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1 Introduction

Some concepts in mathematics can be considered as mathematical tools for dealing
with uncertainties, namely theory of vague sets, theory of rough sets and etc. But all of
these theories have their own difficulties. The concept of soft sets was first introduced
by Molodtsov as a general mathematical tool for dealing with uncertain objects [8].
He successfully applied the soft theory in several directions, such as smoothness of
functions, game theory, probability, Perron integration, Riemann integration, theory of
measurement [8][9]. It is remarkable that, Molodtsov used this concept in order to solve
complicated problems in other sciences such as, engineering, economics and etc.

The properties and applications of soft set theory have been studied increasingly
in [1], after that the operations of soft sets presented by Maji-Biswas-Roy [7]. In [3],
Çağman-Enginoglu redefined the operations of the soft sets and constructed a uni-int
decision making method by using these new operations, and developed soft set theory.
Then to make easy compaction with the operations of soft sets, they presented the
soft matrix theory and set up the soft maximin decision making method [4]. These
decision making methods can be successfully applied to many problems that contain
uncertainties.
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In [11], Shabir-Naz introduced and studied the concepts soft topological space and
some related concepts such as soft interior, soft closed, soft subspace and soft separation
axioms. In [2], Aygunoglu-Aygun introduced the soft product topology and defined the
version of compactness in soft spaces named soft compactness.

In this paper, we introduce the concept of soft connectedness and we obtain some
results that involve the concepts of soft pu-continuous functions, soft Hausdorff spaces
and soft cartesian procuct.

2 Preliminary

In this section, we recall some definitions and concepts discussed in [6, 10, 11, 12]. Let
U be an initial universe and E be a set of parameters. Let P(U) denote the power set of
U and A be a nonempty subset of E. A pair (F,A) is called a soft set over U , where F
is a mapping given by F : A → P(U). For two soft sets (F, A) and (G,B) over common
universe U , we say that (F,A) is a soft subset (G, B) if A ⊆ B and F (e) ⊆ G(e), for
all e ∈ A. In this case, we write (F, A)⊆̃(G,B) and (G,B) is said to be a soft super
set of (F, A). Two soft sets (F, A) and (G,B) over a common universe U are said to
be soft equal if (F, A)⊆̃(G,B) and (G, B)⊆̃(F,A). A soft set (F, A) over U is called a
null soft set, denoted by ΦA, if for each e ∈ A, F (e) = ∅. Similarly, it is called absolute

soft set, denoted by Ũ , if for each e ∈ A, F (e) = U . The union of two soft sets (F, A)
and (G,B) over the common universe U is the soft set (H,C), where C = A ∪ B and
for each e ∈ C,

H(e) =





F (e) e ∈ A
G(e) e ∈ B

F (e) ∪G(e) e ∈ A ∩B

We write (F,A) ∪ (G,B) = (H, C). Moreover, the intersection (H, C) of two soft
sets (F,A) and (G,B) over a common universe U , denoted by (F, A)∩(G,B), is defined
as C = A ∩B and H(e) = F (e) ∩G(e) for each e ∈ C.

The difference (H,E) of two soft sets (F, E) and (G,E) over X, denoted by (F, E)\(G,E),
is defined as H(e) = F (e)\G(e), for each e ∈ E.

Let Y be a nonempty subset of X. Then Ỹ denotes the soft set (Y, E) over X where

Y (e) = Y , for each e ∈ E. In particular, (X, E) will be denoted by X̃.
Let (F,E) be a soft set over X and x ∈ X. We say that x ∈ (F, E), whenever

x ∈ F (e), for each e ∈ E.
The relative complement of a soft set (F, A) is denoted by (F, A)′ and is defined by

(F, A)′ = (F ′, A) where F ′ : A → P(U) is a mapping given by F ′(e) = U − F (e), for
each e ∈ A.

Let τ be the collection of soft sets over X. Then τ is called a soft topology on X if
τ satisfies the following axioms:

(i) ΦE, X̃ belong to τ .
(ii) The union of any number of soft sets in τ belong to τ .
(iii) The intersection of any two soft sets in τ belong to τ .
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The triple (X, τ, E) is called a soft topological space over X. The member of τ are
said to be soft open in X, and the soft set (F, E) is called soft closed in X if its relative
component (F,E)′ belongs to τ .

Proposition 2.1. Let (X, τ, E) be a soft space over X. Then

i) ΦE, X̃ are closed soft set over X;

ii) The intersection of any number of soft closed sets is a soft closed set over X;

iii) The union of any two soft closed sets is a soft closed set over X.

Let SS(X)E be the collection of all soft sets with set of parameter E, over X. The
cartesian product of soft sets (F,A) ∈ SS(X)A and (G,B) ∈ SS(Y )B is a soft set
(F ×G,A×B) in SS(X × Y )A×B where F ×G : A×B → P(X)× P(Y ) is a mapping
given by (F ×G)(a, b) = F (a)×G(b) for each (a, b) ∈ A×B.

3 Main Results

In this section, we are going to define some new concepts for soft topological spaces
and study some properties related to these spaces.

3.1 Soft Connected Spaces

Let (X, τ, E) be a soft topological space over X. A soft separation of X̃ is a pair (F, E),
(G,E) of no-null soft open sets over X such that

X̃ = (F, E) ∪ (G, E), (F,E) ∩ (G,E) = ΦE.

A soft topological space (X, τ, E) is said to be soft connected if there does not exist a

soft separation of X̃.

Proposition 3.1. Let (F, E) be a soft set in SS(X)E. Then the following hold

(i) (F,E) ∪ (F,E)′ = X̃;

(ii) (F, E) ∩ (F, E)′ = ΦE;

(iii) (F,E) ∩ X̃ = (F, E).

Proof. We prove (ii), only. Let (F, E) ∩ (F, E)′ = (H, E). Then

H(e) = F (e) ∩ F ′(e) = F (e) ∩ (X − F (e)) = ∅.

Therefore (H,E) = ΦE.

Using Proposition 3.1, we prove the following.
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Theorem 3.2. A soft topological space (X, τ, E) is soft connected if and only if the

only soft sets in SS(X)E that are both soft open and soft closed over X are ΦE and X̃.

Proof. Let (X, τ, E) be soft connected. Suppose to the contrary that (F, E) is both

soft open and soft closed in X different from ΦE and X̃. Clearly, (F,E)′ is a soft

open set in X different from ΦE and X̃. By Proposition 3.1, (F, E), (F, E)′ is a soft

separation of X̃. This is a contradiction. Thus the only soft closed and open sets
in X are ΦE and X̃. Conversely, let (F, E), (G, E) be a soft separation of X̃. Let

(F, E) = X̃. Then Proposition 3.1 implies that (G,E) = ΦE. This is a contradiction.

Hence, (F, E) 6= X̃. Since F (e) ∩G(e) = ∅ and F (e) ∪G(e) = X, for each e ∈ E, then
we have G′(e) = X −G(e) = F (e). Therefore (F, E) = (G,E)′. This shows that (F, E)

is both soft open and soft closed in X different from ΦE and X̃. This is a contradiction.
Therefore, (X, τ, E) is soft connected.

Let SS(U)A and SS(V )B be families of soft sets. Suppose that u : U → V and
p : A → B be mappings. Then a mapping fpu : SS(U)A → SS(V )B is defined as:

(i) Let (F, A) be a soft set in SS(U)A. The image of (F, A) under fpu, written as
fpu(F, A) = (fpu(F ), B) is a soft set in SS(V )B such that,

fpu(F )(y) =

{ ⋃
x∈p−1(y)∩A u(F (x)) p−1(y) ∩ A 6= ∅

∅ p−1(y) ∩ A = ∅

for each y ∈ B.
(ii) Let (G,B) be a soft set in SS(V )B. Then the inverse image of (G,B) under fpu,

written as f−1
pu (G, B) = (f−1

pu (G), A), is a soft set in SS(U)A such that, f−1
pu (G)(x) =

u−1(G(p(x))), for each x ∈ A.

Proposition 3.3. Let SS(U)A and SS(V )B be families of soft sets. For a function
fpu : SS(U)A → SS(V )B, the following hold

(i) f−1
pu ((F, B) ∪ (G,B)) = f−1

pu (F, B) ∪ f−1
pu (G,B);

(ii) f−1
pu (Ṽ ) = Ũ ;

(iii) fpu((F,A) ∩ (G,A))⊆̃fpu(F, A) ∩ fpu(G,A);

(iv) f−1
pu ((F,B) ∩ (G,B)) = f−1

pu (F,B) ∩ f−1
pu (G,B);

(v) f−1
pu (ΦB) = ΦA.

Proof. (i) Let (F,B) ∪ (G,B) = (H, B). Then f−1
pu (H, B) = (f−1

pu (H), A), where
f−1

pu (H)(x) = u−1(H(p(x))), for each x ∈ A. On the other hand, let f−1
pu (F,B) ∪

f−1
pu (G,B) = (O,A), where
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O(x) = f−1
pu (F )(x) ∪ f−1

pu (G)(x) = u−1
(
F (p(x)) ∪G(p(x))

)
= u−1(H(p(x))),

for each x ∈ A. Therefore f−1
pu (H, B) = (O, A).

(ii) f−1
pu (Ṽ ) = f−1

pu (V, B) = (f−1
pu (V ), A), where f−1

pu (V )(x) = u−1(V (p(x))) = u−1(V ) =
U = U(x).

(iii) Let (F,A) ∩ (G,A) = (H, A). Then fpu(H, A) = (fpu(H), B), where

fpu(H)(y) =

{ ⋃
x∈p−1(y)∩A u(H(x)) p−1(y) ∩ A 6= ∅

∅ p−1(y) ∩ A = ∅

for each y ∈ B. On the other hand, let fpu(F, A) ∩ fpu(G,A) = (O, B), where O(y) =
fpu(F )(y) ∩ fpu(G)(y), for each y ∈ B. We have

O(y) =

{
(
⋃

x∈p−1(y)∩A u(F (x))) ∩ (
⋃

x∈p−1(y)∩A u(G(x))) p−1(y) ∩ A 6= ∅
∅ p−1(y) ∩ A = ∅

for each y ∈ B. Since H(x) = F (x) ∩G(x), for each x ∈ A, then it is easy to see that
fpu(H)(y) ⊆ O(y) for each y ∈ B. This implies that fpu(H, A) ⊆ (O,B).

(iv) Let (F, B)∩(G,B) = (H,B). Then f−1
pu (H, B) = (f−1

pu (H), A), where f−1
pu (H)(x) =

u−1(H(p(x))), for each x ∈ A. On the other hand, let f−1
pu (F, B)∩ f−1

pu (G,B) = (O,A),
where

O(x) = f−1
pu (F )(x) ∩ f−1

pu (G)(x) = u−1(F (p(x))) ∩ u−1(G(p(x)))

= u−1(H(p(x))),

for each x ∈ A. Therefore, f−1
pu (H, B) = (O,A).

Let (U, τ, A) and (V, τ ′, B) be soft topological spaces. Let fpu : SS(U)A → SS(V )B

be a function. Then fpu is said to be soft pu-continuous if for each (F, B) ∈ τ ′ we have
f−1

pu (F, B) ∈ τ .

Proposition 3.4. Let (F, E), (G,E) and (H, E) be soft sets in SS(X)E. Then,

(i) (F,E) ∩ ((G,E) ∪ (H, E)) = ((F, E) ∩ (G,E)) ∪ ((F, E) ∩ (H,E));

(ii) (F, E)⊆̃(G,E) if and only if (F,E) ∩ (G,E) = (F,E);

(iii) (F,E)⊆̃(G,E) if and only if (F, E) ∪ (G,E) = (G, E).

Proof. We prove (i), only. Let (G, E) ∪ (H,E) = (A, E) and (F,E) ∩ (A,E) = (B, E).
Then,

B(e) = F (e) ∩ A(e) = F (e) ∩ (G(e) ∪H(e)) = (F (e) ∩G(e)) ∪ (F (e) ∩H(e)),

for each e ∈ E.
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On the other hand, if (F, E) ∩ (G,E) = (C, E), (F, E) ∩ (H, E) = (D, E) and
(C,E) ∪ (D,E) = (I, E), then I(e) = C(e) ∪D(e) = (F (e) ∩G(e)) ∪ (F (e) ∩H(e)) for
each e ∈ E. Therefore, (B, E) = (I, E).

Theorem 3.5. Let fpu be a soft pu-continuous function carrying the soft connected
space (U, τ, A) onto the soft space (V, τ ′, B). Then (V, τ ′, B) is soft connected.

Proof. Suppose to the contrary there exists a soft separation (F, B), (G,B) of Ṽ . Then
Proposition 3.3, implies that

Ũ = f−1
pu ((F, B) ∪ (G,B)) = f−1

pu (F, B) ∪ f−1
pu (G,B),

f−1
pu (F, B) ∩ f−1

pu (G, B) = f−1
pu (ΦB) = ΦA.

Let f−1
pu (F, B) = ΦA. Since fpu is surjective, then by Theorem 3.14 of [12] and Propo-

sition 3.3, we have (F, B) = ΦB. This is a contradiction. Therefore f−1
pu (F,B) and

by a similar reason f−1
pu (G,B) are different from ΦA. Now, Proposition 3.4 shows that

f−1
pu (F, B), f−1

pu (G,B) is a soft separation of Ũ . This is a contradiction, and this com-
pletes the proof.

Let (F, E) be a soft set over X and Y be a nonempty subset of X. Then the sub
soft set of (F,E) over Y denoted by (Y F, E) is defined as follows

Y F (e) = Y ∩ F (e),

for each e ∈ E. In other word (Y F, E) = Ỹ ∩ (F, E).
Now, suppose that (X, τ, E) be a soft topological space over X and Y be a nonempty

subset of X. Then
τY = {(Y F, E)|(F, E) ∈ τ},

is said to be the soft relative topology on Y and (Y, τY , E) is called a soft subspace of
(X, τ, E).

Proposition 3.6. If the soft sets (F, E) and (G,E) form a soft separation of X̃, and

(Y, τY , E) is a soft connected subspace of (X, τ, E), then Ỹ lies entirely within either
(F, E) or (G,E).

Proof. Since Ỹ ⊆̃(F,E) ∪ (G,E), then by Proposition 3.4 we have

Ỹ = (Ỹ ∩ (F, E)) ∪ (Ỹ ∩ (G,E)).

This means that Ỹ ∩ (F, E) and Ỹ ∩ (G,E) are soft open sets over Y . Suppose to

the contrary Ỹ does not lie entirely within either (F,E) or (G,E). By the hypothesis,

Proposition 3.4 of [12] and Proposition 3.4, Ỹ ∩(F, E) and Ỹ ∩(G,E) are different from

Ỹ and ΦE. But Y (e)∩F (e)∩G(e) = ∅, for each e ∈ E. Therefore, (Ỹ ∩ (F, E))∩ (Ỹ ∩
(G,E)) = ΦE. Since (Ỹ ∩ (F,E)) and (Ỹ ∩ (G, E)) are soft open sets over Ỹ , then we

have a soft separation of Ỹ . This is a contradiction. This completes the proof.
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It is easy to prove the following.

Proposition 3.7. Let (F, E), (G,E) and (H,E) be soft sets in SS(X)E. Then the
following hold

(i) (F,E) ∩ ((G,E) ∩ (H, E)) = ((F, E) ∩ (G,E)) ∩ (H,E);

(ii) (F, E) ∪ ((G,E) ∪ (H, E)) = ((F, E) ∪ (G,E)) ∪ (H, E).

Also, we can obtain the following easily.

Proposition 3.8. Let {(Fα, E)}α∈J be a family of soft sets in SS(X)E. Then the
following hold

(i) (F,E) ∩ (∪α∈J(Fα, E)) = ∪α∈J((F, E) ∩ (Fα, E));

(ii) If (F,E) = (G,E) ∪ (H, E), then (G,E), (H,E)⊂̃(F, E).

Now, we are going to consider the relation between soft subspaces of (X, τ, E), when
one is a subset of the other.

Lemma 3.9. Let (Y, τ ′, E) and (Z, τ ′′, E) be soft subspaces of (X, τ, E) and (Y,E)⊆̃(Z, E).
Then (Y, τ, E) is a soft subspace of (Z, τ ′′, E).

Proof. By Proposition 3.4, we have Ỹ = Ỹ ∩Z̃. Moreover each soft open set of (Y, τ ′, E)

is of the form Ỹ ∩ (F, E), where (F, E) is a soft open set of (X, τ, E). Therefore, by
Proposition 3.7, we have

Ỹ ∩ (F,E) = (Ỹ ∩ Z̃) ∩ (F, E) = Ỹ ∩ [Z̃ ∩ (F, E)].

Conversely, it is clear that each soft open set in Y as a soft subspace of (Z, τ ′′, E) is of

the form Ỹ ∩ (Z̃ ∩ (F, E)) = Ỹ ∩ (F, E). This completes the proof.

We are going to answer to this question: Is the union of a collection of soft connected
subspace of (X, τ, E) a soft connected?

Theorem 3.10. The union of a collection of soft connected subspace of (X, τ, E) that
have non-null intersection is soft connected.

Proof. Let {(Yα, τYα , E)}α∈J be an arbitrary collection of soft connected soft subspace
of (X, τ, E), such that (∩α∈JYα, E) 6= ΦE. Suppose to the contrary that there exists a

soft separation Ỹ ∩ (F, E), Ỹ ∩ (G,E) of Ỹ = ∪α∈J Ỹα. By Proposition 3.8, we have

Ỹ = (∪α∈J(Fα, E)) ∪ (∪α∈J(Gα, E)) where Fα(e) = F (e) ∩ Yα and Gα(e) = G(e) ∩ Yα,

for each α ∈ J and e ∈ E. Since ∩α∈J Ỹα 6= ΦE, it is easy to see that ∩α∈JYα 6= ∅, and
x ∈ ∩α∈JYα. On the other hand, Lemma 3.9 implies that (Yα, τα, E) is a soft subspace

of (Y, τY , E), for each α ∈ J . By Proposition 3.6, we can assume that Ỹα lies entirely

within Ỹ ∩ (F, E).
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Let α′ ∈ J − {α}. If Ỹα′⊆̃Ỹ ∩ (G,E), then it is easy to see that x ∈ Y ∩ G(e),

also x ∈ Y ∩ F (e), for each α ∈ J . This is a contradiction. Therefore Ỹα⊆̃Ỹ ∩ (F, E),

for each α ∈ J . Now we can see that Ỹ ⊆̃Ỹ ∩ (F, E). Proposition 3.4 implies that

Ỹ ∩ (G,E)⊆̃Ỹ ∩ (F, E) and ΦE = Ỹ ∩ (G,E). This is a contradiction. This completes
the proof.

3.2 Cartesian Product of Soft Sets

Let (X, τ, E) be a soft topological space and B ⊆ τ . If every element of τ can be
written as a union of elements of B, then B is called a soft basis for the soft topology
τ . Each element of B is called a soft basis element. Let (F,E1) and (G,E2) be soft
sets in SS(X)E1 and SS(Y )E2 , respectively. Then the cartesian product of (F,E1) and
(G,E2) denoted by (F ×G,E1×E2) in SS(X×Y )E1×E2 is defined as (F ×G)(e1, e2) =
F (e1)×G(e2).

Proposition 3.11. Let (F1, E1), (G1, E1) ∈ SS(X)E1 and (F2, E2), (G2, E2) ∈ SS(Y )E2.
Then

(i) ΦE1 × (F2, E2) = (F1, E1)× ΦE2 = ΦE1×E2;

(ii) ((F1, E1) × (F2, E2)) ∩ ((G1, E1) × (G2, E2)) = ((F1, E1) ∩ (G1, E1)) × ((F2, E2) ∩
(G2, E2)).

Proof. (i) Let ΦE1 = (φ1, E1) and ΦE2 = (φ2, E2). Then we have

(F1 × φ2)(e1, e2) = F1(e1)× φ2(e2) = F1(e1)× ∅ = ∅
= ∅ × F2(e2) = φ1(e1)× F2(e2) = (φ1 × F2)(e1, e2).

This implies (i).
(ii) Let (F1×F2, E1×E2)∩(G1×G2, E1×E2) = (H, E1×E2), (F1, E1)∩(G1, E1) = (I, E1)
and (F2, E2) ∩ (G2, E2) = (J,E2). Then

H(e1, e2) = (F1 × F2)(e1, e2) ∩ (G1 ×G2)(e1, e2) =

(F1(e1)× F2(e2)) ∩ (G1(e1)×G2(e2)) =

(F1(e1) ∩G1(e1))× (F2(e2) ∩G2(e2)) =

I(e1)× J(e2) = (I × J)(e1, e2).

Therefore, (H,E1 × E2) = (I, E1)× (J,E2).

Proposition 3.12. Let (X, τ1, E1) and (Y, τ2, E2) be soft spaces. Let B = {(F,E1) ×
(G,E2)|(F, E1) ∈ τ1, (G,E2) ∈ τ2} and τ be the collection of all arbitrary union of
elements of B. Then τ is a soft topology over X × Y .
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Proof. We have ΦE1 = (φ1, E1) ∈ τ1 and ΦE2 = (φ2, E2) ∈ τ2. Then, by Proposition

3.11, ΦE1 × ΦE2 = ΦE1×E2 ∈ τ . Moreover X̃ = (X, E1) ∈ τ1 and Ỹ = (Y, E2) ∈ τ2.

Then X̃ × Ỹ = (X × Y,E1 × E2) such that the following holds

(X × Y )(e1, e2) = X(e1)× Y (e2) = X × Y,

for each (e1, e2) ∈ E1 × E2. Therefore, X̃ × Ỹ = X̃ × Y ∈ τ . Let (F, E1 × E2),
(G,E1 × E2) ∈ τ . There exist the elements (Fα, E1) × (Gα, E2), (Fβ, E1) × (Gβ, E2),
α ∈ I, β ∈ J , of B such that

(F, E1 × E2) =
⋃
α∈I

((Fα ×Gα, E1 × E2)),

(G,E1 × E2) =
⋃

β∈J

((Fβ ×Gβ, E1 × E2)).

Let (H,E1 × E2) = (F, E1 × E2) ∩ (G,E1 × E2). Then, we have

H(e1, e2) = F (e1, e2) ∩G(e1, e2)

= (
⋃
α∈I

(Fα(e1)×Gα(e2))) ∩ (
⋃

β∈J

(Fβ(e1)×Gβ(e2)))

=
⋃

β∈J

[ ⋃
α∈J

((Fα(e1)×Gα(e2))) ∩ (Fβ(e1)×Gβ(e2))
]

=
⋃

β∈J

⋃
α∈I

((Fα(e1)×Gα(e2)) ∩ (Fβ(e1)×Gβ(e2)))

=
⋃

β∈J

⋃
α∈I

((Fα(e1) ∩ Fβ(e1))× (Gα(e2) ∩Gβ(e2)))

=
⋃

α∈I,β∈J

((Fα ∩ Fβ)(e1)× (Gα ∩Gβ)(e2))

=
⋃

α∈I,β∈J

(Fα ∩ Fβ ×Gα ∩Gβ)(e1, e2).

This shows that

(H, E1 × E2) =
⋃

α∈I,β∈J

((Fα ∩ Fβ)× (Gα ∩Gβ), E1 × E2) =

⋃

α∈I,β∈J

((Fα ∩ Fβ, E1)× (Gα ∩Gβ, E2)).

This implies that (H, E1 × E2) ∈ τ . Finally, It is obvious that an arbitrary union of
elements of τ is an elements in τ . This completes the proof.

Let (X, τ1, E1) and (Y, τ2, E2) be soft spaces. Then the soft space (X×Y, τ, E1×E2)
as defined in previous proposition is called soft product topological space over X × Y .
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Proposition 3.13. Let (F, E1) and (G, E2) be soft sets in SS(X)E1 and SS(Y )E2,
respectively. Then,

((F, E1)× (G,E2))
′ = ((F,E1)

′ × Ỹ ) ∪ (X̃ × (G,E2)
′).

Proof. Let (F ×G,E1 × E2)
′ = ((F ×G)′, E1 × E2). Then,

(F ×G)′(e1, e2) = (X ×Y )− (F (e1)×G(e2)) = [(X −F (e1))×Y ]∪ [X × (Y −G(e2))].

On the other hand,

((F, E1)
′ × Ỹ ) ∪ (X̃ × (G,E2)

′) = (F ′ × Y, E1 × E2) ∪ (X ×G′, E1 × E2).

Let us denote this soft set by (H, E1 × E2). Then we have

H(e1, e2) = (F ′ × Y )(e1, e2) ∪ (X ×G′)(e1, e2) = (F ′(e1)× Y ) ∪ (X ×G′(e2))

= ((X − F (e1))× Y ) ∪ (X × (Y −G(e2))).

This completes the proof.

Corollary 3.14. Let (F,E1) and (G, E2) be soft closed set in soft topological spaces
(X, τ1, E1) and (Y, τ2, E2), respectively. Then (F, E1)× (G, E2) is soft closed set in soft
product space (X × Y, τ, E1 × E2).

Proof. It is obvious that (F, E1)
′, X̃ are soft open sets in (X, τ1, E1) and (G,E2)

′, Ỹ
are soft open sets in (Y, τ2, E2). Now, Proposition 3.13 implies that ((F, E1)× (G,E2))

′

is soft open in (X × Y, τ, E1 × E2). This completes the proof.

3.3 Soft Hausdorff Topological Spcase

We are going to define soft Hausdorff topological spaces [5, 10, 11] and study some
properties of these spaces.

Let (X, τ, E) be a soft topological space over X and x, y ∈ X such that x 6= y.
If there exist soft open sets (F,E) and (G,E) such that x ∈ (F, E), y ∈ (G, E) and
(F, E) ∩ (G,E) = ΦE, then (X, τ, E) is called a soft T2-space or soft Hausdorff.

Proposition 3.15. Let (F, E1) and (G, E2) be soft sets in SS(X)E1 and SS(Y )E2,
respectively. Suppose that x ∈ (F,E1) and y ∈ (G,E2). Then (x, y) ∈ (F,E1)×(G,E2),
and vice versa.

Proof. By the hypothesis, we have x ∈ ⋂
e1∈E1

F (e1) and y ∈ ⋂
e2∈E2

G(e2). Therefore,

(x, y) ∈ (
⋂

e1∈E1

F (e1))× (
⋂

e2∈E2

G(e2)) =
⋂

(e1,e2)∈E1×E2

(F (e1)×G(e2))

=
⋂

(e1,e2)∈E1×E2

(F ×G)(e1, e2).
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This shows that (x, y) ∈ (F,E1)× (G,E2). Conversely is similar.

Proposition 3.16. The product of two soft Hausdorff spaces is soft Hausdorff.

Proof. Let (X, τ1, E1) and (Y, τ2, E2) be soft Hausdorff spaces. we consider distinct
points (x1, y1) and (x2, y2) of X×Y . Without loss of generality let x1 6= x2. Then there
exist soft open sets (F, E1) and (G,E1) in (X, τ, E1) such that x1 ∈ (F, E1), x2 ∈ (G,E1)
and (F, E1) ∩ (G,E1) = ΦE1 . By Proposition 3.15 we have,

(x1, y1) ∈ (F, E1)× Ỹ , (x2, y2) ∈ (G,E1)× Ỹ .

These soft sets are soft open in (X×Y, τ, E1×E2). Finally Proposition 3.11 shows that

((F, E1)× Ỹ ) ∩ ((G, E1)× Ỹ ) = ΦE1×E2 .

This completes the proof.

Proposition 3.17. Let {(Fα, B)}α∈J be an arbitrary family of soft sets in SS(V )B.
Then, f−1

pu (∪α∈J(Fα, B)) = ∪α∈Jf−1
pu (Fα, B)

Proof. Let ∪α∈J(Fα, B) = (F, B), where F (b) = ∪α∈JFα(b), for each b ∈ B. Then
f−1

pu (F, B) = (f−1
pu (F ), A), where

f−1
pu (F )(a) = u−1(F (p(a))) = u−1(∪α∈JFα(p(a))) = ∪α∈Ju−1(Fα(p(a))),

for each a ∈ A. On the other hand if

∪α∈Jf−1
pu (Fα, B) = ∪α∈J(f−1

pu (Fα), A) = (G,A),

then,
G(a) = ∪α∈Jf−1

pu (Fα)(a) = ∪α∈Ju−1(Fα(p(a))),

for each a ∈ A. This completes the proof.

Lemma 3.18. Let the soft topological space (V, τ ′, B) is given by soft basis B. Then
fpu is soft pu-continuous if the inverse image of every soft basis element is soft open.

Proof. We consider fpu : SS(U)A → SS(V )B. Let (F, B) be a soft open set in soft
space (V, τ ′, B). We can write

(F, B) = ∪α∈J(Fα, B),

where B = {(Fβ, B)}β∈I is a soft basis of (V, τ, B) and J ⊆ I. By Proposition 3.17, we
have

f−1
pu (F, B) = ∪α∈Jf−1

pu (Fα, B),
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that is a soft open set in (U, τ, A).

Let (X, τ1, E) and (X, τ2, E) be soft topological spaces. Then the following hold:

(i) if τ1 ⊆ τ2, then τ2 is soft finer than τ1;

(ii) if τ1 ⊂ τ2, then τ2 is soft strictly finer than τ1;

(iii) if τ1 ⊆ τ2 or τ2 ⊆ τ1, then τ1 is soft comparable with τ2.

Then, we have the following.

Proposition 3.19. Let (X, τ2, E) be a soft connected space and τ1 ⊆ τ2. Then (X, τ1, E)
is soft connected.

Proof. Suppose to the contrary that (F, E), (G,E) is a soft separation of X̃ with soft

topology τ1. Since τ1 ⊆ τ2, then (F, E) and (G,E) is a soft separation of X̃ with soft
topology τ2. This is a contradiction. Therefore (X, τ1, E) is soft connected.

Definition 3.20. Let (X, τ, E) be a soft topological space over X and (F,E) be a soft
set over X. Then the soft closure of (F, E) denoted by (F, E) is the intersection of all
soft closed super sets of (F, E).

Proposition 3.21. Let (X, τ, E) be a soft topological space over X and (F, E) be a
soft set over X. If x ∈ (F, E), then every soft open set (U,E) containing x intersects
(F, E).

Proof. Let x ∈ (F,E). Let there is a soft open set (U,E) containing x such that
(F, E) ∩ (U,E) = ΦE. Proposition 3.6 of [12] shows that (F,E)⊆̃(U,E)′. Therefore
(F, E)⊆̃(U,E)′. Hence x ∈ (U,E)∩ (U,E)′. This is a contradiction. Therefore (F, E)∩
(U,E) 6= ΦE.

The following example shows that the converse of Proposition 3.21 is not true.

Example 3.22. Let

X = {h1, h2, h3}, E = {e1, e2}, τ = {ΦE, X̃, (F1, E), (F2, E), . . . , (F30, E)},

where F1, F2, . . . , F30 are given in Example 9 of [11]. Then (X, τ) is a soft topological
space over X. We consider the soft set (F25, E), where

F25(e1) = {h2}, F25(e2) = X.

It is easy to see that the following hold

(F25, E) = (F25, E), h1 /∈ (F25, E).

But for every soft open set (F, E) containing h1 we have (F, E) ∩ (F25, E) 6= ΦE.
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Theorem 3.23. Let (Y, τY , E) be a soft connected subspace of (X, τ, E). If (Y,E)⊆̃(Z, E)⊆̃(Y, E),
then (Z, τZ , E) is also soft connected.

Proof. Suppose to the contrary that (Z,E)∩ (U,E), (Z,E)∩ (V, E) is a soft separation

of Z̃. By Proposition 3.4, we have

Ỹ = [(Y,E) ∩ (U,E)] ∪ [(Y, E) ∩ (V,E)].

It is easy to see that

((Y,E) ∩ (U,E)) ∩ ((Y, E) ∩ (V, E)) = ΦE.

If (Y,E) ∩ (U,E) = ΦE, then
(Y,E)⊆̃(U,E)′.

Therefore (Z,E)⊆̃(Y, E)⊆̃(U,E)′. This shows that (Z, E) ∩ (U,E) = ΦE. This is a
contradiction. Hence

(Y, E) ∩ (U,E) 6= ΦE.

By a similar reason, we have (Y, E) ∩ (V,E) 6= ΦE. Therefore (Y, E) ∩ (U,E), (Y, E) ∩
(V,E) is a soft separation of Ỹ . This is a contradiction. Therefore (Z, τZ , E) is soft
connected.

Remark: There are some differences between topological space and soft topological
spaces. The following examples exhibit some of them.

Example 3.24. Let X be a nonempty set, E = {e1, e2} and

τ = {ΦE, X̃, (F1, E), (F2, E)} where

F1(e1) = ∅, F1(e2) = X, F2(e1) = X, F2(e2) = ∅.

Then (X, τ, E) is a soft topological space and it is easy to see that (F1, E), (F2, E) is
a soft separation of (X,E). Therefore a soft space (X, τ, E) with |X| = 1 can be soft
disconnected.

Example 3.25. Let X be a nonempty set, Y = {h}, E = {e1, e2}, τ1 = {(F1, E), (F2, E)}
and τ2 = {(G1, E), (G2, E), (G3, E), (G4, E)} where,

F1(e1) = F1(e2) = X, F2(e1) = F2(e2) = ∅,

and

G1(e1) = G2(e2) = G3(e1) = G3(e2) = Y, G1(e2) = G2(e1) = G4(e1) = G4(e2) = ∅.

Then (X, τ1, E) and (Y, τ2, E) are soft spaces. Now, we consider soft open sets (F1 ×
G1, E × E) and (F1 ×G2, E × E) of the soft product space. Then

(F1 ×G1)(e1, e1) = (F1 ×G1)(e2, e1) = (F1 ×G2)(e1, e2) = (F1 ×G2)(e2, e2) = X × Y,
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and

(F1 ×G1)(e1, e2) = (F1 ×G1)(e2, e2) = (F1 ×G2)(e1, e1) = (F1 ×G2)(e2, e1) = ∅.

Therefore (F1×G1, E×E), (F1×G2, E×E) is a soft separation of X ×Y . Hence, the
soft space (X × Y, E × E) is not soft connected.

Theorem 3.26. Let (X, τ1, E) and (Y, τ2, E) be two soft connected topological spaces.
Let each soft subset ({x}, E) be soft connected as a soft subspace of (X, τ1, E). Then
the soft cartesian product of these two soft spaces is soft connected.

Proof. We exhibit the proof of this theorem in three steps.
Step1. We show that there exists a soft subspace ({y}, E) of (Y,E) that is soft

connected. Suppose to the contrary that for every y ∈ Y , ({y}, E) has a soft separation
(Fyy, E), (Gyy, E), such that Fyy(e) = Fy(e) ∩ {y} and Gyy(e) = Gy(e) ∩ {y}, where
(Fy, E) and (Gy, E) are soft open sets over X. Then

(Y, E) =
⋃
y∈Y

({y}, E) =
⋃
y∈Y

((Fyy, E) ∪ (Gyy, E))⊆̃(
⋃
y∈Y

Fy, E) ∪ (
⋃
y∈Y

Gy, E).

Obviously, (∪y∈Y Fy, E) and (∪y∈Y Gy, E) are different from ΦE. Let (∪y∈Y Fy, E) ∩
(∪y∈Y Gy, E) 6= ΦE. Therefore Fy(e) ∩ Gy′(e) 6= ∅, for some e ∈ E and y, y′ ∈ Y . This
implies that y = y′. This is a contradiction. Therefore (∪y∈Y Fyy, E), (∪y∈Y Gyy, E) is a
soft separation of (Y,E) that is impossible.

Step2. We choose a base point (x, y) ∈ X × Y and by Step 1, we can assume
that ({y}, E) is soft connected. Suppose to the contrary that (X × {y}, E × E) is not
soft connected. Therefore there exists a soft separation ∪α∈A ∪β∈B ((Fα, E)× (Gβ, E)),
∪γ∈C ∪η∈D ((Fγ, E)× (Gη, E)) of X × {y}. We can deduce that

(X × {y}, E × E) = (
⋃
α∈A

⋃

β∈B

(Fα ×Gβ), E × E) ∪ (
⋃
γ∈C

⋃
η∈D

(Fγ ×Gη), E × E),

and

(
⋃
α∈A

⋃

β∈B

(Fα ×Gβ), E × E) ∩ (
⋃
γ∈C

⋃
η∈D

(Fγ ×Gη), E × E)

= (
⋃
α∈A

⋃

β∈B

⋃
γ∈C

⋃
η∈D

((Fα ∩ Fγ)× (Gβ ∩Gη)), E × E) = ΦE×E

Moreover,

({y}, E) = (
⋃

β∈B

(Gβ, E)) ∪ (
⋃
η∈D

(Gη, E)) = (
⋃

β∈B

Gβ, E) ∪ (
⋃
η∈D

Gη, E).

It is easy to see that (∪β∈BGβ, E) and (∪η∈DGη, E) are different from ΦE. Since ({y}, E)
is soft connected, we have (∪β∈BGβ, E) ∩ (∪η∈DGη, E) 6= ΦE. Therefore
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(
⋃

β∈B

⋃
η∈D

(Gβ ∩Gη), E) 6= ΦE.

This implies that Gβ(e) ∩ Gη(e) 6= ∅ for some e ∈ E, β ∈ B and η ∈ D. On the
other hand (X,E) = (∪α∈AFα, E) ∪ (∪γ∈CFγ, E). Since (X,E) is soft connected then
(Fα ∩ Fγ)(e) 6= ∅, for some e′ ∈ E, α ∈ A and γ ∈ C. Therefore ((Fα ∩ Fγ) × (Gβ ∩
Gγ))(e

′, e) 6= ∅. Hence

(
⋃
α∈A

⋃

β∈B

⋃
γ∈C

⋃
η∈D

((Fα ∩ Fγ)× (Gβ ∩Gη)), E × E) 6= ΦE×E.

This is a contradiction. Therefore (X × {y}, E × E) is soft connected. By hypothesis
and a similar way ({x}′ × Y, E × E) is soft connected, for each x′ ∈ X.

Step 3. Now, we complete the proof. As a result (Tx′ , E×E) = (({x′}×Y )∪ (X×
{y}), E × E) is soft connected, for each x′ ∈ X, being the union of two soft connected
subspace that have non-null intersection. It is easy to see that (X × Y, E × E) is soft
connected, where (X × Y,E ×E) = ∪x′∈X(({x′} × Y ) ∪ (X × {y}), E ×E), because it
is the union of a collection of soft connected subspace that have non-null intersection
containing ({x} × {y}, E × E). This completes the proof.

Question. At the end we pose a natural question here: Is the soft cartesian product
of two soft connected spaces soft connected?
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