

Received: 26.09.2013 Accepted: 18.11.2013 Editors-in-Chief: Naim Çağman Area Editor: Oktay Muhtaroğlu

Some Integral Inequalities for *s*-convex Functions in the Second Sense with Applications

Mevlüt Tunç^a (mevluttunc@kilis.edu.tr)

^aDepartment of Mathematics, Faculty of Science and Arts, University of Kilis 7 Aralık, 79000 Kilis, Turkey

Abstract - In this paper, author establish some new interesting inequalities for product of convex and *s*-convex functions in the second sense. Also several applications to special means for positive number are given. **Keywords** – Convexity, sconvexity, Product of two convex functions, Hadamard's inequality.

1 Introduction

A largely applied inequality for convex functions, due to its geometrical significance, is Hadamard's inequality (see [1] or [2]) which has generated a wide range of directions for extension and a rich mathematical literature. The following definitions are well known in the mathematical literature: A function $f: I \to \mathbb{R}, \emptyset \neq I \subseteq \mathbb{R}$, is said to be convex on I if inequality

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$
(1)

holds for all $x, y \in I$ and $t \in [0, 1]$. Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q between P and R, then Q is on or below chord PR.

In the paper [3], Hudzik and Maligranda considered, among others, the class of functions which are s-convex in the second sense. This class is defined in the following way: A function $f:[0,\infty) \to \mathbb{R}$ is said to be s-convex in the second sense if

$$f(tx + (1 - t)y) \le t^{s} f(x) + (1 - t)^{s} f(y)$$
(2)

holds for all $x, y \in [0, \infty)$, $t \in [0, 1]$, and for some fixed $s \in (0, 1]$. For $s \in (0, 1]$, it is obvious that

$$t^{s}f(x) + (1-t)^{s}f(y) \le tf(x) + (1-t)f(y).$$
(3)

The class of s-convex functions in the second sense is usually denoted with K_s^2 .

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions defined on $[0, \infty)$.

In the same paper [3], Hudzik and Maligranda proved that if $s \in (0, 1)$, $f \in K_s^2$ implies $f([0, \infty)) \subseteq [0, \infty)$, i.e., they proved that all functions from K_s^2 , $s \in (0, 1)$, are nonnegative.

Example 1.1. [3] Let $s \in (0,1)$ and $a, b, c \in \mathbb{R}$. We define function $f : [0,\infty) \to \mathbb{R}$ as

$$f(t) = \begin{cases} a, & t = 0, \\ bt^{s} + c, & t > 0. \end{cases}$$
(4)

It can be easily checked that (1) If $b \ge 0$ and $0 \le c \le a$, then $f \in K_s^2$ (2) If b > 0 and c < 0, then $f \notin K_s^2$.

Many important inequalities are established for the class of convex functions, but one of the most famous is so called Hermite-Hadamard inequality (or Hadamard's inequality). This double inequalities are stated as follows [5]: Let f be a convex function on $[a, b] \subset \mathbb{R}$, where $a \neq b$. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2}.$$
(5)

For some recent results connected with integral inequalities for different type convex functions see [1]-[5] and [7]-[11]. The main purpose of this paper is to establish new inequalities for the class of s-convex functions in the second sense by using the elementary inequalities.

2 Main Results

In the next our theorem, we will also make use of Beta function of Euler type, which is for u, v > 0 defined as

$$\beta(u,v) = \int_0^1 t^{u-1} (1-t)^{v-1} dt = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}$$

and

$$\beta\left(u,v\right) = \beta\left(v,u\right)$$
 .

Theorem 2.1. Let $f : I \to \mathbb{R}$, $I \subset [0, \infty)$, $a, b \in I$, with a < b be an increasing and s-convex function in the second sense for some $s \in (0, 1]$. Then the following inequality hold;

$$f\left(\frac{a+b}{2}\right) \left[\frac{f(a)+f(b)}{s+1} + \frac{f(a)+f(b)}{2}\right] + \Psi(a,b)$$

$$\leq \frac{1}{b-a} \int_{a}^{b} f^{2}(x) \, dx + \Phi(a,b) \,,$$
(6)

where

$$\Psi(a,b) = \frac{f^2(a) + f^2(b)}{s+2} + \frac{2f(a)f(b)}{(s+1)(s+2)}$$

and

$$\Phi(a,b) = \frac{2(s+2)}{3(2s+1)} \left(f^2(a) + f^2(b) \right) + 2f(a) f(b) \left[\frac{\Gamma^2(s+1)}{\Gamma(2s+2)} + \frac{1}{6} \right]$$

Proof. Since f is an s-convex function on I, we have that

$$f(ta + (1 - t)b) \le t^{s} f(a) + (1 - t)^{s} f(b) \le t f(a) + (1 - t) f(b)$$
(7)

for all $a, b \in I$, and $t \in [0, 1]$. Using the elementary inequality ([6], p.8) $xy + yz + zx \le x^2 + y^2 + z^2$ $(x, y, z \in \mathbb{R})$, we have that

$$\begin{split} & f^2 \left(ta + (1-t) \, b \right) \\ & + t^{2s} f^2 \left(a \right) + 2t^s \left(1 - t \right)^s f \left(a \right) f \left(b \right) + (1-t)^{2s} \, f^2 \left(b \right) \\ & + t^2 f^2 \left(a \right) + 2t \left(1 - t \right) f \left(a \right) f \left(b \right) + (1-t)^2 \, f^2 \left(b \right) \\ & \geq \quad f \left(ta + (1-t) \, b \right) \left(t^s f \left(a \right) + (1-t)^s \, f \left(b \right) \right) \\ & + t^{s+1} f^2 \left(a \right) + (1-t)^{s+1} \, f^2 \left(b \right) \\ & + \left(t^s \left(1 - t \right) + t \left(1 - t \right)^s \right) f \left(a \right) f \left(b \right) \\ & + f \left(ta + (1-t) \, b \right) \left(tf \left(a \right) + (1-t) \, f \left(b \right) \right) . \end{split}$$

Rewriting this inequality, we have

$$\begin{aligned} &f^{2}\left(ta+\left(1-t\right)b\right)+f^{2}\left(a\right)\left[t^{2s}+t^{2}\right]\\ &+2f\left(a\right)f\left(b\right)\left[t^{s}\left(1-t\right)^{s}+t\left(1-t\right)\right]+f^{2}\left(b\right)\left[\left(1-t\right)^{2s}+\left(1-t\right)^{2}\right]\\ &\geq &f\left(ta+\left(1-t\right)b\right)\left(t^{s}f\left(a\right)+\left(1-t\right)^{s}f\left(b\right)\right)\\ &+t^{s+1}f^{2}\left(a\right)+\left(1-t\right)^{s+1}f^{2}\left(b\right)\\ &+\left(t^{s}\left(1-t\right)+t\left(1-t\right)^{s}\right)f\left(a\right)f\left(b\right)\\ &+f\left(ta+\left(1-t\right)b\right)\left(tf\left(a\right)+\left(1-t\right)f\left(b\right)\right).\end{aligned}$$

Integrating this inequality over t on [0, 1], we deduce

$$(A :=) \int_{0}^{1} f^{2} (ta + (1 - t) b) dt + f^{2} (a) \int_{0}^{1} (t^{2s} + t^{2}) dt +2f (a) f (b) \int_{0}^{1} (t^{s} (1 - t)^{s} + t (1 - t)) dt +f^{2} (b) \int_{0}^{1} ((1 - t)^{2s} + (1 - t)^{2}) dt \geq (B :=) \int_{0}^{1} f (ta + (1 - t) b) (t^{s} f (a) + (1 - t)^{s} f (b)) dt$$
(8)
$$+f^{2} (a) \int_{0}^{1} t^{s+1} dt + f^{2} (b) \int_{0}^{1} (1 - t)^{s+1} dt +f (a) f (b) \int_{0}^{1} (t^{s} (1 - t) + t (1 - t)^{s}) dt +\int_{0}^{1} f (ta + (1 - t) b) (tf (a) + (1 - t) f (b)) dt.$$

A and B expressions to analyze respectively and using increasing of f, and by substituting ta + (1-t)b = x, it is easy to observe that

$$\begin{aligned} \int_0^1 f^2 \left(ta + (1-t) \, b \right) dt &= \frac{1}{b-a} \int_a^b f^2 \left(x \right) dx, \\ f^2 \left(a \right) \int_0^1 \left(t^{2s} + t^2 \right) dt &= \frac{2 \left(s + 2 \right)}{3 \left(2s + 1 \right)} f^2 \left(a \right), \\ 2f \left(a \right) f \left(b \right) \int_0^1 \left(t^s \left(1 - t \right)^s + t \left(1 - t \right) \right) dt &= 2f \left(a \right) f \left(b \right) \left\{ \frac{\Gamma^2 \left(s + 1 \right)}{\Gamma \left(2s + 2 \right)} + \frac{1}{6} \right\}, \\ f^2 \left(b \right) \int_0^1 \left(\left(1 - t \right)^{2s} + \left(1 - t \right)^2 \right) dt &= \frac{2 \left(s + 2 \right)}{3 \left(2s + 1 \right)} f^2 \left(b \right), \end{aligned}$$

then, we get

$$\begin{split} (A :=) \int_0^1 f^2 \left(ta + (1-t) \, b \right) dt + f^2 \left(a \right) \int_0^1 \left(t^{2s} + t^2 \right) dt \\ &+ 2f \left(a \right) f \left(b \right) \int_0^1 \left(t^s \left(1 - t \right)^s + t \left(1 - t \right) \right) dt \\ &+ f^2 \left(b \right) \int_0^1 \left((1-t)^{2s} + (1-t)^2 \right) dt \\ &= \frac{1}{b-a} \int_a^b f^2 \left(x \right) dx + 2f \left(a \right) f \left(b \right) \left\{ \frac{\Gamma^2 \left(s + 1 \right)}{\Gamma \left(2s + 2 \right)} + \frac{1}{6} \right\} \\ &+ \frac{2 \left(s + 2 \right)}{3 \left(2s + 1 \right)} \left(f^2 \left(a \right) + f^2 \left(b \right) \right). \end{split}$$

For proof of the right of (8), by using increasing of f and by substituting ta + (1 - t)b = x, it is easy to observe that:

$$\int_{0}^{1} f(ta + (1 - t)b)(t^{s}f(a) + (1 - t)^{s}f(b)) dt$$

$$\geq \int_{0}^{1} f(ta + (1 - t)b) dt \int_{0}^{1} (t^{s}f(a) + (1 - t)^{s}f(b)) dt$$

$$= \frac{f(a) + f(b)}{s + 1} \frac{1}{b - a} \int_{a}^{b} f(x) dx,$$

and

$$f^{2}(a) \int_{0}^{1} t^{s+1} dt + f^{2}(b) \int_{0}^{1} (1-t)^{s+1} dt = \frac{f^{2}(a) + f^{2}(b)}{s+2}$$
$$f(a) f(b) \int_{0}^{1} (t^{s}(1-t) + t(1-t)^{s}) dt = \frac{2f(a) f(b)}{(s+1)(s+2)},$$

and

$$\begin{split} &\int_{0}^{1} f\left(ta + (1-t) \, b\right) \left(tf\left(a\right) + (1-t) \, f\left(b\right)\right) dt \\ \geq &\int_{0}^{1} f\left(ta + (1-t) \, b\right) dt \int_{0}^{1} \left(tf\left(a\right) + (1-t) \, f\left(b\right)\right) dt \\ = &\frac{f\left(a\right) + f\left(b\right)}{2} \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx, \end{split}$$

then, we get

$$\begin{split} (B :=) \int_{0}^{1} f\left(ta + (1-t)b\right) \left(t^{s}f\left(a\right) + (1-t)^{s}f\left(b\right)\right) dt \\ &+ f^{2}\left(a\right) \int_{0}^{1} t^{s+1} dt + f^{2}\left(b\right) \int_{0}^{1} (1-t)^{s+1} dt \\ &+ f\left(a\right) f\left(b\right) \int_{0}^{1} \left(t^{s}\left(1-t\right) + t\left(1-t\right)^{s}\right) dt \\ &+ \int_{0}^{1} f\left(ta + (1-t)b\right) \left(tf\left(a\right) + (1-t)f\left(b\right)\right) dt \\ \geq \frac{f\left(a\right) + f\left(b\right)}{s+1} \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx + \frac{f^{2}\left(a\right) + f^{2}\left(b\right)}{s+2} \\ &+ \frac{2f\left(a\right) f\left(b\right)}{(s+1)\left(s+2\right)} + \frac{f\left(a\right) + f\left(b\right)}{2} \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \\ = \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \left[\frac{f\left(a\right) + f\left(b\right)}{s+1} + \frac{f\left(a\right) + f\left(b\right)}{2} \right] \\ &+ \frac{f^{2}\left(a\right) + f^{2}\left(b\right)}{s+2} + \frac{2f\left(a\right) f\left(b\right)}{(s+1)\left(s+2\right)}. \end{split}$$

When above equalities and inequalities are taken into account, $(B \leq A)$, and by using the left half of the Hadamard's inequality given in (5) on the left side of the inequality $(B \leq A)$, then the inequality (6) is proved.

Corollary 2.2. With the above assumptions, and under the condition that s = 1, one has the inequality:

$$2f\left(\frac{a+b}{2}\right)\left[\frac{f(a)+f(b)}{2}\right]$$

$$\leq \frac{1}{b-a}\int_{a}^{b}f^{2}(x)\,dx + \frac{f^{2}(a)+f(a)\,f(b)+f^{2}(b)}{3}.$$
(9)

Theorem 2.3. Let $f : I \to \mathbb{R}$, $I \subset [0, \infty)$, $a, b \in I$, with a < b be an increasing and s-convex function in the second sense for some $s \in (0, 1]$. Then the following inequality hold;

$$f\left(\frac{a+b}{2}\right)\frac{f(a)+f(b)}{s+1} \le \frac{1}{8(b-a)}\int_{0}^{1}f^{4}(x)\,dx + \alpha(a,b)$$
(10)

where $\alpha(a,b) = \frac{f^4(a) + f^4(b)}{32s+8} + \frac{3f^2(a)f^2(b)\Gamma^2(2s+1)}{4\Gamma(4s+2)} + \frac{f(a)f(b)[f^2(a) + f^2(b)]\Gamma(3s+1)\Gamma(s+1) + 2\Gamma(4s+2)}{2\Gamma(4s+2)}.$

Proof. Since f is an s-convex function on I, we have

$$f(ta + (1 - t)b) \le t^{s}f(a) + (1 - t)^{s}f(b)$$

for all $a, b \in I$, and $t \in [0, 1]$. Using the elementary inequality ([6], p.9) $8xy \le x^4 + y^4 + 8$ $(x, y \in \mathbb{R})$, we have

$$8f(ta + (1 - t)b)(t^{s}f(a) + (1 - t)^{s}f(b))$$

$$\leq f^{4}(ta + (1 - t)b) + (t^{s}f(a) + (1 - t)^{s}f(b))^{4} + 8.$$
(11)

Integrating this inequality over t on [0, 1], we deduce

$$8\int_{0}^{1} f(ta + (1 - t)b)(t^{s}f(a) + (1 - t)^{s}f(b))dt$$

$$\leq \int_{0}^{1} f^{4}(ta + (1 - t)b)dt + \int_{0}^{1} (t^{s}f(a) + (1 - t)^{s}f(b))^{4}dt + 8.$$

Since f is an increasing function, we have

$$\int_{0}^{1} f(ta + (1 - t)b)(t^{s}f(a) + (1 - t)^{s}f(b))dt$$

$$\geq \int_{0}^{1} f(ta + (1 - t)b)dt \int_{0}^{1} (t^{s}f(a) + (1 - t)^{s}f(b))dt,$$

then

$$8\int_{0}^{1} f(ta + (1 - t)b) dt \int_{0}^{1} (t^{s}f(a) + (1 - t)^{s}f(b)) dt$$

$$\leq \int_{0}^{1} f^{4}(ta + (1 - t)b) dt + \int_{0}^{1} (t^{s}f(a) + (1 - t)^{s}f(b))^{4} dt + 8.$$

As it is easy to see that

$$\begin{split} &\int_{0}^{1} f\left(ta + (1-t)b\right) dt = \frac{1}{b-a} \int_{0}^{1} f\left(x\right) dx, \\ &\int_{0}^{1} \left(t^{s} f\left(a\right) + (1-t)^{s} f\left(b\right)\right) dt = \frac{f\left(a\right) + f\left(b\right)}{s+1}, \\ &\int_{0}^{1} \left(t^{s} f\left(a\right) + (1-t)^{s} f\left(b\right)\right)^{4} dt \\ &= f^{4}\left(a\right) \int_{0}^{1} t^{4s} dt + 4f^{3}\left(a\right) f\left(b\right) \int_{0}^{1} t^{3s} \left(1-t\right)^{s} dt \\ &+ 6f^{2}\left(a\right) f^{2}\left(b\right) \int_{0}^{1} t^{2s} \left(1-t\right)^{2s} dt \\ &+ 4f\left(a\right) f^{3}\left(b\right) \int_{0}^{1} t^{s} \left(1-t\right)^{3s} dt + f^{4}\left(b\right) \int_{0}^{1} \left(1-t\right)^{4s} dt \\ &= \frac{f^{4}\left(a\right)}{4s+1} + 4f^{3}\left(a\right) f\left(b\right) \beta \left(3s+1,s+1\right) \\ &+ 6f^{2}\left(a\right) f^{2}\left(b\right) \beta \left(2s+1,2s+1\right) \\ &+ 4f\left(a\right) f^{3}\left(b\right) \beta \left(3s+1,s+1\right) + \frac{f^{4}\left(b\right)}{4s+1} \\ &= \frac{f^{4}\left(a\right) + f^{4}\left(b\right)}{4s+1} + 6f^{2}\left(a\right) f^{2}\left(b\right) \beta \left(2s+1,2s+1\right) \\ &+ 4f\left(a\right) f\left(b\right) \beta \left(3s+1,s+1\right) \left[f^{2}\left(a\right) + f^{2}\left(b\right)\right] \\ &= \frac{f^{4}\left(a\right) + f^{4}\left(b\right)}{4s+1} + 6f^{2}\left(a\right) f^{2}\left(b\right) \frac{\Gamma \left(2s+1\right) \Gamma \left(2s+1\right)}{\Gamma \left(4s+2\right)} \\ &+ 4f\left(a\right) f\left(b\right) \left[f^{2}\left(a\right) + f^{2}\left(b\right)\right] \frac{\Gamma \left(3s+1\right) \Gamma \left(s+1\right)}{\Gamma \left(4s+2\right)}, \end{split}$$

respectively, then the following inequality is obtain

$$\frac{8}{b-a} \int_{0}^{1} f(x) dx \frac{f(a) + f(b)}{s+1} \qquad (12)$$

$$\leq \frac{1}{b-a} \int_{0}^{1} f^{4}(x) dx + \frac{f^{4}(a) + f^{4}(b)}{4s+1} \\
+ 6f^{2}(a) f^{2}(b) \frac{\Gamma(2s+1)\Gamma(2s+1)}{\Gamma(4s+2)} \\
+ 4f(a) f(b) \left[f^{2}(a) + f^{2}(b)\right] \frac{\Gamma(3s+1)\Gamma(s+1)}{\Gamma(4s+2)} + 8,$$

and by using the left half of the Hadamard's inequality given in (5) on the left side the above inequality (12), then the inequality (10) is proved. \blacksquare

Corollary 2.4. With the above assumptions, and under the condition that s = 1, one has the inequality:

$$f\left(\frac{a+b}{2}\right)\frac{f(a)+f(b)}{2}$$

$$\leq \frac{1}{8(b-a)}\int_{a}^{b}f^{4}(x)dx \qquad (13)$$

$$+\frac{f^{4}(a)+f(a)^{3}f(b)+f(a)^{2}f(b)^{2}+f(a)f(b)^{3}+f^{4}(b)}{40}+1.$$

Theorem 2.5. Let $f, g: I \to \mathbb{R}$, $I \subset [0, \infty)$, $a, b \in I$, with a < b be increasing and s-convex functions in the second sense. If f is s_1 -convex in the second sense and g is s_2 -convex in the second sense for some $s_1, s_2 \in (0, 1]$, then

$$\frac{f(a) + f(b)}{(s_1 + 1)}g\left(\frac{a + b}{2}\right) + \frac{g(a) + g(b)}{(s_2 + 1)}f\left(\frac{a + b}{2}\right) \tag{14}$$

$$\leq \frac{1}{b - a} \int_a^b f(x) g(x) \, dx + \frac{M(a, b)}{s_1 + s_2 + 1} + \frac{\Gamma(s_1 + 1)\Gamma(s_2 + 1)}{\Gamma(s_1 + s_2 + 2)}N(a, b),$$

where M(a,b) = f(a) g(a) + f(b) g(b) and N(a,b) = f(a) g(b) + f(b) g(a).

Proof. Since f is an s_1 -convex and g is an s_2 -convex on [a, b], we have

$$\begin{array}{rcl} f\left(ta + (1-t)\,b\right) &\leq & t^{s_1}f\left(a\right) + (1-t)^{s_1}f\left(b\right) \\ g\left(ta + (1-t)\,b\right) &\leq & t^{s_2}g\left(a\right) + (1-t)^{s_2}g\left(b\right) \end{array}$$

for all $a, b \in I$, and $t \in [0, 1]$. Now, using the elementary inequality ([6], p.4) $(a - b) (c - d) \ge 0$ $(a, b, c, d \in \mathbb{R}$ and a < b, c < d), we get inequality

$$\begin{split} t^{s_1}f\left(a\right)g\left(ta+(1-t)\,b\right)+(1-t)^{s_1}\,f\left(b\right)g\left(ta+(1-t)\,b\right)\\ +t^{s_2}g\left(a\right)f\left(ta+(1-t)\,b\right)+(1-t)^{s_2}\,g\left(b\right)f\left(ta+(1-t)\,b\right)\\ \leq & f\left(ta+(1-t)\,b\right)g\left(ta+(1-t)\,b\right)+t^{s_1+s_2}f\left(a\right)g\left(a\right)\\ +t^{s_1}\left(1-t\right)^{s_2}f\left(a\right)g\left(b\right)+t^{s_2}\left(1-t\right)^{s_1}f\left(b\right)g\left(a\right)\\ & +\left(1-t\right)^{s_1+s_2}f\left(b\right)g\left(b\right). \end{split}$$

Integrating this inequality over t on [0, 1], we deduce

$$\begin{split} (A :=) \, f \, (a) \int_0^1 t^{s_1} g \, (ta + (1 - t) \, b) \, dt \\ + f \, (b) \int_0^1 (1 - t)^{s_1} \, g \, (ta + (1 - t) \, b) \, dt \\ + g \, (a) \int_0^1 t^{s_2} f \, (ta + (1 - t) \, b) \, dt \\ + g \, (b) \int_0^1 (1 - t)^{s_2} \, f \, (ta + (1 - t) \, b) \, dt \\ \leq & (B :=) \int_0^1 f \, (ta + (1 - t) \, b) \, g \, (ta + (1 - t) \, b) \, dt + f \, (a) \, g \, (a) \int_0^1 t^{s_1 + s_2} dt \\ + f \, (a) \, g \, (b) \int_0^1 t^{s_1} \, (1 - t)^{s_2} \, dt + f \, (b) \, g \, (a) \int_0^1 t^{s_2} \, (1 - t)^{s_1} \, dt \\ + f \, (b) \, g \, (b) \int_0^1 (1 - t)^{s_1 + s_2} \, dt. \end{split}$$

A and B expressions to analyze respectively and using increasing of f, g and using the left half of the Hadamard's inequality given in (5) on the left side of the above inequalities, we get

$$\begin{array}{ll} (A & : & =)f\left(a\right)\int_{0}^{1}t^{s_{1}}g\left(ta+\left(1-t\right)b\right)dt+f\left(b\right)\int_{0}^{1}\left(1-t\right)^{s_{1}}g\left(ta+\left(1-t\right)b\right)dt\\ & +g\left(a\right)\int_{0}^{1}t^{s_{2}}f\left(ta+\left(1-t\right)b\right)dt+g\left(b\right)\int_{0}^{1}\left(1-t\right)^{s_{2}}f\left(ta+\left(1-t\right)b\right)dt\\ & \geq & f\left(a\right)\int_{0}^{1}t^{s_{1}}dt\int_{0}^{1}g\left(ta+\left(1-t\right)b\right)dt\\ & +f\left(b\right)\int_{0}^{1}\left(1-t\right)^{s_{1}}dt\int_{0}^{1}g\left(ta+\left(1-t\right)b\right)dt\\ & +g\left(a\right)\int_{0}^{1}t^{s_{2}}dt\int_{0}^{1}f\left(ta+\left(1-t\right)b\right)dt\\ & +g\left(b\right)\int_{0}^{1}\left(1-t\right)^{s_{2}}dt\int_{0}^{1}f\left(ta+\left(1-t\right)b\right)dt\\ & = & \frac{f\left(a\right)}{\left(s_{1}+1\right)\left(b-a\right)}\int_{a}^{b}g\left(x\right)dx+\frac{f\left(b\right)}{\left(s_{2}+1\right)\left(b-a\right)}\int_{a}^{b}f\left(x\right)dx\\ & = & \frac{f\left(a\right)+f\left(b\right)}{\left(s_{1}+1\right)\left(b-a\right)}\int_{a}^{b}g\left(x\right)dx+\frac{g\left(a\right)+g\left(b\right)}{\left(s_{2}+1\right)\left(b-a\right)}\int_{a}^{b}f\left(x\right)dx\\ & \geq & \frac{f\left(a\right)+f\left(b\right)}{\left(s_{1}+1\right)}g\left(\frac{a+b}{2}\right)+\frac{g\left(a\right)+g\left(b\right)}{\left(s_{2}+1\right)}f\left(\frac{a+b}{2}\right) \end{array}$$

and

$$\begin{array}{rcl} (B & : & =) \int_{0}^{1} f\left(ta + (1-t) \, b\right) g\left(ta + (1-t) \, b\right) dt + f\left(a\right) g\left(a\right) \int_{0}^{1} t^{s_{1}+s_{2}} dt \\ & \quad + f\left(a\right) g\left(b\right) \int_{0}^{1} t^{s_{1}} \left(1-t\right)^{s_{2}} dt + f\left(b\right) g\left(a\right) \int_{0}^{1} t^{s_{2}} \left(1-t\right)^{s_{1}} dt \\ & \quad + f\left(b\right) g\left(b\right) \int_{0}^{1} \left(1-t\right)^{s_{1}+s_{2}} dt \\ & = & \frac{1}{b-a} \int_{a}^{b} f\left(x\right) g\left(x\right) dx + \frac{f\left(a\right) g\left(a\right) + f\left(b\right) g\left(b\right)}{s_{1}+s_{2}+1} \\ & \quad + f\left(a\right) g\left(b\right) \beta\left(s_{1}+1,s_{2}+1\right) + f\left(b\right) g\left(a\right) \beta\left(s_{2}+1,s_{1}+1\right) \\ & = & \frac{1}{b-a} \int_{a}^{b} f\left(x\right) g\left(x\right) dx + \frac{f\left(a\right) g\left(a\right) + f\left(b\right) g\left(b\right)}{s_{1}+s_{2}+1} \\ & \quad + \left[f\left(a\right) g\left(b\right) + f\left(b\right) g\left(a\right)\right] \beta\left(s_{1}+1,s_{2}+1\right) \\ & = & \frac{1}{b-a} \int_{a}^{b} f\left(x\right) g\left(x\right) dx + \frac{f\left(a\right) g\left(a\right) + f\left(b\right) g\left(b\right)}{s_{1}+s_{2}+1} \\ & \quad + \frac{\Gamma\left(s_{1}+1\right) \Gamma\left(s_{2}+1\right)}{\Gamma\left(s_{1}+s_{2}+2\right)} \left[f\left(a\right) g\left(b\right) + f\left(b\right) g\left(a\right)\right] \end{array}$$

respectively, $(A \leq B)$ then the inequality (14) is proved.

Corollary 2.6. With the above assumptions, and under the condition that $s_1 = s_2 = 1$, one has the inequality

$$\frac{f(a) + f(b)}{2}g\left(\frac{a+b}{2}\right) + \frac{g(a) + g(b)}{2}f\left(\frac{a+b}{2}\right) \tag{15}$$

$$\leq \frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,dx + \frac{M(a,b)}{3} + \frac{N(a,b)}{6}.$$

3 Applications to some special means

We now consider the applications of our results to the following special means The arithmetic mean: $A = A(a, b) := \frac{a+b}{2}, a, b \ge 0$, The geometric mean: $G = G(a, b) := \sqrt{ab}, a, b \ge 0$, The quadratic mean: $K = K(a, b) := \sqrt{\frac{a^2+b^2}{2}} a, b \ge 0$. The following inequality is well known in the resources:

$$G \le A \le K$$

In [3], the above Example 1.1 is given: Let $s \in (0, 1)$ and $a, b, c \in \mathbb{R}$. We define function $f : [0, \infty) \to \mathbb{R}$ as

$$f(t) = \begin{cases} a, & t = 0, \\ bt^s + c, & t > 0. \end{cases}$$

If $b \ge 0$ and $0 \le c \le a$, then $f \in K_s^2$. Consequently, for a = c = 0, b = 1, s = 1/2, we have $f : [0,1] \rightarrow [0,1], f(t) = t^{\frac{1}{2}}, f \in K_s^2$.

Journal of New Results in Science 3 (2013) 49-59

Proposition 3.1. Let $a, b \in [0, \infty)$, a < b. Then one has the inequality

$$\frac{7}{3}A^{1/2}(a,b)A\left(a^{1/2},b^{1/2}\right) \le \frac{43}{15}A(a,b) + \frac{20\pi - 17}{60}G\left(a,b\right).$$
(16)

Proof. The assertion follows from Theorem 2.1 applied to s-convex mapping $f: I \to \mathbb{R}$, $f(x) = x^s, x \in [a, b]$ and $f(x) = x^{1/2}$ for s = 1/2.

Proposition 3.2. Let $a, b \in [0, \infty)$, a < b. Then one has the inequality

$$\frac{\frac{4}{3}A^{1/2}(a,b)A(a^{1/2},b^{1/2})}{K^{2}(a,b)+G^{2}(a,b)} + \frac{\pi}{16}G(a,b)A(a,b) + 1.$$
(17)

Proof. The assertion follows from Theorem 2.3 applied to s-convex mapping $f: I \to \mathbb{R}$, $f(x) = x^s, x \in [a, b]$ and $f(x) = x^{1/2}$ for s = 1/2.

Proposition 3.3. Let $a, b \in [0, \infty)$, a < b. Then one has the inequality:

$$\frac{8}{3}A^{1/2}(a,b)A\left(a^{1/2},b^{1/2}\right) \le 2A(a,b) + \frac{\pi}{4}G(a,b)$$
(18)

Proof. The assertion follows from Theorem 2.5 applied to s-convex mapping $f, g: I \to \mathbb{R}$, $f(x) = g(x) = x^s$, $x \in [a, b]$ and $f(x) = g(x) = x^{1/2}$ for s = 1/2.

Similar inequalities may be stated for s-convex functions $f(x) = x^s$, or $f(x) = bx^s + c$, $s \in (0, 1]$. We omit the details.

References

- [1] S.S. Dragomir, C. E. M. Pearce, Selected Topic on Hermite-Hadamard Inequalities and Applications, Melbourne and Adelaide, December, 2000.
- [2] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58, 171-215, 1893.
- [3] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48, 100-111, 1994.
- [4] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992
- [5] D.S. Mitrinović, Analytic Inequalities, Springer Verlag, Berlin/New York, 1970.
- [6] R.B. Manfrino, R.V. Delgado and J.A.G. Ortega, Inequalities a Mathematical Olympiad Approach, Birkhäuser, 2009.
- [7] M.E. Özdemir, M. Tunç, A.O. Akdemir, On (h-s)_{1,2}-convex Functions and Hadamard-type Inequalities, Int. J. Open Problems Comput. Math., 6(2), 51-61, 2013.

- [8] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means, J. of Ineq.Appl., 2013, 2013:326 10.1186/1029-242X-2013-326
- [9] M. Tunç, Y. Şubaş, İ. Karabayır, On some Hadamard type inequalities for MTconvex functions, Int. J. Open Problems Comput. Math., 6(2), 102-113, 2013.
- [10] M. Tunç, U.S. Kırmacı, New integral inequalities for s-convex functions with applications, International Electronic Journal of Pure and Applied Mathematics, 1(2), 131-141, 2010.
- [11] M. Tunç, Ostrowski type inequalities for functions whose derivatives are MTconvex, J. of Comp.Analy. and Appl., In Press, 2014.