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Abstract 
 
This study presents loading effects of composite characteristics which are 
generalized by ply orientation, thickness, radius of shell curve etc. The 
solution methodology is based on Higher Order Shear Deformation Theory 
(HSDT) for doubly curved, moderately thick, laminated shells which have 
symmetric and asymmetric ply orientation, under simply supported boundary 
conditions.  
 

KOMPOZİT ÖZELLİKLERİNİN  
EĞİLMEYE ETKİLERİNİN İNCELENMESİ 

 
Özetçe 

 
Bu çalışmada, kat dizilişi, kalınlık, eğrilik yarıçapı olarak genellenebilecek 
kompozit özelliklerinin yükleme koşullarına etkileri incelenmiştir. Çözüm 
metodu; simetrik ve asimetrik kat dizilimlerine sahip, basit mesnetlenmiş sınır 
şartları altında, çift eğrilikli, kalın lamine kabuk için Yüksek Mertebeden 
Kayma deformasyon Teorisine dayanır.  
 
Keywords: Ply-orientation, Thick shells, Laminated composites, HSDT, 
doubly curved shell 
Anahtar Sözcükler : Kat oryantasyonu, Kalın kabuklar, Lamine kompozitler, 
HSDT, çift eğrilikli kabuk. 
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1. INTRODUCTION 
 

Modern composites have created a revolution in high performance 
structures. Their advantages relative to conventional materials such as high 
strength to weight and stiffness to weight ratios, superior resistance to 
environmental conditions, design flexibility also known as tailoring the 
material for desired application, make them attractive for a wide range of 
applications in marine, chemical, aerospace, automotive industries and for 
the applications related to medical and sporting goods [1, 2]. Especially, the 
recent development in the military ships shows that composite structures 
can be used to increase the operational performance to reduce maintenance 
and fuel consumption costs [3].  

 
Laminated composite structures are made up of two or more layers of 

materials bonded together to form a new material. The properties of the 
laminate can be tailored for a desired application. However, the analysis of 
composite laminates brings additional difficulties to the analyst such as the 
inter-laminar or transverse shear stress due to mismatch of material 
properties among layers, bending-stretching coupling due to asymmetry of 
lamination, and in-plane orthotropy. Extra complexities arise by the 
necessity of the satisfaction of the prescribed boundary conditions. 
Therefore, all these advancements and design requirements place a premium 
on an in-depth understanding of the response characteristics of such 
structural components. 

 
The structural analysis of laminated composite plates is performed 

generally by approximate numerical methods, such as finite element 
methods (FEM), boundary element methods (BEM), and more recently 
developed meshless Petrov-Galerkin methods. Derivation of analytical (e.g., 
Fourier series) solutions for the problems of laminated plates fabricated with 
such advanced composite materials as graphite/epoxy, Kevlar/epoxy, 
boron/epoxy, graphite/PEEK, etc., is, however, fraught with many 
complexities as briefly mentioned above.  
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Investigations of laminated composite plates usually utilize either the 
classical lamination theory (CLT) [4-8] or the first order shear deformation 
theory (FSDT) [9-14]. More accurate theories such as higher order theories 
(HSDT) assume quadratic, cubic or higher variations of surface-parallel 
displacements through the entire thickness of the laminates to model the 
behavior of the structure for thick to thin regions. Analytical solutions 
utilizing the double Fourier series approach to solve the problems of 
laminated plates and shells are first considered by Hobson [15] and Green 
[16] for the solution to the problem of a clamped isotropic plate. Green and 
Hearmon [17] extended this approach to solve the problems of 
symmetrically laminated thin isotropic plates with simply supported 
boundary conditions. Whitney [7] extended this method to cross-ply and 
angle-ply laminates with clamped boundary conditions.  

 
The use of laminated curved panels is common in many engineering 

fields. The single most important factor to commercial and military aircraft 
designers alike is the design flexibility inherent in composite laminates, 
known as tailoring, which is essentially exploiting the possibility of 
obtaining optimum design through a combination of structural/material 
concepts, stacking sequence, ply orientation, choice of component phases, 
etc., to meet specific design requirements [18].   

 
Tailoring process requires many variations in the material properties 

of the composite lamina. These variations are more important than the 
conventional materials as there are large numbers of parameters. In the 
present study; a few of them will be investigated such as the effect of ply 
orientation, the effect of geometric form which means radius of the shell, 
however it should be noted that the material properties are deterministic thus 
they may be cause to ignore such variations.   

 
2. STATEMENT OF THE PROBLEM 

 
 The laminated plate, composed of finite number of orthotropic layers 
of uniform thickness of h is shown in Figure 1, 



Veysel ALANKAYA, Fuat ALARÇİN 

25  

  

Figure 1. Geometry of a laminated plate. 

where; a and b are the dimensions of the shell, R1 and R2 are the curve 
radius at x (represented by x1 ) and y (represented by x2 ) axes respectively.  

 
A third-order displacement field is considered by expanding the in-

plane displacements (u0,v0,w0) as cubic functions of the thickness 
coordinate,    x3 = z. 
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where, u0, v0 and w0 represents displacements of a point at the mid-surface 
(z, while x and y are rotations about x and xaxes, respectively. The 
details of the strain-displacement relations, and other explanations are given 
in Reddy [19] and for the sake of brevity, they are not repeated here. 

 
The equilibrium equations derived using the principle of virtual work 

are given as follows: 
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where q is the distributed transverse load, and Ni, Mi, Pi, i = 1, 2, 6, denote 
stress resultants, stress couples, and second stress couples (resultants of the 
second moment of stress) (see, e.g., Reddy [19]).  Qi, i = 4, 5 represents the 
transverse shear stress resultants.  They are given as follows: 
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200
jijjijjiji EBAN   ,        (3a) 
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in which ,, ijij BA etc. are the laminate rigidities (integrated stiffnesses). 
These are given as follows: 
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Introduction of Eqs. (3 and 4) into Eqs. (2) gives five highly coupled 
fourth-order partial differential equations. The set of equations can be 
expressed in the following form:  
 

ij j iK x f  ( , 1,...,5)i j   and  ( )ij jiK K      (6a) 
 

where; 
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}{}{ 21 wvux T
j          (6b)

  
}0000{}{ qf T

j          (6c) 
 

and [Kij] are given in Appendix A. 
  

 
3. NUMERICAL RESULTS 

 
Numerical results are presented for [0o/90o/0o/90o/0o/90o] anti-

symmetric and [90o/0o/90o/0o/0o/90o/0o/90o] symmetric cross-ply square   
(a=b) plates which are subjected to uniformly distributed load. The 
following material properties are assumed: 

 
E1 = 25 Gpa 1

2

25E
E

  
G12 = G13 = 0,5 E2 

12 13 0.25     G23 = 0,2 E2 
 

Here E1 and E2 are the in-plane Young's moduli in x1 and x2 
coordinate directions, respectively, while G12 denotes in-plane shear 
modulus. G13 and G23 are transverse shear moduli in the x1-x3 and x2-x3 
planes, respectively, while 12 is major Poisson's ratio on the x1-x2 plane.  

 
Reddy [20] has defined the solution of a simply supported shell by 

Third Order Shear Deformation Theory for symmetric and anti-symmetric 
cross-ply laminates. The following tables indicate the accuracy of the 
present algorithm by means of dimensionless center 

deflections
3

32
4

0

10wE hw x
q a

 
  
 

 of cross-ply laminated shells under 

uniformly distributed load (Table 1 and Table 2). 
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[0/90/90/0] [0/90/90/0] 

100a
h   10a

h   R
a  

Present Ref. [20] Present Ref. [20] 
5 1.533245 1.5332 10.476490 10.476 
10 3.719525 3.7195 10.904987 10.904 
20 5.666076 5.666 11.017479 11.017 
50 6.623414 6.6234 11.049382 11.049 
Plate 6.842756 6.8427 11.055479 11.053 

 
Table 1: Comparison of results for symmetric lamination. 

 
[0/90/0] [0/90/0] 

100a
h   10a

h   R
a  

Present Ref. [20] Present Ref. [20] 
5 1.509200 1.5092 10.332855 10.332 
10 3.642694 3.6426 10.752603 10.752 
20 5.550371 5.5503 10.862765 10.862 
50 6.489541 6.4895 10.894004 10.893 
Plate 6.704723 6.7047 10.899974 10.899 

 
Table 2: Comparison of results for anti-symmetric lamination. 

 
Maximum error percentage is found %0.002. Therefore, the present 

algorithm shall be suitable to define geometrical effects to the deflection of 
laminated shell. Same material properties are used at different ply 
thicknesses to define deflection impression. Hereafter, the theory defined by 
Reddy [20] shall be used to examine the effects of ply-orientation and curve 
radius to deformation at the symmetric and anti-symmetric laminated shells.  
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Ply Orientations R

a
 5 10 20 50 100 Plate 

100a
h   1.5698 3.7798 5.7306 6.6869 6.8497 6.9056 [0/90/0/90/0/90] 

anti-symmetric 10a
h   9.5144 9.4078 9.4908 9.5144 9.5177 9.5188 

100a
h   1.5695 3.7763 5.7189 6.6688 6.8304 6.8860 [90/0/90/0/0/90/0/90 

symmetric 10a
h   9.0396 9.3542 9.4361 9.4593 9.4626 9.4637 

 
Table 3: Results for different ply orientations. 
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Figure 1: Effect of R
a  ratio. 
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Figure 1 defines the variation of deflection according to ply-
orientations, which are given at Table 3. It shows that the change in the ply 
orientation has a minimal effect in the deflection. However the change in the 
geometric form which changes the R

a  ratio, has an average effect on the 

dimensionless center deflection (w). In the thick regime ( 10a
h  ), 

deflection has minimal variations. 
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Figure 2: Effect of thickness according to curvature. 
 
 

Figure 2 defines the variation of deflection according to thickness. It 
shows that the change in the curvature has a remarkable effect in the 
deflection in the thin regime (a/h>20).  
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4. CONCLUSION 
 

A higher-order theory based analytical solution to the problem of 
symmetric and antisymmetric cross-ply shells with the simply supported  
boundary condition prescribed at all four edges which completely defines 
Navier solution, is presented. 

 
A system of five highly coupled linear partial differential equations, 

which are generated from Third Order Shear Deformation Theory, is solved 
for a variation of geometric form parameter in both thick and thin regime. 
Finally, following results are gained; 

 
1. The accurate changes are observed at the change of R/a in thin 

regime without any changes in material properties such as 
Young’s modules or Poisson’s ratios.  

 
2. It can be clearly seen that the effect of the ply thickness (h) is 

more pronounced in the thin laminate regime. In the moderately 
thick laminate regimes, this effect is compensated by shear 
deformation effect. 

 
3. It should be noted that this study considers the geometric effects, 

however material properties are deterministic for deflection, thus 
they may be cause to ignore geometric variations.  
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Appendix A. Constant Definitions of [Kij] 
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