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1 Introduction

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which
satisfies the following conditions.

1. A ∈ I and B ⊆ A imply B ∈ I and

2. A ∈ I and B ∈ I imply A∪B ∈ I. [24]
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Given a topological space (X, τ) with an ideal I on X if P(X) is the set of all subsets
of X, a set operator (•)? : P(X) → P(X), called a local function [7] of A with respect
to τ and I is defined as follows: for A ⊆ X, A?(I, τ) = {x ∈ X | U ∩ A /∈ I for every
U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator cl?(•) for a
topology τ ?(I, τ), called the ?-topology and finer than τ , is defined by cl?(A) = A ∪
A?(I, τ) [19]. We will simply write A? for A?(I, τ) and τ ? for τ ?(I, τ). If I is an ideal
on X, then (X, τ , I) is called an ideal topological space.

In this paper, we introduce and study a new class of spaces called mildly ?-normal
spaces. Furthermore, we introduce new types of functions called almost Irg-continuous,
almost Ig-continuous, Irg-closed, almost Irg-closed, almost Ig-closed and Irc-preserving
functions in ideal topological spaces. Subsequently, the relationships between mildly
?-normal spaces and new ideal topological functions are investigated. Moreover, we
obtain characterizations of mildly ?-normal spaces, properties of new ideal topologi-
cal functions and preservation theorems for mildly ?-normal spaces in ideal topological
spaces.

2 Preliminaries

Definition 2.1. [19] Let (X, τ) be a topological space. A subset A of X is called

1. regular open if A = int(cl(A));

2. regular closed if A = cl(int(A)).

The complement of regular open set is regular closed.
The collection of regular open (resp. regular closed) subsets of X is denoted by RO(X)
(resp. RC(X)).

Remark 2.2. In any topological spaces, the following holds.
Every regular closed set is a closed set.[19]

Definition 2.3. [18] A function f : (X, τ) → (Y, σ) is called

1. rc-preserving if f(F) is regular closed in Y for every F ∈ RC(X);

2. R-continuous if f−1(F) is regular open in X for every F ∈ RO(Y );

3. almost continuous if f−1(F) is closed in X for every F ∈ RC(X).

Definition 2.4. Let (X, τ , I) be an ideal topological space. A subset A of X is called

1. Ig-closed [14] if A? ⊆ U or cl?(A) ⊆ U whenever A ⊆ U and U is open in X.

2. Irg-closed [15] if A? ⊆ U or cl?(A) ⊆ U whenever A ⊆ U and U is regular open
in X.

3. Ig-open [14] if X\A is Ig-closed.

4. Irg-open [15] if X\A is Irg-closed.

5. ?-closed [7] if A? ⊆ A.
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Remark 2.5. We have the following implications for properties of subsets.

?-closed → Ig-closed → Irg-closed.

None of the above implications is reversible.[1, 15]

Theorem 2.6. 1. Let (X, τ , I) be an ideal topological space. A subset A of X is
Ig-open in X if and only if F ⊆ int?(A) whenever F is closed and F ⊆ A.[14]

2. Let (X, τ , I) be an ideal topological space. A subset A of X is Irg-open in X if
and only if F ⊆ int?(A) whenever F is regular closed and F ⊆ A.[15]

Definition 2.7. A function f : (X, τ , I) → (Y, σ) is called ?-continuous if the inverse
image of each open set of Y is an ?-open set in X.[1]

Lemma 2.8. [24] For a subset A of an ideal topological space (X, τ , I), we have

1. X\int?(A) = cl?(X\A),

2. X\cl?(A) = int?(X\A).

Definition 2.9. Let (X, τ , I) be an ideal topological space. A subset A of X is regular
I-closed [9] if A=(int(A))?.

Remark 2.10. In any ideal topological spaces, the following holds.

1. Every regular I-closed set is a regular closed set.[8]

2. Every closed set is ?-closed set.[7]

Definition 2.11. A subset A of a topological space (X, τ) is said to be preopen [13] if
A ⊆ int(cl(A)).

Definition 2.12. Let (X, τ , I) be an ideal topological space. Then I is said to be
completely codence [3] if PO(X) ∩ I = {∅}, where PO(X) is the family of all preopen
sets in (X, τ).

Definition 2.13. A subset A of a topological space (X, τ) is said to be α-open [17] if A
⊆ int(cl(int(A))). The family of all α-open sets in (X, τ), denoted by τα, is a topology
on X finer than τ .

Lemma 2.14. [23] Let (X, τ , I) be an ideal topological space. If I is completely
codense, then τ ? ⊂ τα.

Definition 2.15. [18] A topological space (X, τ) is called mildly normal if for every
pair of disjoint H, K ∈ RC(X), there exist disjoint open sets U and V such that H ⊆
U and K ⊆ V.
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3 Characterizations of Mildly ?-Normal Spaces

Definition 3.1. An ideal topological space (X, τ , I) is called ?-normal if for any pair
of disjoint closed sets A and B of X, there exist disjoint ?-open sets U and V such that
A ⊆ U and B ⊆ V.[20]

Definition 3.2. An ideal topological space (X, τ , I) is called mildly ?-normal if for
every pair of disjoint H, K ∈ RC(X), there exist disjoint ?-open sets U and V such
that H ⊆ U and K ⊆ V.

Theorem 3.3. The following are equivalent for an ideal topological space (X, τ , I).

1. X is mildly ?-normal;

2. for any disjoint H, K ∈ RC(X), there exist disjoint Ig-open sets U and V such
that H ⊆ U and K ⊆ V;

3. for any disjoint H, K ∈ RC(X), there exist disjoint Irg-open sets U and V such
that H ⊆ U and K ⊆ V;

4. for any H ∈ RC(X) and any V ∈ RO(X) containing H, there exists a Irg-open
set U of X such that H ⊆ U ⊆ cl?(U) ⊆ V.

5. for any H ∈ RC(X) and any V ∈ RO(X) containing H, there exists an ?-open
set U of X such that H ⊆ U ⊆ cl?(U) ⊆ V.

Proof: (1) ⇒ (2). Proof is immediate from the fact that any ?-open set is Ig-open.
(2) ⇒ (3). Proof is immediate from the fact that any Ig-open set is Irg-open.
(3) ⇒ (4). Let H∈RC(X) and V∈RO(X). By (3) there exist disjoint Irg-open sets

U and W such that H ⊆ U and X\V ⊆ W. By Theorem 2.6(2), we have X\V ⊆ int?(W)
⇒ X\int?(W) ⊆ V. Since U∩W= ∅, we have U∩int?(W)=∅ and so cl?(U)⊆ X\int?(W).
Therefore, we obtain H ⊆ U ⊆ cl?(U) ⊆ V where U is Irg-open.

(4) ⇒ (5). Let H and K be disjoint regular closed sets of X. Then H ⊆ X\K where
X\K ∈ RO(X). By (4) there exists a Irg-open set G of X such that H ⊆ G ⊆ cl?(G) ⊆
X\K. By Theorem 2.6(2), we have H ⊆ int?(G). If U = int?(G), U is ?-open set such
that H ⊆ U ⊆ cl?(U) ⊆ cl?(G) ⊆ X\K. Therefore H ⊆ U ⊆ cl?(U) ⊆ X\K.

(5) ⇒ (1). Let H and K be disjoint regular closed sets of X. Then H ⊆ X\K where
X\K ∈ RO(X). By (5) there exists an ?-open set U of X such that H ⊆ U ⊆ cl?(U) ⊆
X\K. If V = X\cl?(U), then U and V are disjoint ?-open sets of X such that H ⊆ U
and K ⊆ V.

Theorem 3.4. Every ?-normal space is mildly ?-normal but not conversely.

Proof: Let (X, τ , I) be a ?-normal space and A and B be any two disjoint regular
closed sets in X. Since A and B are regular closed in X, they are closed in X. (X, τ , I)
is ?-normal implies there exist disjoint ?-open sets U and W such that A ⊆ U and B ⊆
W. Hence U and W satisfy the conditions of mildly ?-normality and (X, τ , I) is mildly
?-normal.

Example 3.5. Let (X, τ , I) be an ideal topological space such that X = {a, b, c}, τ
= {∅, {c}, {a, c}, {b, c}, X} and I = {∅}. Then (X, τ , I) is a mildly ?-normal space
but not a ?-normal space.
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Theorem 3.6. Let (X, τ , I) be an ideal topological space where I is completely codense.
Then X is mildly normal if and only if it is mildly ?-normal.

Proof: Suppose that A and B are disjoint regular closed sets in X. Since X is mildly
normal, there exist disjoint open sets U and V such that A ⊆ U and B ⊆ V. But every
open set is ?-open set. Hence X is mildly ?-normal.

Conversely, suppose that A and B are disjoint regular closed sets of X. Since X is
mildly ?-normal, there exist disjoint ?-open sets U and V such that A ⊆ U and B ⊆ V.
Since I is completely codense. By Lemma 2.14, τ ? ⊆ τα and so U, V ∈ τα. Hence A
⊆ U ⊆ int(cl(int(U))) = G and B ⊆ V ⊆ int(cl(int(V))) = H. Therefore, G and H are
disjoint open sets containing A and B respectively. Therefore, X is mildly normal.

Theorem 3.7. [16] Let (X, τ , I) be an ideal topological space, where I is completely
codense. Then the following are equivalent.

1. X is mildly normal.

2. For disjoint regular closed sets A and B, there exist disjoint Ig-open sets U and
V such that A ⊆ U and B ⊆ V.

3. For disjoint regular closed sets A and B, there exist disjoint Irg-open sets U and
V such that A ⊆ U and B ⊆ V.

4. For a regular closed set A and a regular open set V containing A, there exists an
Irg-open set U of X such that A ⊆ U ⊆ cl?(U) ⊆ V.

5. For a regular closed set A and a regular open set V containing A, there exists an
?-open set U of X such that A ⊆ U ⊆ cl?(U) ⊆ V.

6. For disjoint regular closed sets A and B, there exist disjoint ?-open sets U and V
such that A ⊆ U and B ⊆ V.

4 Some New Ideal Topological Functions

Definition 4.1. A function f : (X, τ , I) → (Y, σ) is said to be

1. Ig-continuous [1] if f−1(F) is Ig-closed in X for every closed set F of Y;

2. Irg-continuous [1] if f−1(F) is Irg-closed in X for every closed set F of Y;

3. completely ?-continuous if f−1(F) is regular I-closed in X for every closed set F
of Y;

4. R-?-continuous if f−1(F) is regular I-closed in X for every F ∈ RC(Y );

5. almost ?-continuous if f−1(F) is ?-closed in X for every F ∈ RC(Y );

6. almost Ig-continuous if f−1(F) is Ig-closed in X for every F ∈ RC(Y );

7. almost Irg-continuous if f−1(F) is Irg-closed in X for every F ∈ RC(Y ).
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Example 4.2. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {a}, {a, c},
Y} and I = {∅, {b}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a; f(b) = b; f(c) = c.
Then the function f is ?-continuous but not completely ?-continuous.

Example 4.3. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {a}, {b},
{a, b}, {a, c}, Y} and I = {∅, {b}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a; f(b)
= b; f(c) = c. Then the function f is Ig-continuous but not ?-continuous.

Example 4.4. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {b}, {b, c},
Y} and I = {∅, {b}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a; f(b) = b; f(c) = c.
Then the function f is Irg-continuous but not Ig-continuous.

Example 4.5. The function f in the Example 4.2 is R-?-continuous but not completely
?-continuous.

Example 4.6. The function f in the Example 4.4 is almost ?-continuous but not ?-
continuous.

Example 4.7. The function f in the Example 4.4 is almost Ig-continuous but not
Ig-continuous.

Example 4.8. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, X}, τ2 = {∅, {a},
{a, c}, Y} and I = {∅, {a}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a; f(b) = b;
f(c) = c. Then the function f is almost Irg-continuous but not Irg-continuous.

Example 4.9. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {a}, {b}, {a,
b}, {b, c}, Y} and I = {∅, {b}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a; f(b) = b;
f(c) = c. Then the function f is almost Irg-continuous but not almost Ig-continuous.

Example 4.10. The function f in the Example 4.3 is almost Ig-continuous but not
almost ?-continuous.

Example 4.11. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, {b, c}, X}, τ2 = {∅,
{a}, {b}, {a, b}, Y} and I = {∅, {a}}. Define f : (X, τ1, I) → (Y, τ2) by f(a) = a;
f(b) = b; f(c) = c. Then the function f is almost ?-continuous but not R-?-continuous.

Remark 4.12. From the definitions stated above and the examples given above, we
obtain the following diagram.

completely ?-continuity R-?-continuity

?-continuity almost ?-continuity

Ig-continuity almost Ig-continuity

Irg-continuity almost Irg-continuity

?

?

?

?

?

?

-

-

-

-

6

6

6
¾

¾

¾

¾

6

6

6
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Definition 4.13. An ideal topological space (X, τ , I) is said to be I-regular-T1/2 if
every Irg-closed set in X is regular I-closed in X.

Proposition 4.14. If a function f : (X, τ , I) → (Y, σ) is Irg-continuous and X is
I-regular-T1/2, then f is completely ?-continuous.

Proof: Let F be any closed set of Y. Since f is Irg-continuous, f−1(F) is Irg-closed
in X and hence f−1(F) is regular I-closed in X. Therefore f is completely ?-continuous.

Definition 4.15. A function f : (X, τ , I) → (Y, σ, J ) is said to be Irg-irresolute if
f−1(F) is Irg-closed in X for every J rg-closed set F of Y.

Remark 4.16. Every Irg-irresolute function is Irg-continuous but not conversely.

Example 4.17. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, X}, τ2 = {∅, {a},
{a, b}, Y}, I = {∅, {a}} and J = {∅, {b}}. Define f : (X, τ1, I) → (Y, τ2, J ) by f(a)
= a; f(b) = b; f(c) = c. Then the function f is Irg-continuous but not Irg-irresolute
function.

Proposition 4.18. If f : (X, τ , I) → (Y, σ) is almost Irg-continuous and X is
I-regular-T1/2, then f is a R-?-continuous.

Proof: Let V ∈ RC(Y ). Since f is almost Irg-continuous, f−1(V) is Irg-closed
in X. But X is I-regular-T1/2. Therefore f−1(V) is regular I-closed in X. Hence f is a
R-?-continuous.

Definition 4.19. (a) A function f : (X, τ) → (Y, σ, I) is said to be

1. regular I-closed if f(F) is regular I-closed in Y for every closed set F of X;

2. ?-closed if f(F) is ?-closed in Y for every closed set F of X;

3. Ig-closed if f(F) is Ig-closed in Y for every closed set F of X;

4. Irg-closed if f(F) is Irg-closed in Y for every closed set F of X;

5. Irc-preserving if f(F) is regular I-closed in Y for every F ∈ RC(X);

6. almost ?-closed if f(F) is ?-closed in Y for every F ∈ RC(X);

7. almost Ig-closed if f(F) is Ig-closed in Y for every F ∈ RC(X);

8. almost Irg-closed if f(F) is Irg-closed in Y for every F ∈ RC(X).

(b) A function f : (X, τ , I) → (Y, σ, J ) is said to be

1. Ig-?-continuous if f−1(F) is Ig-closed in X for every ?-closed set F of Y;

2. Irg-?-continuous if f−1(F) is Irg-closed in X for every ?-closed set F of Y;

3. J g-?-closed if f(F) is J g-closed in Y for every ?-closed set F of X;

4. ??-closed if f(F) is ?-closed in Y for every ?-closed set F of X.
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Remark 4.20. From the definitions stated above, we obtain the following diagram.

regular I-closed

?-closed

Ig-closed

Irg-closed

Irc-preserving

almost ?-closed

almost Ig-closed

almost Irg-closed

?

?

?

?

?

?

-

-

-

-

Remark 4.21. The following examples enable us to realize that none of the implications
in the above diagram is reversible.

Example 4.22. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {a}, {b},
{a, b}, {b, c}, Y} and I = {∅, {a}}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b)
= b; f(c) = c. Then the function f is ?-closed but not regular I-closed.

Example 4.23. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, X}, τ2 = {∅, {a},
{a, b}, Y} and I = {∅}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b) = b; f(c) =
c. Then the function f is Ig-closed but not ?-closed.

Example 4.24. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, {b, c}, X}, τ2 =
{∅, {a}, {a, b}, Y} and I = {∅}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b) =
b; f(c) = c. Then the function f is Irg-closed but not Ig-closed.

Example 4.25. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, X}, τ2 = {∅, {c}, {b,
c}, Y} and I = {∅}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b) = b; f(c) = c.
Then the function f is Irc-preserving but not regular I-closed.

Example 4.26. The function f in the Example 4.25 is almost ?-closed but not ?-closed.

Example 4.27. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, b}, {a, c}, X}, τ2 = {∅,
{c}, {b, c}, Y} and I = {∅}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b) = b;
f(c) = c. Then the function f is almost Ig-closed but not Ig-closed.

Example 4.28. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {a, c}, X}, τ2 = {∅, {a}, {b},
{a, b}, Y} and I = {∅}. Define f : (X, τ1) → (Y, τ2, I) by f(a) = a; f(b) = b; f(c) =
c. Then the function f is almost Irg-closed but not Irg-closed.

Example 4.29. The function f in the Example 4.24 is almost Irg-closed but not almost
Ig-closed.

Example 4.30. The function f in the Example 4.23 is almost Ig-closed but not almost
?-closed.

Example 4.31. Let X = Y = {a, b, c}, τ1 = {∅, {a}, {b}, {a, b}, {b, c}, X}, τ2 =
{∅, {a}, {b}, {a, b}, Y} and I = {∅, {a}}. Define f : (X, τ1) → (Y, τ2, I) by f(a) =
a; f(b) = b; f(c) = c. Then the function f is almost ?-closed but not Irc-preserving.
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Proposition 4.32. Let f : (X, τ , I) → (Y, σ, J ) be a function. Then

1. if f is Irg-continuous, rc-preserving then it is Irg-irresolute;

2. if f is R-continuous and J rg-closed then f(A) is J rg-closed in Y for every Irg-
closed set A of X.

Proof: (1) Let B be any J rg-closed set of Y and let U ∈ RO(X) contain f−1(B). Put
V = Y\f(X\U), then we have B ⊆ V, f−1(V) ⊆ U and V ∈ RO(Y) since f is rc-reserving.
Hence we obtain cl?(B) ⊆ V and hence f−1(cl?(B)) ⊆ U. By the Irg-continuity of f we
have cl?(f−1(B)) ⊆ cl?(f−1(cl?(B))) ⊆ U. This shows that f−1(B) is Irg-closed in X.
Therefore f is Irg-irresolute.

(2) Let A be any Irg-closed set of X and let V ∈ RO(Y) contain f(A). Since f is a
R-continuous, f−1(V) ∈ RO(X) and A ⊆ f−1(V). Therefore, we have cl?(A) ⊆ f−1(V)
and hence f(cl?(A)) ⊆ V. Since f is J rg-closed, f(cl?(A)) is J rg-closed in Y and hence
we obtain cl?(f(A)) ⊆ cl?(f(cl?(A))) ⊆ V. This shows that f(A) is J rg-closed in Y.

Corollary 4.33. Let f : (X, τ , I) → (Y, σ, J ) be a function. Then

1. if f is ?-continuous, rc-preserving, then f−1(B) is Irg-closed in X for every J rg-
closed set B of Y.

2. if f is a R-continuous and ?-closed, then f(A) is J rg-closed in Y for every Irg-
closed set A of X.

Proof: This is an immediate consequence of Proposition 4.32

Proposition 4.34. A surjection f : (X, τ) → (Y, σ, I) is almost Irg-closed (or)
almost Ig-closed if and only if for each subset S of Y and each U ∈ RO(X) containing
f−1(S) there exists respectively a Irg-open (or) Ig-open set V of Y such that S ⊆ V
and f−1(V) ⊆ U.

Proof: We prove only the first case, the proof of the other being entirely analogus.
Necessity: Suppose that f is almost Irg-closed. Let S be a subset of Y and let U ∈

RO(X) contain f−1(S). Put V = Y\f (X\U), then V is a Irg-open set of Y such that S
⊆ V and f−1(V) ⊆ U.

Sufficiency: Let F be any regular closed set of X. Then f−1(Y\f(F)) ⊆ (X\F) and
(X\F) ∈ RO(X). There exists a Irg-open set V of Y such that (Y\f(F)) ⊆ V and f−1(V)
⊆ (X\F). Therefore, we have f(F)⊇ (Y\V) and F ⊆ f−1(Y\V). Hence we obtain f(F) =
Y\V and f(F) is Irg-closed in Y. This shows that f is almost Irg-closed .

5 Preservation Theorems

In this section we investigate preservation theorems concerning mildly ?-normal spaces
in ideal topological spaces.

Theorem 5.1. If f : (X, τ , I) → (Y, σ, J ) is an Irg-?-continuous J rc-preserving
or almost closed injection and Y is mildly ?-normal or ?-normal respectively, then X is
mildly ?-normal.
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Proof: Let A and B be disjoint regular closed sets of X. Since f is an J rc-preserving
(almost closed) injection, f(A) and f(B) are disjoint regular J -closed (closed) sets of Y.
By the mild ?-normality (?-normality) of Y, there exist disjoint ?-open sets U and V of
Y such that f(A) ⊆ U and f(B) ⊆ V. Since f is Irg-?-continuous, f−1(U) and f−1(V) are
disjoint Irg-open sets of X containing A and B, respectively. It follows from Theorem
3.3 that X is mildly ?-normal.

Theorem 5.2. If f : (X, τ , I) → (Y, σ, J ) is a completely ?-continuous J g-?-closed
surjection and X is mildly ?-normal then Y is ?-normal.

Proof: Let A and B be disjoint closed sets of Y. Since f is completely ?-continuous,
f−1(A) and f−1(B) are disjoint regular I-closed sets of X. Since X is mildly ?-normal,
there exist disjoint ?-open sets U and V of X such that f−1(A) ⊆ U and f−1(B) ⊆ V. Let
G = Y\f(X\U) and H = Y\f(X\V), then G and H are disjoint J g-open sets of Y such
that A ⊆ G and B ⊆ H. Since G and H are J g-open, by Theorem 2.6(1), we obtain A
⊆ int?(G), B ⊆ int?(H) and int?(G)∩int?(H) = ∅. This shows that Y is ?-normal.

Corollary 5.3. If f : (X, τ , I) → (Y, σ, J ) is a completely ?-continuous ??-closed
surjection and X is mildly ?-normal, then Y is ?-normal.

Theorem 5.4. Let f: (X, τ , I) → (Y, σ, J ) be a R-?-continuous (resp. almost
continuous) and J rg-?-closed surjection. If X is mildly ?-normal (resp. ?-normal),
then Y is mildly ?-normal.

Proof: Let A and B be disjoint regular closed sets of Y. Then f−1(A) and f−1(B)
are disjoint regular I-closed sets (or) closed sets of X. Since X is respectively mildly
?-normal (or) ?-normal, there exist disjoint ?-open sets U and V of X such that f−1(A)
⊆ U and f−1(B) ⊆ V. Let G = Y\f(X\U) and H = Y\f(X\V), then G and H are disjoint
J rg-open sets of Y such that A ⊆ G and B ⊆ H. Since G and H are J rg-open, by
Theorem 2.6(2), we obtain A ⊆ int?(G), B ⊆ int?(H) and int?(G)∩int?(H) =∅. This
shows that Y is mildly ?-normal.

6 Conclusion

The notions of the sets, functions and spaces in ideal topological spaces are highly
developed and used extensively in many practical and engineering problems, compu-
tational topology for geometric design, computer-aided geometric design, engineering
design research and mathematical sciences. Also, topology plays a significant role in
space time geometry and high-energy physics. Thus generalized continuity is one of
the most important subjects on topological spaces. Hence we studied new types of
generalizations of non-continuous functions, obtained some of their properties in ideal
topological spaces. Moreover, the ideal topological version of the concepts and the re-
sults introduced in this paper may be applied by using the concepts of fuzzy sets and
fuzzy functions.
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