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Abstract – In this paper we represent a two-vehicle cost vary-
ing interval transportation model (TVCVITM). To determine the
cost interval of cost parameters of interval transportation prob-
lem(ITP) we use two vehicle cost varying TP. In this model the
transportation cost varies due to capacity of vehicles as well as
amount of transport quantity. At first we propose an algorithm
to determine limits of the interval of unit transportation cost. This
is an uncertain multi-level programming model. Then formulate
corresponding multi-objective crisp model. To solve this, apply
fuzzy programming technique. A numerical example is presented
to illustrate the TVCVITM.
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1 Introduction

Transportation problem of linear programming problem which deals with the distri-
bution of single commodity from various sources of supply to various destination of
demand in such a manner that the total transportation cost is minimized. In order to
solve a transportation problem, the decision parameters such as availability, require-
ment and the unit transportation cost of the model must be fixed at crisp values but
in real life applications unit transportation cost may vary.

A interval transportation problem is such a transportation problem in which the
supply and demand and cost parameters are lied in some intervals. This problem is
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transformed into a classical bi-objective TP where to minimize the interval objective
function, the order relations that represent the decision marker’s preference between
interval profits is defined by the right limit, left limit, centre, and half-width of an
interval.

In transportation problem unit transportation cost is constant from each source to
each destination. But in reality, it is not constant; it depends on amount of transport
quantity and capacity of vehicles. If amount of quantity is small then small(capacity) ve-
hicle is sufficient for deliver. Where as if amount of quantity is large then big(capacity)
vehicle is needed. So, depend on amount of transport quantity and the capacity of
vehicles, the unit transportation cost is not constant. The cost varying transporta-
tion problem is such a transportation problem where unit transportation cost is varied
depending on the selection of vehicles and number of vehicles.

The basic transportation problem was originally developed by Hitchock [14] and let-
ter by Dantzig [6]. Many researchers [13, 15, 18] did work on fixed charge transportation
problem. Gupta and Arora [8] presented a capacitated fixed charge bi-criterion indefi-
nite quadratic transportation problem, giving the same priority to cost as well as time
is studied. They developed an algorithm which is based on the concept of solving
the indefinite quadratic fixed charge transportation problem. Gupta and Arora [11]
discussed on a paradox in a capacitated transportation problem where the objective
function is a ratio of two linear functions consisting of variable costs and profits respec-
tively. In another paper, Gupta and Arora [9, 10] discussed on restricted flow in a fixed
charge capacitated transportation problem with bounds on total source availabilities
and total destination requirements. Dahiya and Verma [5] considered a class of the
capacitated transportation problems with bounds on total availabilities at sources and
total destination requirements. In this paper, unbalanced capacitated transportation
problems have been discussed in the present paper as a particular case of original prob-
lem. In addition, they have discussed paradoxical situation in a balanced capacitated
transportation problem and have obtained the paradoxical solution by solving one of
the unbalanced problems. Arora and Ahuja [1] discussed a paradox in fixed charge
transportation problem. Then Arora and Khurana [2] introduced three-dimensional
fixed charge transportation problem is an extension of the classical three-dimensional
transportation problem in which a fixed cost is incurred for every origin. Basu et.
al. [3] represented an algorithm for finding the optimum solution of solid fixed charge
transportation problem. Then Bit, et. al. developed fuzzy programming technique for
multi objective capacitated transportation problem. Singh and Saxena [16] introduced
the multiobjective time transportation problem with additional restrictions. Recently,
Dutta and Murthy [7] developed fuzzy transportation problem with additional restric-
tions.

Here we present interval transportation problem. In reality, the interval of the unit
cost depending on the interval of sources and demands. In urban region , actually
the transportation cost is not depends on the quantities but on the capacity of the
transports. So unit cost is vary depended on vehicles. In this paper we determine
interval of the parameters of unit cost by our proposed algorithm which develops a multi-
level uncertain programming model. Then formulate corresponding multi-objective
crisp model. There are various type of methods to solve this type of model, but best
one is fuzzy programming technique [20] which is applied here.
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2 Preliminary

Definition 1 (Interval) A closed interval is defined by an order pair of brackets as:

A = [aL, aR] = {a : aL ≤ a ≤ aR, a ∈ R}

where aL and aR are, respectively, the left and right limits of A.
The interval is also denoted by its centre and half width as

A = 〈ac, aw〉 = {a : ac − aw ≤ a ≤ ac + aw, a ∈ R}

where ac = aR+aL

2
and aw = aR−aL

2
are respectively, the centre and half width of A.

Definition 2 (Operators) If A and B are two closed intervals, and ∗ be a binary
operation on the set of real number, then A ∗ B = {a ∗ b : a ∈ A, b ∈ B} is defined a
binary operation.

According to the above definition interval operations are defined as:

A + B = [aL, aR] + [bL, bR] = [aL + bL, aR + bR]

A + B = 〈ac, aw〉+ 〈bc, bw〉 = 〈ac + bc, aw + bw〉
kA = k[aL, aR] = [kaL, kaR] if k ≥ 0

kA = k[aL, aR] = [kaR, kaL] if k ≤ 0

where k is a real number.

Definition 3 (Order relation ≤LR) The order relation ≤LR between A = [aL, aR]
and B = [bL, bR] is defined as

A ≤LR B iff aL ≤ bL and aR ≤ bR

A <LR B iff A ≤LR B and A 6= B

Definition 4 (Order relation ≤cw) The order relation ≤cw between A = 〈ac, aw〉 and
B = 〈bc, bw〉 is defined as

A ≤cw B iff ac ≤ bc and aw ≤ bw

A <cw B iff A ≤cw B and A 6= B.

2.1 Interval Transportation Problem(ITP)

The formulation of ITP is the problem of minimizing interval valued objective function
with interval costs, interval sources and interval demands parameters, is given in the
following Model 1.
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Model 1:

min
m∑

i=1

n∑
j=1

cijxij,

subject to cij ∈ [DLij
, DRij

]
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j

where cij ∈ [DLij
, DRij

] is an interval representing the uncertain cost for transportation
problem. The sources parameter lies in [aLi

, aRi
] and destination parameter lies in

[bLj
, bRj

].
Depending on [aLi

, aRi
] and [bLj

, bRj
]. We determine cLij

and cRij
which is discussed

in the following subsection. Then we define DLij=min{cLij
,cRij

} and DRij=max{cLij
,cRij

}

2.2 2-vehicle cost varying transportation problem

Suppose there are two types off vehicles V1, V2 from each source to each destination. Let
C1 and C2(> C1) are the capacities(in unit) of the vehicles V1 and V2 respectively,C1 ≤
rij and C2 ≤ rij ∀i, j. Rij = (R1

ij, R
2
ij) represent transportation cost for each cell (i, j);

where R1
ij is the transportation cost from source Oi, i = 1, . . . , m to the destination

Dj, j = 1, . . . , n by the vehicle V1. And R2
ij is the transportation cost from source

Oi, i = 1, . . . , m to the destination Dj, j = 1, . . . , n by the vehicle V2. So, cost varying
transportation problem can be represent in the following tabulated form.

D1 D2 .. Dn stock
O1 R1

11, R
2
11 R1

12, R
2
12 .... R1

1n, R2
1n a1

O2 R1
21, R

2
21 R1

22, R
2
22 .... R1

2n, R2
2n a2

.... .... .... .... .... ....
Om R1

m1, R
2
m1 R1

m2, R
2
m2 .... R1

mn, R
2
mn am

Demand b1 b2 .... bn

Table T1: Tabular representation of cost varying transportation problem.

2.2.1 Determination of cLij

To solve this problem, apply our proposed Algorithms stated as follows:
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Algorithm A1:

Step 1. Since lower limit of unit cost is not determined (because it depends on
quantity of transport), so North-west corner rule (because it does not depend on unit
transportation cost) is applicable to allocate initial B.F.S.

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine
cLij

(unit transportation cost from source Oi to destination Dj) as

cLij
=





pL1ijR1ij+pL2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(1)

where pL1ij, pL2ij, i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min pL1ijR1ij + pL2ijR2ij

s.t. xij ≤ pL1ijC1 + pL2ijC2

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations
in ith row and jth column (for possible loop). If possible allocation be xij, then for
non-basic cell cLij

(unit transportation cost from source Oi to destination Dj) as

cLij
=





pL1ijR1ij+pL2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(2)

where pL1ij, pL2ij, i = 1, . . . ,m; j = 1, . . . , n are integer solution of

min pL1ijR1ij + pL2ijR2ij

s.t. xij ≤ pL1ijC1 + pL2ijC2

In this manner we convert cost varying transportation problem to a usual transportation
problem but cLij

is not fixed, it may be changed (when this allocation will not serve
optimal value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some
non-basic cell changes to basic cell, depends on running basic cell we first fix cLij

by
Step 2 and for non-basic we fix cLij

by Step 3.
Step 5. Repeat Step 2. to Step 4. until we obtain optimal solution.
Thus to determine cLij

we solve the following bi-level programming modelModel
2.L which is as follows:
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Model 2.L:

min
m∑

i=1

n∑
j=1

cLij
xij, (3)

where, cLij
is determined by following mathematical programming

cLij
=





pL1ijR1ij+pL2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min pL1ijR1ij + pL2ijR2ij (4)

s. t. xij ≤ pL1ijC1 + pL2ijC2

n∑
j=1

xij = aLi
, i = 1, . . . , m

m∑
i=1

xij = bLj
, j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

0 ≤ xij ∀i, ∀j
where pL1ij, pL2ij, i = 1, . . . , m; j = 1, . . . , n are integer

2.2.2 Determination of cRij

To solve this problem, apply our proposed Algorithms stated as follows:

Algorithm A2:

Step 1. Since lower limit of unit cost is not determined (because it depends on
quantity of transport), so North-west corner rule (because it does not depend on unit
transportation cost) is applicable to allocate initial B.F.S.

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine
cRij

(unit transportation cost from source Oi to destination Dj) as

cRij
=





pR1ijR1ij+pR2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(5)

where pR1ij, pR2ij, i = 1, . . . , m; j = 1, . . . , n are integer solution of

min pR1ijR1ij + pR2ijR2ij

s.t. xij ≤ pR1ijC1 + pR2ijC2

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations
in ith row and jth column (for possible loop). If possible allocation be xij, then for
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non-basic cell cRij
(unit transportation cost from source Oi to destination Dj) as

cRij
=





pR1ijR1ij+pR2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

(6)

where pR1ij, pR2ij, i = 1, . . . , m; j = 1, . . . , n are integer solution of

min pR1ijR1ij + pR2ijR2ij

s.t. xij ≤ pR1ijC1 + pR2ijC2

In this manner we convert cost varying transportation problem to a usual transportation
problem but cRij

is not fixed, it may be changed (when this allocation will not serve
optimal value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some
non-basic cell changes to basic cell, depends on running basic cell we first fix cRij

by
Step 2 and for non-basic we fix cRij

by Step 3.
Step 5. Repeat Step 2. to Step 4. until we obtain optimal solution.
Thus to determine cRij

we solve the following bi-level programming modelModel
2.R which is as follows:

Model 2.R:

min
m∑

i=1

n∑
j=1

cRij
xij, (7)

where, cRij
is determined by following mathematical programming

cRij
=





pR1ijR1ij+pR2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min pR1ijR1ij + pR2ijR2ij (8)

s. t. xij ≤ pR1ijC1 + pR2ijC2

n∑
j=1

xij = aRi
, i = 1, . . . ,m

m∑
i=1

xij = bRj
, j = 1, . . . , n

m∑
i=1

aRi
=

n∑
j=1

bRj

0 ≤ xij ∀i, ∀j
where pR1ij, pR2ij, i = 1, . . . , m; j = 1, . . . , n are integer .

2.2.3 Multi-level Mathematical Programming for Cost Varying Interval
Transportation Problem under Two Vehicle (CVITPTV)

The Multi-level Mathematical Programming for Cost Varying Interval Transportation
Problem under Two Vehicle is formulated in Model 3 as follows:
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Model 3:

min
m∑

i=1

n∑
j=1

cijxij,

subject to cij ∈ [DLij
, DRij

]
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L (9)

Model 2.R (10)

i.e., Model 3

min
m∑

i=1

n∑
j=1

cijxij,

subject to cij ∈ [DLij
, DRij

]
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
(11)
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where, DLij=min{cLij
,cRij

} and DRij=max{cLij
,cRij

}. And [cLij
, cRij

] is determined by follow-

ing mathematical programming

min
m∑

i=1

n∑
j=1

cLij
xij, (12)

where, cLij
=





pL1ijR1ij+pL2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min pL1ijR1ij + pL2ijR2ij (13)

s. t. xij ≤ pL1ijC1 + pL2ijC2

n∑
j=1

xij = aLi
, i = 1, . . . , m

m∑
i=1

xij = bLj
, j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

0 ≤ xij ∀i, ∀j

where pL1ij, pL2ij, i = 1, . . . , m; j = 1, . . . , n are integer
AND,

min
m∑

i=1

n∑
j=1

cRij
xij,

where, cij is determined by following mathematical programming

cRij
=





pR1ijR1ij+pR2ijR2ij

xij
, if xij 6= 0

0 if xij = 0

min pR1ijR1ij + pR2ijR2ij

s. t. xij ≤ pR1ijC1 + pR2ijC2

n∑
j=1

xij = aRi
, i = 1, . . . , m

m∑
i=1

xij = bRj
, j = 1, . . . , n

m∑
i=1

aRi
=

n∑
j=1

bRj

0 ≤ xij ∀i, ∀j
where pR1ij, pR2ij, i = 1, . . . , m; j = 1, . . . , n are integer.
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3 Solution Procedure of CVITPTV

3.1 Formulation of the crisp objective function

Let S be the set of all feasible solution of Model 3.

Definition 5: Optimal Solution: x0 ∈ S is an optimal solution of the Model 3 iff
there is no other solution x ∈ S which satisfies Z(x) <LR Z(x0) or Z(x) <cw Z(x0).

Definition 6 (Order relation ≤Rc) The order relation ≤Rc between A and B is
defined as

A ≤Rc B iff A ≤LR B and A ≤cw B
A <Rc B iff A <LR B and A <cw B

Definition 7: Optimal Solution: x0 ∈ S is an optimal solution of the Model 3 iff
there is no other solution x ∈ S which satisfies Z(x) <Rc Z(x0).

The right limit ZR(x) of the interval objective function Z(x) in given problem may
be elicited as

ZR(x) =
m∑

i=1

n∑
j=1

Dcij
xij +

m∑
i=1

n∑
j=1

Dwij
xij

The centre of the objective function Zc(x) can be elicited as

Zc(x) =
m∑

i=1

n∑
j=1

Dcij
xij

The solution of the Model 3 by definition 7 can be taken as the optimal solution of
following model Model 4.
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Model 4:

min ZR(x) =
m∑

i=1

n∑
j=1

Dcij
xij +

m∑
i=1

n∑
j=1

Dwij
xij

min Zc(x) =
m∑

i=1

n∑
j=1

Dcij
xij

s. t.,
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

3.1.1 Fuzzy Programming Technique to solve Model 4

In fuzzy programming technique, we first find the lower bound as LZR and the upper
bound as UZR for the rth objective function ZR(x). Similarly the lower bound as LZc

and the upper bound as UZc for the rth objective function Zc(x).
dZR =UZR - LZR the degradation allowance for objective ZR(x). dZc =UZc - LZRc

the degradation allowance for objective Zc(x)
When the aspiration levels for each of the objective have been specified, a fuzzy

model is formed and then the fuzzy model is converted into a crisp model. The solution
of

Model 4 can be obtained by the following steps:

step 1. Solve the Model 4 as a single-objective transportation problem 2 times by
taking one of the objective at a time.

step 2. From the above results, determine the corresponding values for objective
at each solution derived. According to each solution and value for every objective, we
can find a pay-off matrix as follows:

ZR Zc

x1 Z1R Z1c

x2 Z2R Z2c

Where x1, x2 are the isolated optimal solutions of the k different transportation prob-
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lems for 2 different objective functions. Z1R, Z1c, Z2R, Z2c are the values of objective
functions.

step 3. From Step 2, find for each objective the Ur and the Lr corresponding to
the set of solutions, where,

UZR = max{Z1R, Z2R} , LZR = min{Z1R, Z2R}

UZc = max{Z1c, Z2c} , LZc = min{Z1c, Z2c}
An initial fuzzy model of the problem can be
Find xij, i = 1, . . . , m; j = 1, . . . , n

ZR ¹ LZR,

Zc ¹ LZc

s. t.,
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

step 4. Define a membership function µ(ZR), µ(Zc), for the ZR, Zc respectively.
step 5. Convert the fuzzy model of the problem, obtained in Step 3, into the

following crisp model, namely, Model 5.
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Model 5:

max λ

subject to λ ≤ µ(ZR)

λ ≤ µ(Zc)
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0

step 6. Solve the crisp model by an appropriate mathematical programming algo-
rithm.

step 7. The solution obtained in step 6 will be optimal compromise solution of
the Model 4.

3.1.2 Fuzzy Programming Technique with Linear Membership Function

A linear membership function is defined as

µ1(ZR) =





1 if ZR ≤ LZR

1− ZR−LZR

UZR−LZR
if LZR ≤ ZR ≤ UZR,

0 if UZR ≤ ZR

and

µ2(Zc) =





1 if Zc ≤ LZc

1− Zc−LZc

UZc−LZc
if LZc ≤ Zc ≤ UZc,

0 if UZc ≤ Zc

If we use a linear membership function, the crisp model can be simplified in Model 6
as follows:
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Model 6:

max λ

subject to ZR + λ(UZR − LZR) ≤ UZR,

Zc + λ(UZc − LZc) ≤ UZc,
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . , m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0

3.1.3 Fuzzy Programming Technique with Exponential Membership Func-
tion

A exponential membership function is defined as
Considering Z1 = ZR, Z2 = Zc =, U1 = UZR, U2 = UZc, L1 = LZR, L2 = LZc

µl(Zr) =





1 if Zr ≤ Lr

1− e
−s Zr−Lr

Ur−Lr −e−s

1−e−s if Lr ≤ Zr ≤ Ur,

0 if Ur ≤ Zr

r = 1, 2

If we use a exponential membership function, the crisp model can be simplified in
Model 7 as follows
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Model 7:

max λ

subject to

e−s Zr−Lr
Ur−Lr − λ(1− e−s) ≥ e−s, r = 1, . . . , k

n∑
j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0

4 Numerical Example

Let us consider the following interval transportation problem

D1 D2 D3 stock
O1 c11 c12 c13 a1

O2 c21 c22 c23 a2

O3 c31 c32 c33 a3

Demand b1 b2 bn

where the intervals of cij’s are unknown but =a1 ∈ [50, 70], a2 ∈ [40, 50], a3 ∈ [30, 80],
b1 ∈ [60, 90], b2 ∈ [40, 80], b3 ∈ [20, 30]

It is also given that there are two types of vehicle V1 and V2. The cost of V1 from
source ‘i’ destination ‘j’ is R1

ij for a single trip. The cost of V2 from source ‘i’ destination
‘j’ is R2 =ij for a single trip. It is also given that the capacity of V1 is C1 = 10 and that
of V2 is C2 = 20

So the cost varying interval transportation problem can be considered as

D1 D2 D3 stock
O1 5, 7 4, 6 8, 10 [50, 70]
O2 2, 3 6, 8 7, 9 [40, 50]
O3 3, 4 10, 12 4, 6 [30, 80]
Demand [60, 90] [40, 80] [20, 30]

To determine cLij we consider the cost varying TP as
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D1 D2 D3 stock
O1 5, 7 4, 6 8, 10 50
O2 2, 3 6, 8 7, 9 40
O3 3, 4 10, 12 4, 6 30
Demand 60 40 20

Then we have by Model 2.L

cL11 =
5

10
, cL12 =

12

40
, cL13 =

8

10
, cL21 =

6

40
, cL22 =

16

40
,

cL23 =
9

20
, cL31 =

3

10
, cL32 =

10

10
, cL33 =

6

20

To determine cRij we consider the cost varying TP as

D1 D2 D3 stock
O1 5, 7 4, 6 8, 10 70
O2 2, 3 6, 8 7, 9 50
O3 3, 4 10, 12 4, 6 80
Demand 90 80 30

Then we have by Model 2.R

cR11 =
11

40
, cR12 =

22

70
, cR13 =

18

30
, cR21 =

6

40
, cL22 =

6

10
,

cL23 =
16

30
, cL31 =

11

50
, cL32 =

10

10
, cL33 =

10

30
,

So, interval cij of interval TP determined as cij ∈ [min{cLij, cRij}, max{cLij, cRij}], i.e.,
we have

c11 ∈ [
11

40
,

5

10
], c12 ∈ [

12

40
,
22

70
], c13 ∈ [

18

30
,

8

10
], c21 ∈ [

6

40
,

6

40
], c22 ∈ [

16

40
,

6

10
],

c23 ∈ [
9

20
,
16

30
], c31 ∈ [

11

50
,

3

10
], c32 ∈ [

10

10
,
10

10
], c33 ∈ [

6

20
,
10

30
]

Then we formulate cost varying interval TP by Model 4 which is Model 8
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Model 8:

min ZR(x) = zr = (0.388 + 0.1125) ∗ x11 + (0.307 + 0.007) ∗ x12 + (0.7 + 0.1) ∗ x13

+(0.15 + 0.0) ∗ x21 + (0.5 + 0.1) ∗ x22 + (0.49 + 0.042) ∗ x23 +

= (0.26 + 0.04) ∗ x31 + (1 + 0.0) ∗ x32 + (0.3166 + 0.017) ∗ x33;

min ZC(x) = (0.0 + 0.1125) ∗ x11 + (0.0 + 0.007) ∗ x12 +

(0.0 + 0.1) ∗ x13 + (0.0 + 0.0) ∗ x21 + (0.0 + 0.10) ∗ x22 +

(0.0 + 0.042) ∗ x23 + (0.0 + 0.04) ∗ x31 + (0.0 + 0.2) ∗ x32 + (0.0 + 0.017) ∗ x33;

x11 + x12 + x13 >= 50; x11 + x12 + x13 <= 70;

x21 + x22 + x23 >= 40; x21 + x22 + x23 <= 50;

x31 + x32 + x33 >= 30; x31 + x32 + x33 <= 80;

x11 + x21 + x31 >= 60; x11 + x21 + x31 <= 90;

x12 + x22 + x32 >= 40; x12 + x22 + x32 <= 80;

x13 + x23 + x33 >= 20; x13 + x23 + x33 <= 30;

xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3

Then solved by Model 6 by Lingo package we have the following result λ = .4093522,
ZR = 40.40619, ZC = 4.824721, x11 = 6, x12 = 44, x21 = 44 , x31 = 10, x33 = 20.

5 Conclusion

In this paper we have presented a solution procedure of cost varying interval trans-
portation problem under two vehicles. Here the source and destination parameters are
considered as intervals. Initially, depending on cost of vehicles we determine interval
of the parameter of the objective function, and the problem is converted into classi-
cal single objective interval transportation problem. Then this model converted to a
bi-objective transportation problem, one is the right limit and other is center of the
objective which are minimized.

To obtain the solution of this bi-objective model, the fuzzy programming technique is
used. Here different types of membership functions may be used (like, linear, hyperbolic,
exponential). But we use only linear membership function.
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