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Abstract This paper deals with the rough interval approach on
lattice theory. In the interval-set model, a pair of sets is referred
to as the lower and upper bounds which define a family of sets. A
significant difference between these concepts lies in the definition
and interpretation of their extended set-theoretic operators. The
operators in the rough-set model are not truth-functional, while
the operators in the interval-set model are truth-functional. We
have showed that the collection of all rough intervals in an approx-
imation space forms a distributive lattice. Some important results
are also proved. Finally, an example is considered to illustrated
the paper.
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1 Introduction

The rough-set and interval-set models are two related but distinct extensions of set
theory for modelling vagueness. In the rough-set model, a given set is represented by a
pair of ordinary sets called the lower and upper approximations [7]. The approximation
space is constructed based on an equivalence relation defined by a set of attributes [9].
There are two views for the interpretation of the rough-set model. Under one view
the approximation space can be understood in terms of two additional set theoretic
operators [3]. In which we assign for each subset of the universe a lower approximation
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and an upper approximation. We regard this interpretation to be the operator-oriented
view. The other interpretation is a set-oriented view which considers a rough set as
the family of sets having the same lower and upper approximations [1]. The rough-set
model is useful in the study of information system, classification and machine learning
[8]. In the interval-set model, it is assumed that the available information is insufficient
to define a set precisely. Instead, a pair of sets referred to as the lower and upper
bounds is used to define the range of the unknown set. In other words, any member
of the family of sets bounded by the lower and upper bounds can, in fact be in the
set. Orlowska [6] proposed a logic for reasoning about concepts using the notion of
rough sets, which is essentially the modal logic system S5 with the modal operators
interpreted using the lower and upper approximations [4]. A similar approach was also
adopted by Chakraborty and Banerjee [2]. The semantics of these logic systems have
been investigated by many authors. Recently, Yao and Li [10] examined the relationship
between the interval-set model and Kleene three valued logic. It has been shown that
the interval-set model provides the possible-worlds semantics for Kleene three-valued
logic.
Based on the above studies, this paper provides a comparison of rough-set and interval-
set models with emphasis on uncertain reasoning. The discussion will focus in our paper
on the interpretation of these models and their connections and differences. The main
objective of such a comparative study in our paper is to show that these two models
provide different and complementary extensions of set theory, although both use a pair
of sets in their formulations.

2 Rough Sets and Interval Sets

In the rough set model, there is an equivalence relation E defined on U , namely, E
is reflexive, symmetric and transitive. This relation partitions U into disjoint subsets
U/E = {E1, E2, . . . , En}, where Ei, i ∈ (Index set), is an equivalence class of E. The
family U/E is called a quotient set and the pair (U,E) is called an approximation
space. The empty set and the elements of U/E are called the elementary or atomic
set. The union of one or more elementary sets is called a composed set. The family
of all composed sets is denoted by Com(U,E). The elementary sets are the building
blocks for the construction of rough sets. In the approximation space (U,E), given an
arbitrary set X ⊆ U , one may represent X by a pair of lower and upper approximations:
X ↓= {x ∈ U : x/E ⊆ X} and X ↑= {x ∈ U : x/E ∩X 6= ∅}, where x/E denote the
equivalence class containing x. The lower approximation X ↓ is the union of all the
elementary sets which are subsets of X, and the upper approximation X ↑ is the union
of all the elementary sets which have a non-empty intersection with X. In fact, X ↓ is the
greatest composed set contained by X, while X ↑ is the least composed set containing
X. The pair (X ↓, X ↑) is called the rough set of X. Mathematically rough interval set
are defined as follows. Let U be a finite set, called the universe or the reference set,
and P (U) be its power set. A subset of P (U) of the form X = [X ↓, X ↑] = {X ∈
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P (U) : X ↓⊆ X ↑} is called a closed interval set, where it is assumed X ↓⊆ X ↑.
The set of all closed interval sets is denoted by Int(P (U)). Degenerate interval sets
of the form [X,X] are equivalent to ordinary sets. An interval set, when interpreted
as family of sets of objects, provides an approximate means to represents a partially
known concept. Although the extension of a concept is actually a subset of U , a lack of
knowledge makes us unable to specify this subset. We can only provide a lower bound
X ↓ and upper bound X ↑. Any subset X that lies between X ↓ and X ↑, namely
X ↓⊆ X ↑ can be actual extension of the concept. The set BN [X ↓, X ↑] = X ↑ −X ↓
is called the boundary of the interval set [X ↓, X ↑].

3 Operations on Rough Interval

Let ∩,∪ and ¬ be the usual set intersection, union and difference defined on P (U),
respectively. We define the following binary operations into interval-set operation. For
two interval sets X = [X ↓, X ↑] and Y = [Y ↓, Y ↑]

X u Y = {X ∩ Y : X ∈ X, Y ∈ Y},
X t Y = {X ∪ Y : X ∈ X, Y ∈ Y},
X \ Y = {X \ Y : X ∈ X, Y ∈ Y}.

These operations are referred to as interval-set intersection, union and difference. They
are closed on Int(P (U)), namely, X u Y , X t Y and X \ Y are interval sets. In
fact, these interval sets can be explicitly computed by using the following formulas:
X u Y = [X ↓ ∩ Y ↓, X ↑ ∩ Y ↑], X t Y = [X ↓ ∪ Y ↓, X ↑ ∪ Y ↑], X \ Y = [X ↓
−Y ↓, X ↑ −Y ↑], Similarly, the interval-set complement ¬[X ↓, X ↑] of [X ↓, X ↑] is
defined as [U,U ]\ [X ↓, X ↑]. This is equivalent to [U −X ↑, U −X ↓] = [X ↑co, X ↓co],
where Xco = U − X denote the usual set complement operation. Clearly, we have
¬[∅, ∅] = [U,U ] and ¬[U,U ] = [∅, ∅]. With the above operations ∩,∪ and ¬, IntP (U)
is a completely distributive lattice [5]. Both the operation ∩ and ∪ are idempotent,
commutative, associative, absorptive and distributive. For interval-set complement, De
Morgan’s laws and double negation law hold. Moreover, [U,U ] and [∅, ∅] are the unique
identities for interval-set intersection and union. These properties may be regarded
as the counterparts of the properties of their corresponding set-theoretic operations.
Unlike elementary set theory, for an interval set X, X ∩ ¬X is not necessarily equal to
[∅, ∅], and X ∪¬X is not necessarily equal to [U,U ]. In qualitative knowledge represen-
tation X \X is not necessarily equal to [∅, ∅]. Nevertheless, ∅ ∈ X ∩¬X,U ∈ X ∪¬X,
and ∅ ∈ X \ Y . Therefore, Int(P (U)) is a completely distributive lattice but not a
boolean algebra, whereas P (U) is a boolean algebra [5]. Moreover, degenerate interval
sets of the form [X, X] are equivalent to ordinary sets. For degenerate interval sets,
the proposed operators ∩,∪, \ and ¬ reduce to the usual set-theoretic operators. Thus,
interval-set model may be considered as an extension of set theory with extended set-
theoretic operators. From the above discussion, it is clear that rough-set and interval-set
models are different extensions of set theory. The rough-set model introduces two ad-
ditional set-theoretic operators based on an equivalence relation on the universe. It
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forms a system (P (U),∩,∪,co , ↓, ↑) by adding a pair of unary operators to the Boolean
algebra (P (U),∩,∪,co ). On the other hand, the interval-set model extends the stan-
dard set-theoretic operators ∩,∪ and co. It establishes a completely distributive lattice
(Int(P (U)),u,t) from the Boolean algebra (P (U),∩,∪,co ). It should be noted that
interval-set operators are truth-functional, namely, the value of a compound formula
can be computed from its components. An interval set [X ↓, X ↑] is also referred to as a
flou set [5]. The lower bound X ↓ defines the sure region, the upper bound X ↑ defines
the maximum region, and the difference X ↑ −X ↓ defines the flou region. The sure
region corresponds to the positive region of a rough set and the flou region corresponds
to the doubtful region. From this point of view, the notion of interval sets is related
to the concept of rough sets. An alternative view of rough-set model along the same
line of argument as that of the interval set model has been discussed by Bonikowski
[1]. It presents a set-oriented interpretation of rough-set model. Given two elements
X ↓, X ↑∈ Com(U,E) with X ↓⊆ X ↑, a rough set is defined as the following family
of subsets of U : < X1, X2 >= {A ∈ P (U) : A ↓= X1, A ↑= X2}. Under this interpre-
tation, one can extend the set-theoretic operators ∩,∪ and co into the corresponding
rough-set operators: for two rough sets < X1, X2 > and < Y1, Y2 >,
< X1, X2 > ⊗ < Y1, Y2 >= {A ∈ P (U) : A ↓= X1 ∩ Y1, A ↑= X2 ∩ Y2},
< X1, X2 > ⊕ < Y1, Y2 >= {A ∈ P (U) : A ↓= X1 ∪ Y1, A ↑= X2 ∪ Y2},
ª < X1, X2 >= {A ∈ P (U) : A ↓= Xco

2 , A ↑= Xco
1 }.

The symbols ⊗,⊕ and ª represent the rough-set intersection, union and complement.
Unlike the interval-set operators, these rough-set operators are not truth-functional.
Let < denote the set of all rough sets in the approximation space (U,E). The extended
system (<,⊗,⊕) is a completely distributive lattice [5].
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Figure 1: A non-distributive lattice

Consider a non-distributive lattice given in Figure 1 on L = {0, x, y, z, 1}. For two
intervals [x, 1] and [y, 1], we have: [x, 1]⊗ [y, 1] = {0, x, y, 1}, which is not an interval.
Similarly, for two intervals [0, x] and [0, z], we have: [0, x] ⊕ [0, z] = {0, x, z, 1}, which
is also not an interval. Operations ⊗ and ⊕ on L we have (x ¹ x

′
, y ¹ y

′
) =⇒ x⊗ y ¹

x
′ ⊗ y

′
, (x ¹ x

′
, y ¹ y

′
) =⇒ x⊕ y ¹ x

′ ⊕ y
′
. It is expected that a simple computation

method can be used if extended operations are indeed closed on I(L), the set of all
intervals formed from I. As shown by the following theorem, a sufficient condition
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for these operations to be closed is that the lattice L is distributive. In addition,
the extended operations can be easily computed by considering only ending points of
intervals.

4 Rough Interval Concept

Rough intervals provide a framework for the interpretation of crisp intervals based on
indiscernibility. Indiscernibility is a property defined inside of the Rough set theory,
which allows the extraction of precise information from vague concepts, by compar-
ing these vague concepts with the available process knowledge. The required process
knowledge may be provided by sensors in the technical process and technical specifica-
tions, upon which it can be decided, when a physical (measured) value clearly belongs
to the represented concept, and when this membership is uncertain. Rough intervals
were introduced because rough sets were conceived only to handle discrete objects they
cannot be used to represent continuous values such as temperature, flow etc. A rough
interval is a particular case of a rough set. They fulfill all the rough set properties
and core concepts, including the upper and lower approximation definitions. Inside of
the upper approximation interval, the variable could take the represented qualitative
value (a vague concept in rough sets), or what is the same, it is clear that outside
this interval, the variable cannot take it. The second element of a rough set, the lower
approximation, can be also redefined on this basis: In the lower approximation interval,
it is sure that the variable takes the represented qualitative value. The rough interval
concept also satisfies the mathematical definition of rough set with upper and lower
approximation.

5 Order for Two Interval Rough Sets

Let U be a finite non-empty set called the universe. If we denote by P (U) the power set
of U , then (P (U),⊆) will be a lattice in which meet and join operators are the classical
set intersection ∩ and the classical set union ∪ respectively. The order of the lattice
is the classical set inclusion, and the classical set complement is an order reversing
involution. Now we can distinguish two distinct orders for interval rough sets:
1) Inclusion ordering of interval rough sets:
[X ↓, X ↑] ⊆I [Y ↓, Y ↑] ⇔ X ↓⊆ Y ↓, X ↑⊆ Y ↑
2) Knowledge ordering of interval rough sets:
[X ↓, X ↑] ⊆K [Y ↓, Y ↑] ⇔ X ↓⊆ Y ↓, X ↑⊆ Y ↑. The first one ⊆I is an extension of
the classical set inclusion.
(P (U) × (P (U),⊆I) is a lattice whose meet and join operators are the interval set
intersection and the union respectively, and the set complement is an order reversing
involution of this lattice. The second ordering, ⊆K is a new one and can be understood
as an order of information that each interval set exhibits. (P (U)× (P (U),⊆K) will be
a lattice in which u,t are its meet and join operators, respectively. The interval rough
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set complement co is an order-preserving operator of the lattice. So, with interval rough
set algebra, the lattice of classical sets has been generalized to bilattice
((P (U)× (P (U),⊆I ,⊆K ,co ).

Theorem 5.1. Suppose L is a distributive lattice. Then,
[X ↓, X ↑]⊗ [Y ↓, Y ↑] = [X ↓ ⊗Y ↓, X ↑ ⊗Y ↑] and
[X ↓, X ↑]⊕ [Y ↓, Y ↑] = [X ↓ ⊕Y ↓, X ↑ ⊕Y ↑]
Moreover, I(L), the set of all intervals formed from I with operations ⊗ and ⊕ forms
a distributive lattice.

Proof : The inclusion [X ↓, X ↑] ⊗ [Y ↓, Y ↑] ⊆ [X ↓ ⊗Y ↓, X ↑ ⊗Y ↑] follows
trivially from the properties of lattice, namely, X ↓¹ A ¹ X ↑ and Y ↓¹ B ¹ Y ↑
imply X ↓ ⊗Y ↓¹ A ⊗ B ¹ X ↑ ⊗Y ↑. Now suppose C ∈ [X ↓ ⊗Y ↓, X ↑ ⊗Y ↑].
We only need to show there exists a pair A ∈ [X ↓, X ↑] and B ∈ [Y ↓, Y ↑] such that
X ↓ ⊗Y ↓= C. Let A = (X ↓ ⊕C)⊗X ↑ and B = (Y ↓ ⊕C)⊗Y ↑. It is easily verified
that A ∈ [X ↓, X ↑], B ∈ [Y ↓, Y ↑] It follows,

A⊗B = ((X ↓ ⊕C)⊗X ↑)⊗ ((Y ↓ ⊕C)⊗ Y ↑)
= ((X ↓ ⊕C)⊗ (Y ↓ ⊕C))⊗ (X ↑ ⊗Y ↑)
= (X ↓)⊗X ↓)⊕ C)⊗ (X ↑ ⊗Y ↑)
= C ⊗ (X ↑ ⊗Y ↑)
= C.

Therefore, [X ↓, X ↑] ⊗ [Y ↓, Y ↑] = [X ↓ ⊗Y ↓, X ↑ ⊗Y ↑]]. Similarly, we can
show that the operation ⊕ is also closed. It can be easily checked that if (<,⊗,⊕) is a
distributive lattice, then I(<) is a distributive lattice, where I(<) denote the set of all
intervals formed from < and < is a lattice with operations ⊗ and ⊕. In particular, the
order relation on intervals is given by [X ↓, X ↑] ¹ [Y ↓, Y ↑] if and only if X ↓¹ X ↑
and Y ↓¹ Y ↑.
To differentiate it from the original lattice <, we call I(<) an interval lattice. If < is a
Boolean lattice, one may extend the complement operation ª as follows:

ª[X ↓, X ↑] = {ªA : A ∈ [X ↓, X ↑]}
= [ªX ↓,ªX ↑]

Therefore we can say that I(<) is not a Boolean lattice but a complete distributive
lattice.
Example-1: Suppose that we have a number of jurcy with colored blue or red, num-
bered information about the color of different jurcy each making a interval rough set,
for the concept of being red, on the basis of their observation as follows:

Agent 1: Red jurcy: 1,2,3
Blue jurcy: 6,7,8,9

therefore, [A1 ↓, A1 ↑] = ({1, 2, 3}, {6, 7, 8, 9})
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Agent 2: Red jurcy: 1,2,3,4,6
Blue jurcy:5,6,7,8,9

therefore, [A2 ↓, A2 ↑] = ({1, 2, 3, 4, 6}, {5, 6, 7, 8, 9})

Agent 3: Red jurcy: 1,2,10
Blue jurcy: 5,6,7,8

therefore, [A3 ↓, A3 ↑] = ({1, 2, 10}, {5, 6, 7, 8, })

According to the definition, A1 ↓⊆ A2 ↑, A1 ↓⊆ A2 ↑=⇒ (A1 ↓, A1 ↑) ⊆K (A2 ↓, A2 ↑)
therefore, [A1 ↓, A1 ↑]⊗ [A3 ↓, A3 ↑] = [{1, 2}, {6, 7, 8}]
[A1 ↓, A1 ↑]⊕ [A3 ↓, A3 ↑] = [{1, 2, 3, 10}, {5, 6, 7, 8, 9}] Some relevant comments are as
follows:
1. As far as Agent 2 is concerned, jurcy No. 6 presents a contradicting behavior (it is
both red and blue) and there is no information for jurcy No. 10.
2. Since [A1 ↓, A1 ↑] ⊆K [A2 ↓, A2 ↑], [A2 ↓, A2 ↑] exhibits more knowledge (information)
about different jurcies. In other hand, Agent 2 has more knowledge about red jurcy
than Agent 1. Note that [A1 ↓, A1 ↑] and [A3 ↓, A3 ↑] are incomparable due to the order
of knowledge.
3. If one is going to make deductions on the basis of the knowledge of Agents 1 and 3,
he or she can choose either to accept the information confirmed by both Agents, or to
accept all proposed information. The former approach insists on a consensus and will
form the interval rough set [A ↓, A ↑]. Here, we only gave an example for the knowledge
order, which can be discussed when one is dealing with several agents. Classical set
algebra can be considered as a special case when there is only one agent present. The
order of inclusion can be clarified if one thinks of a single agent logically comparing two
different concepts.

6 Conclusion

In this paper, we have provided a comparative study of rough set and interval set models
within the context of uncertain reasoning. The rough set model is a generalization
of set theory in which a pair of new set-theoretic operators are introduced. Interval
sets provide a new means for representing partially known concepts for approximating
undefinable concepts or complex concepts. Interval sets are closely related to rough
set which we declared as interval structure rough set or interval rough set, is discussed
in this paper. Also based on an inclusion ordering and a knowledge ordering, we have
discussed two types of order for rough interval set.
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