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Abstract

Subgraphs that occur in complex networks with $icgmtly higher
frequency than those in randomized networks aréeddNetwork Motifs.
Such subgraphs are the basic building blocks of ptexnnetworks. They
often play important roles on functioning of thosetworks. Finding
network motifs is a computationally challenging lgem. Finding network
motifs often requires solving subgraph isomorphmwblem which is NP-
complete. Instead of this, several methods applyilaity queries on
biological networks to find similar patterns thatigt frequently according
to given threshold values. As these networks areedtin databases, we
need efficient methods for accessing and queryiagde databases. As these
networks are generally represented as graphs irortheseveral graph
indexing methods are developed for answering gaarethem. This paper
summarizes network motifs and indexing techniquésological networks.

BiYOLOJIiK AGLARDA A G MOTIFLERI VE
INDEKSLEME TEKN iKLER i

Ozetce

Karmasik aglarda rastgele olgturulmus aglara oranda énemli derece daha
fazla siklikta bulunan altg@ar ag motifleri olarak adlandirilir. S6z konusu
alt aglar ilgili karmagik agin temel yapi tdaridir. Bunlar genellikle ait
olduklari karmaik aglarda ©Onemli roller oynarlar. & motiflerinin
bilgisayar vasitasiyla tespit edilmesi zor bir pledadir. Ac motiflerinin
tespiti genellikle NP-complete zorluk derecesinbisalt a¢ izomorfizm
probleminin ¢dzimini gerektirir. Bunun yerinesittieydntemler, biyolojik
aglarda tanimli oranlardan daha fazla siklikta bulumdenzer yapilari
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tespit etmek igin benzerlik sorgulari uygularlau Bglar veritabanlarinda
saklanildgindan, bu veritabanlarina hizlica gebilecek ve veritabanini
sorgulayabilecek etkili yontemlere ihtiya¢ duymakta S6z konusugkar
teorik olarak genelde c¢izge yapisinda tanimlgndicin bu sorgular
cevaplamaya yardimci olacak st cizge indeksleme teknikleri
gelistirilmigtir. Bu calysmada, biyolojik glardaki ag motifleri ve
indeksleme teknikleri hakkinda 6zet bilgi sunytonu

Keywords: Biological Networks, Network Motif, Graph Indexing
Anahtar Kelimeler: Biyolojik A glar, Ag Motifi, Cizge Indeksleme

1. INTRODUCTION

One of the fundamental goals of molecular biologyo understand
the biological processes that are the driving ferbehind organisms’
functions. Recent advances in high throughput teldgy have resulted in
an explosion of bioinformatics data to achieve tiosl. Complete genome
sequences of more than 100 organisms are now deggmDatasets
containing DNA [1], proteins [2], comparative geriom data [3] and
networks [4] are widely available.

Out of different bioinformatics data, biologicaltwerks constitute
one of the most important classes. While most bomatics data, such as
DNA and protein sequences and protein structutesy ghe contents and
structure of individual bio-chemical entities, lmglcal networks show how
different bio-chemical entities interact with eaother to perform vital
functions. Understanding these interactions isicalitas they can reveal
significant information that is impossible or vedjfficult to achieve by
analyzing individual entities that make up thegeractions.

Numerous applications follow an interaction pattdrat resembles
biological networks. Wireless networks, sensor eks, homeland
security, defense analysis, operations managemerjust a few examples
to these applications. A critical common properfytleese applications is
that although the individual entities may have #pefunction, they serve a
role in the entire network by communicating withhet entities. Thus,
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eliminating or altering a single entity does notyoaffect the function of
that entity, it may affect the function of othetigas.

In order to find sub-networks with similar commuation patterns in
two networks, it is not sufficient to look at traentities of the nodes and the
topologies of the matching sub-networks. This isaose even when the
two sub-networks are identical, their connectioth®srest of their networks
contains valuable information such as how fastrifermation disseminates
and how robust the sub-network is to alteratiom®ré&fore, role of this sub-
network in the entire network has to be consideredrder to obtain an
accurate understanding of its function.

A fundamental question on networks is identificatmf similarities
between them. Finding similarities between two meks requires
computing a mapping of the interacting entitiesha input networks. The
graph/subgraph isomorphism problems can be reducedlobal/local
network alignment problems in polynomial time. Givinat the graph and
subgraph isomorphism problems are GIl-complete ar@-cdinplete
respectively [5], network alignment problem is GdaNP complete, too. A
method designed for aligning two networks must lartie following
difficulties:

* Each sub-network as well as the entire networbwsha process.
Therefore, network comparison cannot be considexeda mere graph
alignment. The alignment should reflect parts dimoeks that have similar
impacts on their organisms. In addition to focusmy the topological
similarities and the similarities between the bi@mical contents of the
entities, the method should also consider the impathe sub-networks on
the alignment.

* The method should be able to search the sinmgaribetween a
guery network and a database of potentially langeber of networks. A
trivial solution is to sequentially align the quergtwork to all the database
networks one by one. This, however, is not practsathe comparison of
even a pair of networks is a costly operation.
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* The method should not only align two networks vilnich the
interacting entities are compatible with each otlfsuch as protein
interaction networks - all the entities are prosginbut also can align
networks having different types of entities (such raetabolic networks
where enzymes interact through reactions and congsju

2. NETWORK MOTIFS

Biology of a living cell involves many intricate etworks of
interdependent events and interactions among bexutds. Examples of
such networks include transcriptional or gene rauh networks, protein—
protein interaction (PPI) networks, metabolic pakg; neural networks,
etc. In 2002, Milo et al. [7] showed that networkem diverse fields
(biological and non-biological) contain several #ntapological patterns
that are so frequent that it is unlikely to occyrdhance. Different networks
tend to have different sets of such frequent Istalctures. These patterns,
referred to as ‘network motifs’, are recognized ‘éee simple building
blocks of complex networks’ [7]. The discovery sp&d a multitude of
research efforts in the past decade and the afedils to this day. Network
motifs are also studied in such other networkshasetectronic circuits and
power distribution networks, ecological network®od web), software
engineering diagrams, molecular structures, WorldeWVeb (the Internet),
and social networks, etc.

Biologists are interested in knowing whether thictional behavior
of a motif can be predicted from its structuraldlmgy as well as whether
the abundance in appearance of such a motif nedgsegplies biological
significance. Some studies also investigated hotwaer& motifs might be
shaped by evolution. For example, when a networklased under fixed
environmental conditions, evolution optimizes thetwork topology for
some specific functions, and no motifs form in thiscess [8]. But, when
the same network is placed under varying envirotadeaonditions where
each condition demands different functional behawom the network,
several network motifs emerge. This happens sinmEfsnalthough having
the same topology, are able to perform differeskgain different input
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conditions. Yet other studies have argued thataiuerdance of a network
substructure might be a secondary result of sorher gthenomena [9], or
that network motifs might not have evolutionaryces [10].

All in all, the ability to computationally determe motifs in a given
network is an essential step in furthering theseaech efforts. Given a
network G and a set of random graphs, we need dntifg all k-node
(equivalently, size-k, throughout the article) sylaphs that are statistically
overrepresented in G. However, one of the diffieglis that determining if
two graphs are topologically equivalent requiresapdy isomorphism’
checking, a highly computation-intensive problemthwino known
polynomial-time solution. This problem is compoudd®y the fact that the
number of sub-graphs of a given size in a netwsrxponential in both the
network size and the sub-graph size. Moreover;lifeahetworks tend to be
large and dense in many cases. The computatiomseél to be carried out
on a large number of random graphs, typically raggrom hundreds to one
thousand. By far, even the best-known algorithmmoa find motifs with
more than 10 nodes in a large, dense network wéhpnactical time frame
without doing heuristics [11].

Motif finding algorithms use various strategiesonmiler to overcome
these difficulties. One of the notable strategieshe use of ‘sub-graph
sampling’ through the target network instead ofa@xenumeration’ to
acquire an acceptable turn-around time. Anothextesyly is to generate all
possible sub-graphs of a fixed size, and for eadbhgsaph count its
frequency in the target network. The latter stratezplled ‘motif-centric
approach’, can lead to reduction in isomorphisrateel computations when
coupled with other strategies, namely ‘symmetryakiieg’ and ‘mapping’
[12]. However, this strategy suffers when lookirmg farger motifs as the
number of sub-graphs of a given size grows expaabnfl3].

3. STRATEGIES FOR MOTIF-FINDING ALGORITHMS

Tasks involved in finding network motifs typicallyclude the
definition of frequency concepts, random graph gati@n, determining
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statistical significance of the frequency of a gwhph and deciding sub-
graph isomorphism, etc.

The frequency of a subgraph H in the input grapbk tBe number of
different occurrences of H in G. Those differentuwtences may have
common vertices and edges according to differefihitlens of frequency.
As an example, three different types of frequenefinitions are given in
[16]. In these definitions, overlap of vertices aedges are handled
differently. In the first one, overlap of both viegs and edges in different
subgraph matches are allowed and every match isdaddo frequency
value. The second frequency definition only allowestex overlaps and
counts edge-disjoint matches. Finally, the thire drsallows overlapping in
different subgraph matches.

According to different types of graphs (directed wmdirected,
labeled or unlabelled), various isomorphism coreepin be described, but
generally, two graphs G and H are called as isomoiipthere is a mapping
between their vertices such that each edge in Geanapped to an edge in
H and vice versa. Checking whether two graphs soenorphic is a NP
problem. On the other hand, a generalized versidhi® problem, namely
subgraph isomorphism problem, is related with twapbs and checks
whether one graph contains a subgraph which isaspinic to other graph.
This problem is NP-complete. Nevertheless, therstesome techniques
such as canonical labeling [17] to solve this peabfor small subgraphs in
practice. In addition to this, canonical labelingasvused for efficient
pruning schemes, with respect to graph isomorphismsome of the
techniques presented in [18, 19].

Network motifs are not only recurrent structures thre given
network, but also they have statistical signifiearwith respect to some
threshold values. These values can be describeddicg to some concepts
such as frequency, uniqueness, P-value and z-s&@ebgraph is frequent
if it occurs more than a threshold (such as F)hae given network.
Additionally, a subgraph is unique if its frequenaythe given network is
higher than (at least a certain amount) its meaguiency in the randomized
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graphs. The P-value is the probability of whethee frequency of the
subgraph in a randomized network is greater thaeqaal to its frequency
in the given network. That subgraph is called aistically significant if P-
value is less than a threshold (depends on theonlewr he final concept z-
score has almost an opposite meaning accordingviue and represents
the difference between the frequency in the givetwark and the mean
frequency in the randomized network.

There are several random graph generation methotthe iliterature,
but the important point is that the randomized gsamust have similar
properties with the input network such as degrsgitdution of vertices and
average path length. In this point of view, the tremmmon random graph
generation method used in network motif discovesyedge-switching
method. It randomly selects two edges and exchatigetarget vertices of
each other so that the number of vertices and edges the degree
distribution of the vertices are preserved. Thetistaalso other techniques
such as ‘Erdos—Re’nyi’ (ER), ‘Baraba’si—Albert’ (BAand ‘Matching
Method’ for random graph generation.

According to above-mentioned concept and defingjonetwork
motif discovery problem can be described as follo@sen a network G
(represented as a graph), motif size k, frequehegshold F, number of
random networks N and P-value P, discover all syfdgg in G that are
consistent with the given thresholds.

The initial algorithms perform exhaustive search fliscovering
network motifs in the input networks. Milo not onbefined the term
“network motif” but also proposed an exhaustiverskeaalgorithm in his
study [7]. However, exhaustive search has an expg@ecomputational
time with respect to motif or network size andstimfeasible to discover
large size motifs by using only this approach.

Several strategies were developed to solve diftepamts of the
network motif discovery problem. One of the probdeis the exponential
search space size with respect to motif or netveirk. A simple way of
generating a size-k subgraph is to start with a-8i£single edge) subgraph

93



Yusuf KAVURUCU

and extend it with one vertex each time. A seareb,tcalled as pattern
growth tree, can represent this process. In tl@e structure, each node
represents a subgraph and its children nodes mjresibgraphs that are
extended by the parent subgraph by one vertextheravords, the parent
subgraph is actually a subgraph of its childrengsajphs. There are several
benefits of this tree structure if it is generaj@perly. First of all the
pattern growth tree generated for size k-1 subgraph the previous
executions can be used for searching size-k subgrapich decreases the
computational cost. Secondly, each subgraph cageberated only once to
avoid redundant computation. Finally, downward ctes property of
frequency can be used to prune some parts of@kddr efficiency.

Another problem is the exponential computationaletiwith respect
to enumeration of all occurrences of a size-k saigron the input network
for large k values. One method to handle this mnobls processing only
random sample subgraphs in the input network wsimgia probabilistic
approach. This method is called as sampling styaaeg used by a couple
of algorithms in the literature. Two versions ofrgding method, namely
edge sampling and node sampling, are used in thmilgoo network
discovery systems.

4. INDEXING ON BIOLOGICAL NETWORKS

Biological networks hold the information on how lexules work
collectively to perform key functions. Because luk} extracting knowledge
from biological networks has been an important gmalcomputational
biology. One way to do this is their comparativealgsis that aims to
identify the similarities between them by aligningem. However,
alignment of biological networks is a computatidypahallenging problem.
Existing methods often map the global and localwoet alignment
problems to graph and subgraph isomorphism prohlezspectively. These
two problems however have no known polynomial tisodutions. In the
literature, two approaches exist to tackle thisbjgm. First one either
ensures optimality or at least a user suppliedidente in the optimality
[20, 21]. The second one encompasses the heuwajghimaches that do not
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provide any optimality guarantees [22, 23]. Bothtleése approaches are
computation intensive, and thus, they require anisgg@nt amount of
running time and memory space.

Given a database that contains a large set obdpzd!l networks, a
similarity query returns all database networks theate a higher alignment
score with the query network compared to a usecipé similarity
threshold. Rapid growth in the size of biologicatwork databases coupled
with the costly network alignment necessitates ceffit methods for
accessing and querying these databases. Exhaystivghing each query
network with all the networks in a large database by one is neither
practical nor feasible. Therefore, alternative teghes that reduce the
number of network alignments are direly in needthils context, database
indexing has been successfully used for similagiiyeries on traditional
databases, such as relational, multi-dimensionainoe series databases.
Biological network databases have inherent propeittiat distinguish them
from such traditional databases.

4.1. Feature Based Indexing

Several indexing methods exist for similarity sha&s in graph
databases. Majority of these methods can be deds#s feature based
indexing methods. These methods start by pickiregifip features of the
networks for filtering purposes. Then, they pickresponding features from
the query network and match them with the featules exist in the
networks of the database. They prune database rkstwibat have low
similarity value according to those matching. Hwalthey do exact
matching for the remaining database networks viighquery network.

Due to noisy and incomplete characteristics ofdgical networks,
approximate matching has become much more usednl ¢éxact matching
for querying them. Substructure Index-based Appnate Graph
Alignment (SAGA) [24] is a recent study that applepproximate matching
on these networks. SAGA uses fragments of databetseorks as features
and tries to combine them together to find largatanes.
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The aim of SAGA method is to find subgraphs in gheph database
that are similar to the query graph. Here, sintjarallows vertex
mismatches, vertex gaps (insertion and deletionj graph structural
differences. Vertex mismatches corresponds to teudices representing
different entities but having similar functionadis. Vertex gaps represent
the vertices in one graph that cannot be matchethyovertex in the other
graph. Graph structural differences allow for difeces in vertex
connectivity relationships. Each vertex in a grdmas both a label and a
unique id in SAGA. This unique id is used to essibh total order among
the vertices. SAGA applies approximate matchinglescribing similarity
between two graphs.

The main idea behind SAGA is to generate an indexnely
Fragmentindex on small structures of the databamseghg and then used it
for matching fragments of the query graph with fih@gments in the
database graphs. After that, those matching fratsnare used for larger
matching. Given a query graph, SAGA enumeratesfitagments in the
query in a similar way to database graphs. It ppdbragmentindex for each
guery fragment. Then, it filters out unmatched meatries. At the end of
filtering step, SAGA produces a set of small fragints. In the following
step, SAGA assembles those smaller hits into biggatches. Finally, it
examines each candidate match and produces arestl ohatches.

There exists also some other feature based ingég@hniques in the
literature. GraphGrep chooses paths as index fed@f]. glndex uses
frequent subgraphs for the same purpose [26]. Batthods apply exact
subgraph matching which have limited usage on gio&d networks. Grafil
[27] extends gIindex to support approximate matching modeling
similarity on biological networks.

4.2. Tree Based Indexing

Tree based indexing arranges the database nethregchically at
different nodes in a tree. Thus, each node ofaitr@ summary of a subset

96



Network Motifs and Indexing Techniques on Biologitetworks

of the database networks. For a given query netwibkk methods in this
category align the query network to each nodeistaftom the root node.
Then, they progressively move down through the arefilter out branches
(i.e., subsets of networks) in the process.

One of the popular methods for graph indexing les@e-Tree
(CTree) [28]. Tree supports both subgraph and amtyl queries. It
organizes the networks in the database using aed-{namely C-tree)
structure. Each leaf node represents a databaserkeEach internal node
(called as graph closure) has structural infornmaéibout its descendants in
order to facilitate effective pruning. The internabdes are actually
hypothetical networks that are obtained by alignittie networks
corresponding to their children nodes. An intergsfproperty of the C-tree
is the following: The score of the alignment of aquery network with an
internal node is at least as much as that withaé mede rooted at that
internal node. Following from this, given a questwork, CTree algorithm
starts aligning query to the root node. It thercpdes to the children nodes.
It prunes an entire subtree rooted at an interodénif the alignment to that
internal node has a score less than the givenfcutof

CTree supports both subgraph and similarity qseri€Tree
processes a subgraph query in two steps. In teediep, it traverses the
C-tree and prunes nodes according to pseudo subgsamorphism and
returns a candidate answer set. In the secondistgpplies exact subgraph
isomorphism on each candidate answer and retuenfanidd answer set.

As exact similarity computing is expensive, CTreemputes
approximate graph similarity (or distance) usingearistic graph mapping
method. For this purpose, CTree contains a heuristethod, namely
Neighbor Biased Mapping (NBM), in which the neighb®f a mapped
vertex pair have higher chances to be mapped inethh@ining iterations of
the mapping process. CTree supports K-NN (K Nealsghbor) and
range queries by using a priority queue that sttivesodes of C-tree.
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There exist few algorithms that apply tree basetexing on graph
databases. Berretti et. al. applied metric treesttiibuted relational graph
(ARG) databases for content-based image retrie®l ARGs are clustered
hierarchically according to their mutual distaneesl indexed by M-trees
[30]. Queries are processed in a top-down mannerohying the query
along the index tree where each node refers taustesl It uses triangular
inequality to prune the unnecessary nodes. In réee ¢onstruction and at
query time, the graph matching problem was solwedrbextension of the
A* algorithm that uses a lookahead strategy andopping threshold.
Recently, this technique is used to model graphregresentations of
foreground and background scenes in videos [31¢. fElsulting graphs are
clustered using the edit-distance metric, and amiyl queries are answered
using a multi-level index structure.

4.3. Reference Based Indexing

Reference based indexing summarizes the dataleaseriks using a
small set of networks called references. The methodhis category align
all database networks with all the references peprocessing step. Given
a query network, instead of aligning it with thetatmse networks, they
align it with the references. Using these and premtted alignments they
filter a substantial subset of the database.

A recent indexing method for answering similarigqueries on
biological networks is Reference-based Indexing Buwlogical Network
Queries (RINQ) [32]. RINQ uses a small set of neksoas reference
networks. Then, it aligns them with the databadeiosks and stores all the
alignment mappings and scores offline. After tlitaaligns the given query
network only with the reference networks. FinalBgcording to these
alignment scores, it computes a lower and an uppend for the similarity
value between query network and each database met®yg using these
lower and upper bound values, RINQ prunes sombedtlatabase networks
directly, selects some of the database networkspast of result set without
extra computation, and, applies exact matchingHerremaining database
networks.
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RINQ has two major steps, namely index creatiohigtv is done
offline once) and query processing. The index cvaattep has two phases.
In the first phase, RINQ creates a large set oflickate references from the
database networks. Then, it selects a subset &¢ ttendidates as the actual
reference networks according to their performarmes a set of training
queries.

The success of RINQ depends on the selection tdremce
networks. The candidate reference set in RINQ hasailowing properties:

* Each reference network has a small number dices so that the
query network aligns with the reference networkcily. For this purpose,
RINQ sets the size of each reference network asittee of largest query
allowed.

* At least one reference network aligns well wiiny database
network to find tight lower and upper bounds foly ajuery network that
aligns well with that reference network.

* Each reference network differs from the resngigantly to avoid
redundant calculation in the further steps.

In the candidate reference set generation steplQRfandomly
selects a database network. Then, it randomly tsedecertex and extends it
until it generates a subgraph having desired numobeertices. After that, it
aligns that subgraph with the already generateddidate reference
networks. If it is not similar to any of the candid references, RINQ puts
that subgraph into candidate reference network Aetr this step, RINQ
selects a subset of the candidate reference sbeasctual reference set by
using a set of training queries. RINQ selects daefarence set according
to alignment scores with respect to training querié uses at most 100
networks in the actual reference set. It storesalilghment and score for
each alignment between the query network and amtéelence networks.
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RINQ calculates an exact lower bound and an apmate upper
bound value for the similarity between the queryywaoek and each database
network using reference networks. Computing upperlawer bounds take
much less time than aligning the query network \ilid database networks.
In the final step, if the upper bound value foraathase network is lower
than the cutoff value, it is filtered (cannot betle result set). If the lower
bound value is greater than the cutoff value, difsctly put into result set.
If the lower bound value is lower and upper boumdlg is greater than
cutoff value, RINQ applies the costly network ahgent algorithm for that
database network.

5. SUMMARY

Recent developments in technology have led teelargount of real
network generation in various fields of life. Susygins that occur in these
networks with significantly higher frequency thanose in randomized
networks are called Network Motifs. Such subgraptesthe basic building
structures of these networks. It is essential teaekinformation from these
complex and large networks by discovering netwodtifs in them. By this
way, we can reveal the hidden knowledge behind haige complex
datasets in knowledge-based systems. The frequehey subgraph in a
large graph shows a possibility of being a netwmidtif. But, it has to be
analyzed further to determine whether it has atfanal role for that large
graph. In this context, additional significance oepts are defined to
determine whether a subgraph is a motif or not.

One way to find similarities efficiently for fadiscovery of network
motifs is to create index structures for similargyeries. There are three
different approaches to indexing biological netwadktabases in the
literature. In the first approach, feature basedexing extracts sets of
predefined features from all database networkssTthe methods in this
category summarize the database networks with tfesteires. Given a
query network, they extract same or similar featdog that query network.
They compare those features of the query with dlag¢ufe set of the entire
database. Using this comparison, they alter somthefnetworks in the
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database quickly. The second approach, tree baskeding, arranges the
database networks hierarchically at different nomes tree. Thus, each
node of a tree is a summary of a subset of thebdatanetworks. For a
given query network, the methods in this categaayt @ligning the query
network to each node starting from the root nodeenl they progressively
move down through the tree and alter out branches, (subsets of
networks) in the process. The third approach, esigg based indexing,
summarizes the database networks using a smalbfseetworks called

references. The methods in this category aligdatthbase networks with all
the references as a preprocessing step. Given rg gaeevork, instead of
aligning it with the database networks, they aligmith the references.
Using these and precomputed alignments they alseibatantial portion of
the database. Finally, we conclude our analysishimwing a comparison
between the three approaches.
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