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Abstract

This paper deals with the asymptotic estimates of eigenvalues for Sturm-
Liouville problems with two supplementary transmission conditions at one in-
terior point. By modifying some known techniques the existence and unique-
ness results of solutions are obtained for the considered problem.
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1 Introduction

A Sturm-Liouville differential equation on a finite interval together with boundary con-
ditions arises from the infinitesimal, vertical vibrations of a string with the ends subject
to various constraints. The coefficient (also called potential) function in the differential
equation is in a close relationship with the density of the string, and the eigenvalues of the
Sturm-Liouville problem are the square of the frequencies of oscillation of the string. The
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related methods continue to give rise to Sturm-Liouville problems which model many phe-
nomena such as the earths seismic behavior, the propagation of sonar in the water stratified
by varying density, and the stability and velocity of large-scale waves in atmosphere [7].
The computation of eigenvalues plays a rather important role in both mathematical and
physical fields. In this paper we deal with one discontinuous eigenvalue problem which
consists of Sturm-Liouville equation,

τu := −u′′(x) + q(x)u(x) = λu(x) (1)

on x ∈ [−1, 0) ∪ (0, 1] subject to the transmission conditions at the inner point x = 0

u(+0) = αu(−0), (2)

u′(+0) = βu′(−0) (3)

and the boundary conditions at the end points x = −1 and x = 1

u(−1) = u′(1) = 0, (4)

where the potential q(x) is real-valued, continuous in each interval [−1, 0)
and (0, 1] and has a finite limits q(∓c) ; α, β are real numbers; λ is a complex eigenpara-
meter. Problems of this type arise from the method of separation of variables applied to
mathematical models for certain physical problems including heat conduction and wave
propagation, etc. [3]. Sturm-Liouville problems with impulse effects (also known as in-
terface conditions, transmission conditions, discontinuity conditions) arise in many appli-
cations (e.g., thermal conduction in a thin laminated plate made up of layers of different
materials). They have been the object of several investigations recently [1, 2, 4, 5, 6, 9] in
addition to an earlier attempt [10]. In this paper we obtain asymptotic formulas for the
eigenvalues and eigenfunctions of the second order boundary-value problem (2)-(3). For
second order differential equations, similar asymptotic formulas were obtained in [2, 4, 6].

2 Definition of Fundemental Solutions

In this section we shall define two basic solutions φ(x, λ) and χ(x, λ) by own technique as
follows. At first, let us consider the initial-value problem on the left part [−1, 0) of the
considered interval [−1, 0) ∪ (0, 1]

−y′′ + q(x)y = λy, x ∈ [−1, 0) (5)

φ1(−1, λ) = 0,
∂φ1(−1, λ)

∂x
= 1 (6)

By virtue of well-known existence and uniqueness theorem of ordinary differential equation
theory this initial-value problem for each λ has a unique solution φ1(x, λ). Moreover this
solution is an entire function of λ for each fixed x ∈ [−1, 0) ( see, [8]). By using this solution
we shall construct the initial-value problem on the right part (0, 1] of the considered interval
[−1, 0) ∪ (0, 1] as

−y′′ + q(x)y = λy, x ∈ (0,−1] (7)
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φ2(+0, λ) = αφ1(−0, λ),
∂φ2(+0, λ)

∂x
= β

∂φ1(−0, λ)

∂x
. (8)

Define a sequence of functions yn(x, λ), n = 0, 1, 2, ... on interval (0, 1] by the following
equations:

y0(x, λ) = β
∂φ1(−0, λ)

∂x
x + αφ1(−0, λ)

yn(x, λ) = y0(x, λ) +

x
∫

0

(x − z)(q(z) − λ)yn−1(z, λ)dz, n = 1, 2, ... (9)

It is easy to see that each of yn(x, λ) is an entire function of λ for each x ∈ (0, 1]. Consider
the series

y0(x, λ) +

∞
∑

n=1

(yn(x, λ) − yn−1(x, λ)) (10)

Denoting

q1 = max
x∈(c,b]

|q(x)| and Y (λ) = max
x∈(c,b]

|y0(x, λ)|,

we can show that

|yn(x, λ) − yn−1(x, λ)| ≤
1

(2n)!
Y (λ)(q1 + |λ|n)(x)2n (11)

for each n = 1, 2, .... Because of this inequality the series (10) is uniformly convergent
with respect to the variable x on (0, 1], and with respect to the variable λ on every closed
bar |λ| ≤ R. Let φ2(x, λ) be the sum of the series (10). Consequently φ2(x, λ) is an entire
function of λ for each fixed x ∈ (0, 1]. Since for n ≥ 2

y′
n(x, λ) − y′

n−1(x, λ) =

x
∫

0

(q(z) − λ)(yn−1(z, λ) − yn−2(z, λ))dz

and

y′′
n(x, λ) − y′′

n−1(x, λ) = (q(x) − λ)(yn−1(x, λ) − yn−2(x, λ))

the first and second differentiated series also converge uniformly with respect to x. Taking
into account the last equality we have

ϕ′′
2(x, λ) = y′′

1 (x, λ) +
∞
∑

n=2

(y′′
n(x, λ) − y′′

n−1(x, λ))

= (q(x) − λ)y1(x, λ)

+

∞
∑

n=2

(q(x) − λ)(yn(x, λ) − yn−1(x, λ))

= (q(x) − λ)φ2(x, λ),
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so φ2(x, λ) satisfies the equation (7). Moreover, since each yn(x, λ) satisfies the initial
conditions (8), then the function φ(x, λ) defined by

φ(x, λ) = {
φ1(x, λ) forx ∈ [−1, 0)
φ2(x, λ) for x ∈ (0, 1].

(12)

satisfies equation (1), first boundary condition and the both transmission conditions (2)
and (3). Similarly let χ2(x, λ) be solutions of equation (1) on (0, 1] subject to initial
conditions

χ2(1, λ) = −1,
∂χ2(1, λ)

∂x
= 0. (13)

Again, by virtue of [8] this solution is entire function of λ for fixed x. By applying the
same technique we can prove that there is an unique solution χ1(x, λ) of equation (1) on
[−1, 0) satisfying the initial condition

χ1(−0, λ) =
1

α
χ2(+0, λ),

∂χ1(−0, λ)

∂x
=

1

β

∂χ2(+0, λ)

∂x
. (14)

By applying the similar technique as in [4] we can prove that the solution χ1(x, λ) is
also an entire function of parameter λ for each fixed x. Consequently, the function χ(x, λ)
defined as

χ(x, λ) =

{

χ1(x, λ), x ∈ [−1, 0)
χ2(x, λ), x ∈ (0, 1]

satisfies the equation (1) on whole [−1, 0)∪ (0, 1], the other boundary condition u′(1) = 0
and the both transmission conditions (2) and (3).

3 Asymptotic Behaviour of Fundemental So-

lutions

Let λ = s2. By applying the method of variation of parameters we can prove that the
next integral and integro-differential equations are hold for k = 0 and k = 1.

dk

dxk
φ1(x, λ) = −

1

s

dk

dxk
sin [s (x + 1)] +

1

s

x
∫

−1

dk

dxk
sin [s (x − z)] q(z)φ1(z, λ)dz (15)

dk

dxk
χ1(x, λ) =

1

α

dk

dxk
cos sxχ2(+0, λ) +

χ′
2(+0, λ)

βs

dk

dxk
sin sx

+
1

s

0
∫

x

dk

dxk
sin [s (x − z)] q(z)χ1(z, λ)dz (16)
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for x ∈ [−1, 0) and

dk

dxk
φ2(x, λ) = α

dk

dxk
cos sxφ1(−0, λ) +

βφ′
1(−0, λ)

s

dk

dxk
sin sx

+
1

s

x
∫

0

dk

dxk
sin [s (x − z)] q(z)φ2(z, λ)dz (17)

dk

dxk
χ2(x, λ) = −

dk

dxk
cos [s (x − 1)] +

1

s

1
∫

x

dk

dxk
sin [s (x − z)] q(z)χ2(z, λ)dz (18)

for x ∈ (0, 1]. Now we are ready to prove the following theorems.

Theorem 3.1. Let λ = s2, Ims = t. Then

dk

dxk
φ1(x, λ) = −

1

s

dk

dxk
sin [s(x + 1)] + O

(

|s|
k−2

e|t|(x+1)
)

(19)

dk

dxk
φ2(x, λ) = −

1

s
(α sin s

dk

dxk
cos sx + β cos s

dk

dxk
sin sx)

+O
(

|s|
k−2

e|t|(x+1)
)

(20)

as |λ| → ∞ (k = 0, 1). Each of this asymptotic equalities hold uniformly for x.

Proof. The asymptotic formula (19) follows immediately from the Titchmarsh’s Lemma
on the asymptotic behavior of φλ(x) ([8], Lemma 1.7). But the corresponding formulas
for φ2(x, λ) need individual consideration.

Substituting (19) in (17) we have the next ”asymptotic integral equation”

φ2(x, λ) =
1

s

x
∫

0

dk

dxk
sin [s (x − z)] q(z)φ2(z, λ)dz + O

(

1

|s|2
e|t|(x+1)

)

+ −
α

s
sin s cos sx −

1

βs
cos s sin sx (21)

It is easy to derive that

1

s

x
∫

0

dk

dxk
sin [s (x − z)] q(z)φ2(z, λ)dz = O

(

1

|s|2
e|t|(x+1)

)

. (22)

Substituting the equation (22) in the equality (21) we obtain (20) for the case k = 0.
The case k = 1 of the eguality (20) follows at once on differentiating (17) and making the
same procedure as in the case k = 0.

Similarly we can easily obtain the following Theorem for χi(x, λ)(i = 1, 2).
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Theorem 3.2. Let λ = s2, Ims = t. Then

dk

dxk
χ2(x, λ) = −

dk

dxk
cos [s (x − 1)] + O

(

|s|
k−1

e|t|(x−1)

)

(23)

dk

dxk
χ1(x, λ) = −(

cos s

α

dk

dxk
cos sx +

sin s

β

dk

dxk
sin sx)

+O
(

|s|k−1e|t|(1−x)
)

(24)

as |λ| → ∞ (k=0,1). Each of this asymptotic equalities hold uniformly for x.

4 Distribution of Eigenvalues and Asymptotic

Behavior of Eigenfunctions

It is well-known from ordinary differential equation theory that the Wronskians W [φ1(λ), χ1(λ)]x
and W [φ2(λ), χ2(λ)]x are independent of variable x. By using (8) and (14) we have

w1(λ) = φ1(−0, λ)
∂χ1(−0, λ)

∂x
− χ1(−0, λ)

∂φ1(−0, λ)

∂x

=
1

αβ
(φ2(+0, λ)

∂χ2(+0, λ)

∂x
− χ2(+0, λ)

∂φ2(+0, λ)

∂x
)

=
1

αβ
w2(λ)

for each λ ∈ C. It is convenient to introduce the notation

w(λ) := αβw1(λ) = w2(λ). (25)

Now by modifying the standard method we prove that all eigenvalues of the problem
(1) − (4) are real.

Theorem 4.1. The eigenvalues of the boundary-value-transmission problem (1)− (4) are
real.

Proof. Let λ0 be eigenvalue and y0 be eigenfunction corresponding to this eigenvalue. By

86



Journal of New Results in Science 1 (2012) 81-89

two partial integration we have
∫ 0

−1

(λ0y0(x))y0(x)dx +
1

αβ

∫ 1

0

((λ0y0(x))y0(x)dx

=

∫ 0

−1

(τy0)(x)y0(x)dx +
1

αβ

∫ 1

0

(τy0)(x)y0(x)dx

=

∫ 0

−1

y0(x)(τy0)(x)dx +
1

αβ

∫ 1

0

y0(x)(τy0)(x)dx + W [y0, z;−0]

− W [y0, y0;−1] +
1

αβ
W [y0, y0; 1] −

1

αβ
W [y0, y0; +0]

=

∫ 0

−1

y0(x)(λ0y0)(x)dx +
1

αβ

∫ 1

0

y0(x)(λ0y0)(x)dx + W (y0, z;−0)

− W [y0, y0;−1] +
1

αβ
W [y0, y0; 1] −

1

αβ
W [y0, y0; +0] (26)

From the boundary boundary conditions (2)-(3) it is follows obviously that

W (y0, y0;−1) = 0 and W (y0, y0; 1) = 0. (27)

The direct calculation gives

W (y0, y0;−0) =
1

αβ
W (y0, y0; +0). (28)

Substituting (27) and (28) in (26) we have the equality

(λ0 − λ0)[

∫ 0

−1

(y0(x))2dx +
1

αβ

∫ 1

0

(y0(x))2dx] = 0

Thus, we get λ0 = λ0 since αβ > 0. Consequently all eigenvalues of the problem (1)− (4)
are real.

Corollary 4.2. Let u(x) and v(x) be eigenfunctions corresponding to distinct eigenvalues.
Then they are orthogonal in the sense of the following equality

∫ 0

−1

u(x)v(x)dx +
1

αβ

∫ 1

0

u(x)v(x)dx = 0. (29)

Since the Wronskians of φ2(x, λ) and χ2(x, λ) are independent of x, in particular, by
putting x = 1 we have

w(λ) = φ2(1, λ)χ′
2(1, λ) − φ′

2(1, λ)χ2(1, λ)

= φ′
2(1, λ). (30)

Let λ = s2, Ims = t. By substituting (20) in (30) we obtain easily the following asymptotic
representation

w(λ) = −α sin2 s + β cos2 s + O

(

1

s
e|2t|

)

(31)

Now we are ready to derived the needed asymptotic formulas for eigenvalues and eigen-
functions.
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Theorem 4.3. The boundary-value-transmission problem (1)-(4) has an precisely numer-
able many real eigenvalues, λ0, λ1, λ2... for which the following asymptotic expression is
hold

s±n = πn ± arctan

√

β

α
+ O

(

1

n

)

(32)

where sn = {s−n , s+
n }.

Proof. By applying the well-known Rouche Theorem which asserts that if f(z) and g(z)
are analytic inside and on a closed contour Γ, and |g(z)| < |f(z)| on Γ then f(z) andf(z)+
g(z) have the same number zeros inside Γ provided that the zeros are counted with mul-
tiplicity on a sufficiently large contour, it follows that w(λ) has the same number of zeros
inside the contour as the leading term w0(λ) = −α sin2 s + β cos2 s in (31). Hence, if
λ0 < λ1 < λ2... are the zeros of w(λ) and sn = λn, we have the needed asymptotic
formulas (32).

Using this asymptotic formulas for eigenvalues we can derive that the corresponding
eigenfunctions may be expressed by the formula

φn(x) =



























sin(πn ± arctan
√

β

α
)(x + 1) + O

(

1
n

)

for x ∈ [−1, 0)

α sin(πn ± arctan
√

β

α
) cos[(πn ± arctan

√

β

α
)x]

−β cos(πn ± arctan
√

β

α
) sin[(πn ± arctan

√

β

α
)x]

+O
(

1
n

)

, for x ∈ (0, 1]
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