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1 Introduction

A largely applied inequality for convex functions, due to its geometrical significance, is
Hadamard’s inequality (see [1] or [2]) which has generated a wide range of directions for
extension and a rich mathematical literature. The following definitions are well known
in the mathematical literature: A function f : I → R, ∅ 6= I ⊆ R, is said to be convex
on I if inequality

f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y) (1)

holds for all x, y ∈ I and t ∈ [0, 1]. Geometrically, this means that if P,Q and R are
three distinct points on the graph of f with Q between P and R, then Q is on or below
chord PR.

In the paper [3], Hudzik and Maligranda considered, among others, the class of
functions which are s-convex in the second sense. This class is defined in the following
way: A function f : [0,∞) → R is said to be s-convex in the second sense if

f (tx + (1− t) y) ≤ tsf (x) + (1− t)s f (y) (2)

holds for all x, y ∈ [0,∞), t ∈ [0, 1], and for some fixed s ∈ (0, 1]. For s ∈ (0, 1] , it is
obvious that

tsf (x) + (1− t)s f (y) ≤ tf (x) + (1− t) f (y) . (3)
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The class of s-convex functions in the second sense is usually denoted with K2
s .

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of
functions defined on [0,∞).

In the same paper [3], Hudzik and Maligranda proved that if s ∈ (0, 1), f ∈ K2
s

implies f ([0,∞)) ⊆ [0,∞), i.e., they proved that all functions from K2
s , s ∈ (0, 1), are

nonnegative.

Example 1.1. [3] Let s ∈ (0, 1) and a, b, c ∈ R. We define function f : [0,∞) → R as

f (t) =

{
a, t = 0,
bts + c, t > 0.

(4)

It can be easily checked that
(1) If b ≥ 0 and 0 ≤ c ≤ a, then f ∈ K2

s

(2) If b > 0 and c < 0, then f /∈ K2
s .

Many important inequalities are established for the class of convex functions, but
one of the most famous is so called Hermite-Hadamard inequality (or Hadamard’s
inequality). This double inequalities are stated as follows [5]: Let f be a convex function
on [a, b] ⊂ R, where a 6= b. Then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
. (5)

For some recent results connected with integral inequalities for different type con-
vex functions see [1]-[5] and [7]-[11]. The main purpose of this paper is to establish
new inequalities for the class of s-convex functions in the second sense by using the
elementary inequalities.

2 Main Results

In the next our theorem, we will also make use of Beta function of Euler type, which is
for u, v > 0 defined as

β (u, v) =

∫ 1

0

tu−1 (1− t)v−1 dt =
Γ (u) Γ (v)

Γ (u + v)

and
β (u, v) = β (v, u) .

Theorem 2.1. Let f : I → R, I ⊂ [0,∞), a, b ∈ I, with a < b be an increasing and
s-convex function in the second sense for some s ∈ (0, 1]. Then the following inequality
hold;

f

(
a + b

2

)[
f (a) + f (b)

s + 1
+

f (a) + f (b)

2

]
+ Ψ (a, b) (6)

≤ 1

b− a

∫ b

a

f 2 (x) dx + Φ (a, b) ,
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where

Ψ (a, b) =
f 2 (a) + f 2 (b)

s + 2
+

2f (a) f (b)

(s + 1) (s + 2)

and

Φ (a, b) =
2 (s + 2)

3 (2s + 1)

(
f 2 (a) + f 2 (b)

)
+ 2f (a) f (b)

[
Γ2 (s + 1)

Γ (2s + 2)
+

1

6

]

Proof. Since f is an s-convex function on I, we have that

f (ta + (1− t) b) ≤ tsf (a) + (1− t)s f (b) ≤ tf (a) + (1− t) f (b) (7)

for all a, b ∈ I, and t ∈ [0, 1] . Using the elementary inequality ([6], p.8) xy + yz + zx ≤
x2 + y2 + z2 (x, y, z ∈ R) , we have that

f 2 (ta + (1− t) b)

+t2sf 2 (a) + 2ts (1− t)s f (a) f (b) + (1− t)2s f 2 (b)

+t2f 2 (a) + 2t (1− t) f (a) f (b) + (1− t)2 f 2 (b)

≥ f (ta + (1− t) b) (tsf (a) + (1− t)s f (b))

+ts+1f 2 (a) + (1− t)s+1 f 2 (b)

+ (ts (1− t) + t (1− t)s) f (a) f (b)

+f (ta + (1− t) b) (tf (a) + (1− t) f (b)) .

Rewriting this inequality, we have

f 2 (ta + (1− t) b) + f 2 (a)
[
t2s + t2

]

+2f (a) f (b) [ts (1− t)s + t (1− t)] + f 2 (b)
[
(1− t)2s + (1− t)2]

≥ f (ta + (1− t) b) (tsf (a) + (1− t)s f (b))

+ts+1f 2 (a) + (1− t)s+1 f 2 (b)

+ (ts (1− t) + t (1− t)s) f (a) f (b)

+f (ta + (1− t) b) (tf (a) + (1− t) f (b)) .

Integrating this inequality over t on [0, 1], we deduce

(A :=)

∫ 1

0

f 2 (ta + (1− t) b) dt + f 2 (a)

∫ 1

0

(
t2s + t2

)
dt

+2f (a) f (b)

∫ 1

0

(ts (1− t)s + t (1− t)) dt

+f 2 (b)

∫ 1

0

(
(1− t)2s + (1− t)2) dt

≥ (B :=)

∫ 1

0

f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) dt (8)

+f 2 (a)

∫ 1

0

ts+1dt + f 2 (b)

∫ 1

0

(1− t)s+1 dt

+f (a) f (b)

∫ 1

0

(ts (1− t) + t (1− t)s) dt

+

∫ 1

0

f (ta + (1− t) b) (tf (a) + (1− t) f (b)) dt.
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A and B expressions to analyze respectively and using increasing of f , and by substi-
tuting ta + (1− t) b = x, it is easy to observe that

∫ 1

0

f 2 (ta + (1− t) b) dt =
1

b− a

∫ b

a

f 2 (x) dx,

f 2 (a)

∫ 1

0

(
t2s + t2

)
dt =

2 (s + 2)

3 (2s + 1)
f 2 (a) ,

2f (a) f (b)

∫ 1

0

(ts (1− t)s + t (1− t)) dt = 2f (a) f (b)

{
Γ2 (s + 1)

Γ (2s + 2)
+

1

6

}
,

f 2 (b)

∫ 1

0

(
(1− t)2s + (1− t)2) dt =

2 (s + 2)

3 (2s + 1)
f 2 (b) ,

then, we get

(A :=)

∫ 1

0

f 2 (ta + (1− t) b) dt + f 2 (a)

∫ 1

0

(
t2s + t2

)
dt

+2f (a) f (b)

∫ 1

0

(ts (1− t)s + t (1− t)) dt

+f 2 (b)

∫ 1

0

(
(1− t)2s + (1− t)2) dt

=
1

b− a

∫ b

a

f 2 (x) dx + 2f (a) f (b)

{
Γ2 (s + 1)

Γ (2s + 2)
+

1

6

}

+
2 (s + 2)

3 (2s + 1)

(
f 2 (a) + f 2 (b)

)
.

For proof of the right of (8), by using increasing of f and by substituting ta+(1− t) b =
x, it is easy to observe that:

∫ 1

0

f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) dt

≥
∫ 1

0

f (ta + (1− t) b) dt

∫ 1

0

(tsf (a) + (1− t)s f (b)) dt

=
f (a) + f (b)

s + 1

1

b− a

∫ b

a

f (x) dx,

and

f 2 (a)

∫ 1

0

ts+1dt + f 2 (b)

∫ 1

0

(1− t)s+1 dt =
f 2 (a) + f 2 (b)

s + 2

f (a) f (b)

∫ 1

0

(ts (1− t) + t (1− t)s) dt =
2f (a) f (b)

(s + 1) (s + 2)
,

and ∫ 1

0

f (ta + (1− t) b) (tf (a) + (1− t) f (b)) dt

≥
∫ 1

0

f (ta + (1− t) b) dt

∫ 1

0

(tf (a) + (1− t) f (b)) dt

=
f (a) + f (b)

2

1

b− a

∫ b

a

f (x) dx,
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then, we get

(B :=)

∫ 1

0

f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) dt

+f 2 (a)

∫ 1

0

ts+1dt + f 2 (b)

∫ 1

0

(1− t)s+1 dt

+f (a) f (b)

∫ 1

0

(ts (1− t) + t (1− t)s) dt

+

∫ 1

0

f (ta + (1− t) b) (tf (a) + (1− t) f (b)) dt

≥ f (a) + f (b)

s + 1

1

b− a

∫ b

a

f (x) dx +
f 2 (a) + f 2 (b)

s + 2

+
2f (a) f (b)

(s + 1) (s + 2)
+

f (a) + f (b)

2

1

b− a

∫ b

a

f (x) dx

=
1

b− a

∫ b

a

f (x) dx

[
f (a) + f (b)

s + 1
+

f (a) + f (b)

2

]

+
f 2 (a) + f 2 (b)

s + 2
+

2f (a) f (b)

(s + 1) (s + 2)
.

When above equalities and inequalities are taken into account, (B ≤ A) , and by using
the left half of the Hadamard’s inequality given in (5) on the left side of the inequality
(B ≤ A) , then the inequality (6) is proved.

Corollary 2.2. With the above assumptions, and under the condition that s = 1, one
has the inequality:

2f

(
a + b

2

)[
f (a) + f (b)

2

]
(9)

≤ 1

b− a

∫ b

a

f 2 (x) dx +
f 2 (a) + f (a) f (b) + f 2 (b)

3
.

Theorem 2.3. Let f : I → R, I ⊂ [0,∞), a, b ∈ I, with a < b be an increasing and
s-convex function in the second sense for some s ∈ (0, 1]. Then the following inequality
hold;

f

(
a + b

2

)
f (a) + f (b)

s + 1
≤ 1

8 (b− a)

∫ 1

0

f 4 (x) dx + α (a, b) (10)

where α (a, b) = f4(a)+f4(b)
32s+8

+ 3f2(a)f2(b)Γ2(2s+1)
4Γ(4s+2)

+
f(a)f(b)[f2(a)+f2(b)]Γ(3s+1)Γ(s+1)+2Γ(4s+2)

2Γ(4s+2)
.

Proof. Since f is an s-convex function on I, we have

f (ta + (1− t) b) ≤ tsf (a) + (1− t)s f (b)

for all a, b ∈ I, and t ∈ [0, 1]. Using the elementary inequality ([6], p.9) 8xy ≤ x4+y4+8
(x, y ∈ R), we have

8f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) (11)

≤ f 4 (ta + (1− t) b) + (tsf (a) + (1− t)s f (b))
4
+ 8.
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Integrating this inequality over t on [0, 1], we deduce

8

∫ 1

0

f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) dt

≤
∫ 1

0

f 4 (ta + (1− t) b) dt +

∫ 1

0

(tsf (a) + (1− t)s f (b))
4
dt + 8.

Since f is an increasing function, we have
∫ 1

0

f (ta + (1− t) b) (tsf (a) + (1− t)s f (b)) dt

≥
∫ 1

0

f (ta + (1− t) b) dt

∫ 1

0

(tsf (a) + (1− t)s f (b)) dt,

then

8

∫ 1

0

f (ta + (1− t) b) dt

∫ 1

0

(tsf (a) + (1− t)s f (b)) dt

≤
∫ 1

0

f 4 (ta + (1− t) b) dt +

∫ 1

0

(tsf (a) + (1− t)s f (b))
4
dt + 8.

As it is easy to see that
∫ 1

0

f (ta + (1− t) b) dt =
1

b− a

∫ 1

0

f (x) dx,

∫ 1

0

(tsf (a) + (1− t)s f (b)) dt =
f (a) + f (b)

s + 1
,

∫ 1

0

(tsf (a) + (1− t)s f (b))
4
dt

= f 4 (a)

∫ 1

0

t4sdt + 4f 3 (a) f (b)

∫ 1

0

t3s (1− t)s dt

+6f 2 (a) f 2 (b)

∫ 1

0

t2s (1− t)2s dt

+4f (a) f 3 (b)

∫ 1

0

ts (1− t)3s dt + f 4 (b)

∫ 1

0

(1− t)4s dt

=
f 4 (a)

4s + 1
+ 4f 3 (a) f (b) β (3s + 1, s + 1)

+6f 2 (a) f 2 (b) β (2s + 1, 2s + 1)

+4f (a) f 3 (b) β (3s + 1, s + 1) +
f 4 (b)

4s + 1

=
f 4 (a) + f 4 (b)

4s + 1
+ 6f 2 (a) f 2 (b) β (2s + 1, 2s + 1)

+4f (a) f (b) β (3s + 1, s + 1)
[
f 2 (a) + f 2 (b)

]

=
f 4 (a) + f 4 (b)

4s + 1
+ 6f 2 (a) f 2 (b)

Γ (2s + 1) Γ (2s + 1)

Γ (4s + 2)

+4f (a) f (b)
[
f 2 (a) + f 2 (b)

] Γ (3s + 1) Γ (s + 1)

Γ (4s + 2)
,
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respectively, then the following inequality is obtain

8

b− a

∫ 1

0

f (x) dx
f (a) + f (b)

s + 1
(12)

≤ 1

b− a

∫ 1

0

f 4 (x) dx +
f 4 (a) + f 4 (b)

4s + 1

+6f 2 (a) f 2 (b)
Γ (2s + 1) Γ (2s + 1)

Γ (4s + 2)

+4f (a) f (b)
[
f 2 (a) + f 2 (b)

] Γ (3s + 1) Γ (s + 1)

Γ (4s + 2)
+ 8,

and by using the left half of the Hadamard’s inequality given in (5) on the left side the
above inequality (12), then the inequality (10) is proved.

Corollary 2.4. With the above assumptions, and under the condition that s = 1, one
has the inequality:

f

(
a + b

2

)
f (a) + f (b)

2

≤ 1

8 (b− a)

∫ b

a

f 4 (x) dx (13)

+
f 4 (a) + f (a)3 f (b) + f (a)2 f (b)2 + f (a) f (b)3 + f 4 (b)

40
+ 1.

Theorem 2.5. Let f, g : I → R, I ⊂ [0,∞), a, b ∈ I, with a < b be increasing and
s-convex functions in the second sense. If f is s1-convex in the second sense and g is
s2-convex in the second sense for some s1, s2 ∈ (0, 1], then

f (a) + f (b)

(s1 + 1)
g

(
a + b

2

)
+

g (a) + g (b)

(s2 + 1)
f

(
a + b

2

)
(14)

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
M (a, b)

s1 + s2 + 1
+

Γ (s1 + 1) Γ (s2 + 1)

Γ (s1 + s2 + 2)
N (a, b) ,

where M (a, b) = f (a) g (a) + f (b) g (b) and N (a, b) = f (a) g (b) + f (b) g (a).

Proof. Since f is an s1-convex and g is an s2−convex on [a, b] , we have

f (ta + (1− t) b) ≤ ts1f (a) + (1− t)s1 f (b)

g (ta + (1− t) b) ≤ ts2g (a) + (1− t)s2 g (b)

for all a, b ∈ I, and t ∈ [0, 1]. Now, using the elementary inequality ([6], p.4) (a− b) (c− d) ≥
0 (a, b, c, d ∈ R and a < b, c < d), we get inequality

ts1f (a) g (ta + (1− t) b) + (1− t)s1 f (b) g (ta + (1− t) b)

+ts2g (a) f (ta + (1− t) b) + (1− t)s2 g (b) f (ta + (1− t) b)

≤ f (ta + (1− t) b) g (ta + (1− t) b) + ts1+s2f (a) g (a)

+ts1 (1− t)s2 f (a) g (b) + ts2 (1− t)s1 f (b) g (a)

+ (1− t)s1+s2 f (b) g (b) .
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Integrating this inequality over t on [0, 1], we deduce

(A :=) f (a)

∫ 1

0

ts1g (ta + (1− t) b) dt

+f (b)

∫ 1

0

(1− t)s1 g (ta + (1− t) b) dt

+g (a)

∫ 1

0

ts2f (ta + (1− t) b) dt

+g (b)

∫ 1

0

(1− t)s2 f (ta + (1− t) b) dt

≤ (B :=)

∫ 1

0

f (ta + (1− t) b) g (ta + (1− t) b) dt + f (a) g (a)

∫ 1

0

ts1+s2dt

+f (a) g (b)

∫ 1

0

ts1 (1− t)s2 dt + f (b) g (a)

∫ 1

0

ts2 (1− t)s1 dt

+f (b) g (b)

∫ 1

0

(1− t)s1+s2 dt.

A and B expressions to analyze respectively and using increasing of f, g and using
the left half of the Hadamard’s inequality given in (5) on the left side of the above
inequalities, we get

(A : =)f (a)

∫ 1

0

ts1g (ta + (1− t) b) dt + f (b)

∫ 1

0

(1− t)s1 g (ta + (1− t) b) dt

+g (a)

∫ 1

0

ts2f (ta + (1− t) b) dt + g (b)

∫ 1

0

(1− t)s2 f (ta + (1− t) b) dt

≥ f (a)

∫ 1

0

ts1dt

∫ 1

0

g (ta + (1− t) b) dt

+f (b)

∫ 1

0

(1− t)s1 dt

∫ 1

0

g (ta + (1− t) b) dt

+g (a)

∫ 1

0

ts2dt

∫ 1

0

f (ta + (1− t) b) dt

+g (b)

∫ 1

0

(1− t)s2 dt

∫ 1

0

f (ta + (1− t) b) dt

=
f (a)

(s1 + 1) (b− a)

∫ b

a

g (x) dx +
f (b)

(s1 + 1) (b− a)

∫ b

a

g (x) dx

+
g (a)

(s2 + 1) (b− a)

∫ b

a

f (x) dx +
g (b)

(s2 + 1) (b− a)

∫ b

a

f (x) dx

=
f (a) + f (b)

(s1 + 1) (b− a)

∫ b

a

g (x) dx +
g (a) + g (b)

(s2 + 1) (b− a)

∫ b

a

f (x) dx

≥ f (a) + f (b)

(s1 + 1)
g

(
a + b

2

)
+

g (a) + g (b)

(s2 + 1)
f

(
a + b

2

)
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and

(B : =)

∫ 1

0

f (ta + (1− t) b) g (ta + (1− t) b) dt + f (a) g (a)

∫ 1

0

ts1+s2dt

+f (a) g (b)

∫ 1

0

ts1 (1− t)s2 dt + f (b) g (a)

∫ 1

0

ts2 (1− t)s1 dt

+f (b) g (b)

∫ 1

0

(1− t)s1+s2 dt

=
1

b− a

∫ b

a

f (x) g (x) dx +
f (a) g (a) + f (b) g (b)

s1 + s2 + 1

+f (a) g (b) β (s1 + 1, s2 + 1) + f (b) g (a) β (s2 + 1, s1 + 1)

=
1

b− a

∫ b

a

f (x) g (x) dx +
f (a) g (a) + f (b) g (b)

s1 + s2 + 1

+ [f (a) g (b) + f (b) g (a)] β (s1 + 1, s2 + 1)

=
1

b− a

∫ b

a

f (x) g (x) dx +
f (a) g (a) + f (b) g (b)

s1 + s2 + 1

+
Γ (s1 + 1) Γ (s2 + 1)

Γ (s1 + s2 + 2)
[f (a) g (b) + f (b) g (a)]

respectively, (A ≤ B) then the inequality (14) is proved.

Corollary 2.6. With the above assumptions, and under the condition that s1 = s2 = 1,
one has the inequality

f (a) + f (b)

2
g

(
a + b

2

)
+

g (a) + g (b)

2
f

(
a + b

2

)
(15)

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
M (a, b)

3
+

N (a, b)

6
.

3 Applications to some special means

We now consider the applications of our results to the following special means
The arithmetic mean: A = A (a, b) := a+b

2
, a, b ≥ 0,

The geometric mean: G = G (a, b) :=
√

ab, a, b ≥ 0,

The quadratic mean: K = K (a, b) :=
√

a2+b2

2
a, b ≥ 0.

The following inequality is well known in the resources:

G ≤ A ≤ K

In [3], the above Example 1.1 is given: Let s ∈ (0, 1) and a, b, c ∈ R. We define function
f : [0,∞) → R as

f (t) =

{
a, t = 0,
bts + c, t > 0.

If b ≥ 0 and 0 ≤ c ≤ a, then f ∈ K2
s . Consequently, for a = c = 0, b = 1, s = 1/2, we

have f : [0, 1] → [0, 1], f (t) = t
1
2 , f ∈ K2

s .
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Proposition 3.1. Let a, b ∈ [0,∞), a < b. Then one has the inequality

7

3
A1/2 (a, b) A

(
a1/2, b1/2

) ≤ 43

15
A (a, b) +

20π − 17

60
G (a, b) . (16)

Proof. The assertion follows from Theorem 2.1 applied to s-convex mapping f : I → R,
f (x) = xs, x ∈ [a, b] and f (x) = x1/2 for s = 1/2.

Proposition 3.2. Let a, b ∈ [0,∞), a < b. Then one has the inequality

4

3
A1/2 (a, b) A

(
a1/2, b1/2

)
(17)

≤ K2 (a, b) + G2 (a, b)

6
+

π

16
G (a, b) A (a, b) + 1.

Proof. The assertion follows from Theorem 2.3 applied to s-convex mapping f : I → R,
f (x) = xs, x ∈ [a, b] and f (x) = x1/2 for s = 1/2.

Proposition 3.3. Let a, b ∈ [0,∞) , a < b. Then one has the inequality:

8

3
A1/2 (a, b) A

(
a1/2, b1/2

) ≤ 2A (a, b) +
π

4
G (a, b) (18)

Proof. The assertion follows from Theorem 2.5 applied to s-convex mapping f, g : I →
R, f (x) = g (x) = xs, x ∈ [a, b] and f (x) = g (x) = x1/2 for s = 1/2.

Similar inequalities may be stated for s-convex functions f (x) = xs, or f (x) =
bxs + c, s ∈ (0, 1] . We omit the details.
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