions (Dube, Lee and Panwar 1983) is
stronger than β-continuity (Abd El-Monsef, El-Deeb and Mahmoud 1983). Recently,
the class of semi α-irresolute functions and almost α-irresolute functions were intro-
duced by Beceren (2000b) and Beceren (2000c) respectively. The purpose of this note
is to introduce and investigate the concept of almost α-γ-irresolute functions and give
several characterizations and its properties. Relations between this class and other
classes of functions are obtained. The class of almost α-γ-irresolute functions, which
is stronger than almost α-irresolute functions (Beceren 2000c) and β-continuity(Abd
El-Monsef et al. 1983), is a generalization of both almost γ-irresolute functions and
semi α-irresolute functions (Beceren 2000b).
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2 Preliminaries

Throughout this note, spaces always mean topological spaces and f : X → Y denotes a
function of a space X into a space Y. Let S be a subset of a space X. The closure and
the interior of S are denoted by cl(S) and int(S), respectively.

Definition 2.1. A subset S of a space X is said to be α-open (Njȧstad 1965) (resp.
semi-open (Levine 1963), preopen (Mashhour, Abd El-Monsef and El-Deeb 1982), β-
open (Abd El-Monsef et al. 1983), γ-open (EI-Atik 1997)) if S ⊂ int(cl(int(S))) (resp.
S ⊂ cl(int(S)), S ⊂ int(cl(S)), S ⊂ cl(int(cl(S))), S ⊂ cl(int(S))∪int(cl(S))).

The family of all α-open (resp. semi-open, preopen, β-open, γ-open) sets in a space
X is denoted by τα (resp. SO(X), PO(X), βO(X), γO(X)). It is shown in 1965 (Njȧstad)
that τα is a topology for X and τ ⊂ τα⊂ SO(X). Moreover, SO(X) ∪ PO(X) ⊂ βO(X)
(Noiri and Popa 1990). The complement of an α-open (resp. β-open, γ-open) set is
said to be α-closed (resp. β-closed, γ-closed). The intersection of all α-closed sets
containing S is called the α-closure of S and is denoted by αcl(S); the union of all
α-open sets contained in S is called the α-interior of S and is denoted by αint(S).

Definition 2.2. A function f : (X, τ) → (Y, ν) is said to be α-irresolvle (Maheshwari
and Thakur 1980) (resp. semi α-irresolute (Beceren 2000b)) if f−1(V) is α-open (resp.
semi-open) in X for every α-open set V of Y.

Definition 2.3. A function f : X → Y is said to be strongly α-continuous (Beceren
2000a) (resp. irresolute (Crossley and Hildebrand 1972), almost irresolute (Dube et al.
1983 or Cammaroto et al. 1989)) if f−1(V) is α-open (resp. semi-open, β-open) in X
for every semi-open set V of Y.

Definition 2.4. A function f : X → Y is said to be β-continuous (Abd El-Monsef et
al. 1983) (resp. β-irresolute (Mahmoud and Abd El-Monsef 1990)) if f−1(V) is β-open
in X for every open (resp. β-open) set V of Y.

Definition 2.5. A function f : (X, τ) → (Y, ν) is said to be almost α-irresolute
(Beceren 2000c) if f−1(V) is β-open in X for every α-open set V of Y.

Remark 2.6. (Noiri and Popa 2010) In a topological space, the following hold:

1. τ ⊂ τα ⊂ SO(X) ⊂ γO(X) ⊂ βO(X).

2. τ ⊂ τα ⊂ PO(X) ⊂ γO(X) ⊂ βO(X).

Definition 2.7. A function f : X→ Y is said to be γ-continuous (resp. γ-irresolute)(El-
Atik 1997) if f−1(V) is γ-open in X for every open (resp. γ-open) set V of X.

3 Almost α-γ-Irresolute Functions

Definition 3.1. A function f : (X, τ) → (Y, ν) is said to be

1. almost α-γ-irresolute if f−1(V) is γ-open in X for every α-open set V of Y.

2. almost γ-irresolute if f−1(V) is γ-open in X for every semi-open set V of Y.
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From the definitions, we obtain the following diagram:

α-irresolute ←− strongly α-continuity
↓ ↓

semi α-irresolute ←− irresolute
↓ ↓

almost α-γ-irresolute ←− almost γ-irresolute
↓ ↓

almost α-irresolute ←− almost irresolute
↓ ↑

β-continuity ←− β-irresolute

The Examples given below show that the converses of these implications are not
true in general.

Example 3.2. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, {a, c}, X} and σ =
{∅, {a}, {b}, {a, b}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is
α-irresolute but it is not strongly α-continuous.

Example 3.3. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅, {b},
{a, b}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is semi α-irresolute
but it is not α-irresolute.

Example 3.4. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and σ = {∅, {a},
{b}, {a, b}, {a, c}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is
irresolute but it is not strongly α-continuous.

Example 3.5. Let X and τ be as in Example 3.2. Let f : (X, τ) → (Y, σ) be the
identity function. Then f is semi α-irresolute but it is not irresolute.

Example 3.6. Let X = Y = {a, b, c, d}, τ = {∅, {a}, {b, c}, {a, b, c}, X} and σ =
{∅, {a}, {a, d}, {a, b, d}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then
f is almost α-γ-irresolute but it is not semi α-irresolute.

Example 3.7. Let X and τ be as in Example 3.6. Let f : (X, τ) → (Y, σ) be the
identity function. Then f is almost γ-irresolute but it is not irresolute.

Example 3.8. Let X = Y = {a, b, c, d, e}, τ = {∅, {a}, {b, c}, {a, b, c}, {a, b,
c, d}, X} and σ = {∅, {a}, {b}, {a, b}, Y}. Let f : (X, τ) → (Y, σ) be the identity
function. Then f is almost α-γ-irresolute but it is not almost γ-irresolute.

Example 3.9. Let X = Y = {a, b, c, d}, τ = {∅, {a}, {b, c}, {a, b, c}, X} and σ =
{∅, {b, d}, {a, b, d}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is
almost α-irresolute but it is not almost α-γ-irresolute.

Example 3.10. Let X and τ be as in Example 3.8. Let f : (X, τ) → (Y, σ) be the
identity function. Then f is almost irresolute but it is not almost γ-irresolute.

Example 3.11. Let X and τ be as in Example 3.2. Let f : (X, τ) → (Y, σ) be the
identity function. Then f is almost α-irresolute but it is not almost irresolute.
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Example 3.12. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, {a, c}, X} and σ =
{∅, {b}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is β-continuous
but it is not almost α-irresolute.

Example 3.13. Let X = Y = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c},
X} and σ = {∅, {a}, {b, c}, {a, b, c}, Y}. Let f : (X, τ) → (Y, σ) be the identity
function. Then f is almost irresolute but it is not β-irresolute.

Example 3.14. Let X = Y = {a, b, c, d}, τ = {∅, {b}, X} and σ = {∅, {b, d}, {a, b,
d}, Y}. Let f : (X, τ) → (Y, σ) be the identity function. Then f is β-continuous but it
is not β-irresolute.

Theorem 3.15. The following are equivalent for a function f : (X, τ) → (Y, ν):

1. f is almost α-γ-irresolute;

2. f : (X, τ) → (Y, ν α) is γ-continuous;

3. For each x ∈ X and each α-open set V of Y containing f(x), there exists a γ-open
set U of X containing x such that f(U)⊂V;

4. f−1(V) ⊂ cl(int(f−1(V)))∪int(cl(f−1(V))) for every α-open set V of Y;

5. f−1(F) is γ-closed in X for every α-closed set F of Y;

6. int(cl(f−1(B)))∩cl(int(f−1(B))) ⊂ f−1(αcl(B)) for every subset B of Y;

7. f(int(cl(A))∩cl(int(A))) ⊂ αcl(f(A)) for every subset A of X.

Proof. (1)⇒(2). Let x ∈ X and let V be any α-open set of Y containing f(x). By
Definition 3.1, f−1(V) is γ-open in X and contains x. Hence the function f : (X, τ)→(Y,
να) is γ-continuous.

(2)⇒(3). Let x ∈ X and let V be any α-open set of Y containing f(x). Set U =
f−1(V), then by (2), U is a γ-open subset of X containing x and f(U) ⊂ V.

(3)⇒(4). Let V be any α-open set of Y and x ∈ f−1(V). By (3), there exists
a γ-open set U of x containing x such that f(U) ⊂ V. Thus, we have x ∈ U ⊂
cl(int(U))∪int(cl(U))⊂cl(int(f−1(V)))∪int(cl(f−1(V))) and hence f−1(V)⊂ cl(int(f−1(V)))
∪ int(cl(f−1(V))).

(4)⇒(5). Let F be any α-closed subset of Y. Set V = Y − F, then V is α-open in
Y. By (4), we obtain f−1(V) ⊂ cl(int(f−1(V)))∪int(cl(f−1(V))) and hence f−1(F) = X −
f−1(Y − F) = X − f−1(V) is γ-closed in X.

(5)⇒(6). Let B be any subset of Y. Since αcl(B) is an α-closed subset of Y,
then f−1(αcl(B)) is γ-closed in X and hence int(cl(f−1(αcl(B))))∩cl(int(f−1(αcl(B))))
⊂ f−1(αcl(B)). Therefore, we obtain int(cl(f−1(B)))∩cl(int(f−1(B))) ⊂ f−1(αcl(B)).

(6)⇒(7). Let A be any subset of X. By (6), we have int(cl(A))∩cl(int(A)) ⊂
int(cl(f−1 (f(A))))∩cl(int(f−1(f(A))))⊂ f−1(αcl(f(A))) and hence f(int(cl(A))∩cl(int(A)))
⊂ αcl(f(A)).

(7)⇒(1). Let V be any α-open subset of Y. Since f−1(Y − V) = X − f−1(V) is
a subset of X and by (7), we obtain f(int(cl(f−1(Y − V)))∩cl(int(f−1(Y − V)))) ⊂
αcl(f(f−1(Y − V))) ⊂ αcl(Y− V) = Y − αint(V) = Y − V and hence
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X −[cl(int(f−1(V)))∪int(cl(f−1(V)))]
= int(cl(X −f−1(V)))∩cl(int(X − f−1(V)))
= int(cl(f−1(Y − V)))∩cl(int(f−1(Y − V)))
⊂ f−1[f[(int(cl(f−1(Y − V))))∩cl(int(f−1(Y − V)))]] ⊂ f−1(Y − V) = X − f−1(V). There-
fore, we have f−1(V) ⊂ cl(int(f−1(V)))∪int(cl(f−1(V))) and hence f−1(V) is γ-open in X.
Thus, f is almost α-γ-irresolute.

Theorem 3.16. A function f : X → Y is almost α-γ-irresolute if the graph function g
: X → X × Y, defined by g(x) = (x, f(x)) for each x ∈ X, is almost α-γ-irresolute.

Proof. Let x ∈ X and V be any α-open set of Y containing f(x). Then, by Lemma 3.1
of Chae et al. (1986), X × V is an α-open set of X × Y containing g(x). Since g is
almost α-γ-irresolute, there exists a γ-open set U of X containing x such that g(U) ⊂
X × V and hence f(U) ⊂ V. Thus, the function f is almost α-γ-irresolute.

Theorem 3.17. If a function f : X → Π Yλ is almost α-γ-irresolute, then Pλof : X
→ Yλ is almost α-γ-irresolute for each λ ∈ ∧, where Pλ is the projection of ΠYλ onto
Yλ.

Proof. Let Vλ be any α-open set of Yλ. Since Pλ is continuous and open, it is α-
irresolute by Theorem 3.2 of (Mashhour et al. 1983) and hence Pλ

−1(Vλ) is α-open in
ΠYλ. Since f is almost α-γ-irresolute, then f−1(Pλ

−1(Vλ)) = (Pλof)−1(Vλ) is γ-open in
X. Hence Pλof is almost α-γ-irresolute for each λ ∈ ∧.

Theorem 3.18. If the product function f : ΠXλ → ΠYλ is almost α-γ-irresolute, then
fλ : Xλ → Yλ is almost α-γ-irresolute for each λ ∈ ∧.

Proof. Let λ0 ∈ ∧ be an arbitrary fixed index and Vλ0 be any α-open set of Yλ0. Then,
ΠYγ × Vλ0 is α-open in ΠYλ by Lemma 3.1 of (Chae et al. 1986), where λ0 6= γ
∈ ∧. Since f is almost α-γ-irresolute, then f−1(ΠYγ × Vλ0) = ΠXγ × fλ0

−1(Vλ0) is
γ-open in ΠXλ and hence, fλ0

−1(Vλ0) is γ-open in Xλ0. This implies that fλ0 is almost
α-γ-irresolute.

Theorem 3.19. If f : (X, τ) → (Y, ν) is almost α-γ-irresolute and A is an α-open
subset of X, then the restriction f/A : A → Y is almost α-γ-irresolute.

Proof. Let V be any α-open set of Y. Since f is almost α-γ-irresolute, then f−1(V)
is γ-open in X. By Lemma 3.9(i) of Rajesh(2007) and since A is α-open in X, then
(f/A)−1(V) = A ∩ f−1(V) is γ-open in A and hence f/A is almost α-γ-irresolute.

Theorem 3.20. If a function f : (X, τ) → (Y, ν) is almost α-γ-irresolute, then f−1(B)
is γ-closed in X for any nowhere dense set B of Y.

Proof. Let B be any nowhere dense subset of Y. Then Y − B is α-open in Y. Since f is
almost α-γ-irresolute, then f−1(Y− B) = X − f−1(B) is γ-open in X and hence f−1(B)
is γ-closed in X.

Theorem 3.21. A function f : (X, τ) → (Y, ν) is almost α-γ-irresolute if and only
if, for each y ∈ Y and each open set V of Y such that y ∈ int(cl(V)), the inverse image
of V ∪ {y} is γ-open in X.
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Proof. Necessity. Since V ⊂ V∪{y} ⊂ int(cl(V)), then V∪{y} is an α-open set of Y.
Since f is almost α-γ-irresolute, then f−1(V∪{y}) is γ-open in X.

Sufficiency. Let V be an α-open set of Y. Then, there exists an open set B of Y such
that B ⊂ V ⊂ int(cl(B)). By hypothesis, f−1(B∪{y}) is γ-open in X for each y ∈ V.
This shows that f−1(V) = ∪{f−1(B∪{y}) : y ∈ V} is γ-open in X and hence f is almost
α-γ-irresolute.

Theorem 3.22. Let f : X → Y and g : Y → Z be functions. Then the composition
gof : X → Z is almost α-γ-irresolute if f and g satisfy one of the following conditions :

1. If f is almost α-γ-irresolute and g is α-irresolute,

2. If f is γ-irresolute and g is almost α-γ-irresolute,

3. If f is almost γ-irresolute and g is semi α-irresolute.

Proof. (1) Let W be any α-open subset of Z. Since g is α-irresolute, then g−1(W) is
α-open in Y. Since f is almost α-γ-irresolute, then (gof)−1(W) = f−1(g−1(W)) is γ-open
in X and hence gof is almost α-γ-irresolute.

The proof of the conditions (2) and (3) is analogous to that of (1); it follows from
the definitions.

We recall that a space X is said to be submaximal if every dense subset of X is open
in X and extremally disconnected if the closure of each open subset of X is open in X.

Theorem 3.23. Let (X, τ) be a submaximal and extremally disconnected space. Then
the following are equivalent for a function f : (X, τ) → (Y, ν):

1. f is α-irresolute;

2. f is semi α-irresolute;

3. f is almost α-irresolute;

4. f is almost γ-irresolute;

5. f is almost α-γ-irresolute.

Proof. This follows from the fact that if (X, τ) is submaximal and extremally discon-
nected, then τ = τα = SO(X) = γO(X) = βO(X) (Keskin and Noiri(2009), Nasef et al.
(1998) and Janković (1983)).

Recall that a space (X, τ) is said to be resolvable if it has two disjoint dense subsets,
otherwise it is called irresolvable.

Recall that a space (X, τ) is called strongly irresolvable if every open subspace of
(X, τ) is irresolvable.

Theorem 3.24. Let (X, τ) be a strongly irresolvable space. Then the following are
equivalent for a function f : (X, τ) → (Y, ν):

1. f is irresolute,

2. f is almost γ-irresolute.

Proof. This follows from the fact that if (X, τ) is strongly



Journal of New Results in Science 7 (2014) 20-28 26

4 Conclusion

The field of mathematical science which goes under the name of topology is concerned
with all questions directly or indirectly related to irresolute functions. Therefore, gen-
eralization of irresolute functions is one of the most important subject in topology.
On the other hand, topology plays a significant role in quantum physics, high energy
physics and superstring theory [13-15, 30]. Thus we speculate that studies on almost
α-γ-irresolute functions which is a kind of generalized irresolute functions may have
possible applications in quantum physics, high energy physics and superstring theory
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