
Journal of Naval Science and Engineering
2014, Vol.10, No.1, pp.13-31

13

MULTI META-HEURISTICS FOR SIMULATION OPTIMISATION

Serdar BOZOĞLAN 1
Murat M.GÜNAL 2

1,2Industrial Engineering Department,

Turkish Naval Academy, Naval Sciences and Engineering Institute, Tuzla, Istanbul
1 zserdarb@hotmail.com, 2mgunal@dho.edu.tr

Abstract

 Optimisation with simulation is a happy marriage of two Operations Research
methods. In the last decade, the research in this field has accelerated and many researchers
have been interested in Simulation Optimization (SO). New techniques have been developed
as a result of this interest. Almost all commercial simulation software contains an
optimization module. Generally, these modules exploit meta-heuristic methods; however,
they do not allow the analyst to choose the method. The performance of meta-heuristic
methods may depend on the problem type and therefore the choice of method is crucial. In
this paper, we aim to fill this gap and presented an open-source java-based simulation-
optimization code library. The library includes three heuristic methods; genetic algorithm,
tabu search, simulated annealing, as well as three enumeration based methods; partial and
complete enumeration, and a new neighbourhood-based heuristic method. At the simulation
side, Simkit, an event-based and open-source simulation library, is used. At the application
side, we defined a fictional optimisation problem and used it to compare performances of
the algorithms. Our results demonstrated the potential benefits of having multi meta-
heuristics available in SO.

BENZETİMLE EN İYİLEME İÇİN ÇOKLU META-SEZG İSELLER

Özetçe

Benzetim ile eniyileme iki yöneylem araştırması yönteminin mutlu bir evliliğidir.
Son on yılda bu alandaki araştırmalar ivme kazanmış ve birçok araştırmacı Benzetimle
Eniyileme (BE) alanına ilgi göstermiştir. Bu ilginin sonucu olarak yeni yöntemler de
geliştirilmi ştir. Hemen hemen bütün ticari benzetim yazılımları bir çeşit BE modülü
içermektedir. Genel olarak bu modüller meta-sezgisel yöntemleri kullanmaktadır ancak
analizcinin yöntem seçimine izin vermemektedir. Meta sezgisel yöntemlerin problem tipine
bağlı olarak performansları değişebilir ve bu nedenle de yöntem seçimi önemlidir. Bu
makalede bu açığı doldurmayı hedefliyoruz ve açık kaynak kodlu Java tabanlı bir BE kod
kütüphanesi sunuyoruz. Kütüphane üç meta sezgisel; Genetik algoritma, yasaklı arama,
simulated annealing, ve üç sıralı aramalı algoritma; parçalı ve tam sıralı aramalı, ve yeni
bir komşuluk tabanlı sezgisel yöntemi içermektedir. Benzetim tarafında ise açık kaynak
kodlu ve olay tabanlı bir kütüphane olan Simkit kullanılmıştır. Uygulama olarak hayali bir

Serdar BOZOĞLAN, Murat M. GÜNAL

 14

eniyileme problemi tanımlanmış ve algoritmalar karşılaştırılmıştır. Çalışmanın sonuçları
BE’de çoklu meta sezgisellere sahip olmanın potansiyel faydalarını göstermiştir.

Keywords: Simulation Optimization, heuristics, genetic algorithm, tabu search.
Anahtar Kelimeler: Benzetim, Eniyileme, Sezgisel yöntemler, yasaklı arama, genetic
algoritma.

1. INTRODUCTION

In most of today’s simulation software in the market, optimization

modules are included in one way or another. Some includes third party
optimization bundles, and some includes embedded algorithms to optimize
the parameter values of a simulation model. Particularly, when a solution to
a problem is analytically not tractable, simulation can be used as a tool to
model the problem in hand. In Simulation Optimization (SO), there is a
simulation model which is repeatedly run to explore how the outputs change
by different input values. As in traditional optimization problems, there is an
objective function and constraints, and the aim is to find the best input
values which maximizes (or minimizes) the objective function value by
satisfying the constraints.

There are six commonly used methods in SO (Fu et al (2005)). The

first one is “ranking and selection” method. In this method, a list of
available solutions and their Objective Function Value (OFV)s are created
and the best is chosen (the minimum or the maximum). This method is
useful when there is a fix set of alternative solutions. It is important to note
that “an available solution” means a set of input values of the simulation
model, and an OFV means an output value of the simulation model.

Second method is the Response Surface Methodology (RSM). Its

origins are in statistical design of experiments and eventually its task is to
seek for the relationship between the inputs (factors) and outputs (response)
of the model. After examining the relationship, a meta-model is built and
then deterministic optimization methods are applied to find an optimum
solution. The third method is gradient based procedure which eventually
mimics the methodology in RSM. This method looks for the movements in

Multi Meta-Heuristics For Simulation Optimization

 15

gradient directions where the changes are significant in the output. It
requires differential equations calculations since the gradients are the
changes in the slope in response curves. However this method is known to
be better performed when the inputs are continuous variables. The fourth
method is random search and works as in the gradient search. Although the
search is random, the method proceeds systematically and iteratively where
a neighborhood structure is involved. This method can be applied in model
with both discrete and continuous input variables. The neighborhood is
significant since a candidate solution may not be feasible. The fifth method
in SO is Sample Path Optimization. The method is based on deterministic
optimization methods (e.g. linear programming) on estimates of n
simulation replications. And finally, the sixth method is the use of Meta-
heuristics. Meta-heuristics are search strategies in solution space in order
not to trap to local optimums. It is perhaps the most popular SO method in
today’s SO community.

In this paper, we explore feasibility of use of multiple meta-

heuristics in SO. The motivation of our research comes from the literature
review presented in the following section. Our review revealed that most
simulation software in the market use meta-heuristic search methods for SO,
however, in these software, interestingly, only one or two meta-heuristics
are embedded and the user is not free to choose the search method. The
choice of method is left to the software. These two issues observed in
simulation software are the driving forces of our work. What benefits can be
gained by having multiple heuristics available to the user and the freedom of
selecting one of these methods is explored.

This work is intended as a proof of concept in SO. The concept is to

let users to choose a method from multiple meta-heuristics available. To
demonstrate the concept in reality, a software library (HePSi (Heuristics
Package for Simulations)) which is developed by the authors is presented.
We used the library in an imaginary test problem that we inspired from a
well-known optimization problem, Travelling Salesman Problem (TSP)
applied in maritime transportation.

Serdar BOZOĞLAN, Murat M. GÜNAL

 16

2. BACKGROUND LITERATURE

The literature in this area does not date back to 1990s, since the two
merging topics grown on their own for many years. Later in 80s, simulation
and optimization have been seen together. A good starting point is the
literature reviews such as Law and McComas (2000), Sabuncuoglu and
Tekin (2004), and Fu et al (2005). Additionally, there has been progress in
SO methodology, for example, Hong and Nelson (2006, 2007) introduce a
new methodology for optimization via simulation. Their method is based on
stochastic search formed by integer decision variables and guarantees to
converge locally to an optimum. In the application side, SO is applied in
many domains such as inventory systems (Alferaei and Diabat, 2009),
project management (April et al 2004), and supply chains (Zhao and Sen,
2006). Willis and Jones (2008) use heuristics for multi objective SO. Their
framework combines a simulation model with a non-exhaustive heuristic
search algorithm with an embedded multi-objective optimization technique.

Heuristic search methods are popular due to their advantages over

the other SO methods. Firstly, the simple black-box approach fits in
heuristic methods; that is meta-heuristics optimizer generates a candidate
solution and this candidate solution is supplied to a simulation model to
obtain an OFV. The simulation model produces an output, based on the
inputs generated by the meta-heuristics optimizer and the optimizer then
generates a new input set and so on. This cycle goes on until a good solution
is obtained. The generated solution must be a feasible solution. Secondly,
the iterative nature of this approach is relatively simple to implement since
the model and the optimizer work independently. Once a model is built,
iteratively experimentation is conducted with it. Meta-heuristics methods
such as Simulated Annealing (Willis and Jones 2008, Alferaei and Diabat
2009), Tabu Search (Dengiz and Alabas 2000), Genetic Algorithm (Homai-
far et al 1994) and Neural Networks are among the popular methods.

There are views on the practice of SO, for example Fu (2002)

indicates that the research on SO is disconnected in academia and in
practice since there are, he argues, differences between both parties’

Multi Meta-Heuristics For Simulation Optimization

 17

expectations. The academia searches the ways of “better convergence” to
optimum, and the industry looks for the ways of practicalities of these
methods. He also argues that commercial simulation optimization software
has been successful because, firstly, there is market for them and they are
sold with simulation modeling software. Secondly, these products handle
complex problems and produce “good” results in a timely manner. This
actually echoes Law (2007)’s views where a list of optimization modules in
commercial simulation software is supplied (p. 660, Table 12.19). The list
includes most commonly used simulation products and the optimization
software supplied with them, e.g. AutoStat, OptQuest, OPTIMIZ,
SimRunner, and WITNESS Optimizer, and the algorithms and search
strategies embedded in these software, e.g. evolution strategies, scatter
search, tabu search, neural networks, genetic algorithms, simulated
annealing etc. This survey reveals that in commercial software, heuristic
search methods are most popular. Another point it reveals is that one or two
(or exceptionally in OptQuest; Tabu Search, Neural Networks, and Scatter
Search are combined into a single search heuristic) meth-ods are
implemented in these software. Additionally, the software automatically
chooses the method and the users are not allowed to select a method

3. CONCEPTUAL REPRESENTATION OF HEPSI

HePSi (Heuristics Package for Simulations) is a meta-heuristics code

library written in Java for SO. The package consists of Genetic, Simulated
Annealing and Tabu Search meta-heuristics, partial and complete
enumeration algorithms, and a new and improved heuristic of
neighborhood-based partial enumeration algorithm (Figure 1).

Since the scope of HePSi is not to create full generic software, there

are limitations:

• HePSi is designed for discrete-event simulations (DES) built
in Simkit (Buss, 2010), a Java based DES software library.

• It works independent from the simulation model. A model
only interacts with the package through input variables.

Serdar BOZOĞLAN, Murat M. GÜNAL

 18

• Discrete decision variables are allowed; that is a solution in
the optimization problem can only have integer values, and
bounds of these variables can only be integers (e.g. the cities
visited in a TSP route, the number of machines in a job shop,
the number of nurses in a staff roster).

Although these limitations exist, HePSi is intended to be a generic

package. It can fit in any optimization problem that can be solved using the
meta-heuristic algorithms mentioned above with minor modifications in the
package. It is specifically designed to run independently with a simulation
model. An executable class links the two, HePSi and the simulation model,
and act as a communicator between them. Parameters of the meta-heuristics
algorithms and the inputs of simulation model are entered in the execution
class. In the following sections, specifics of the modules in HePSi are
presented.

Partial Enumeration (PE)

This is the simplest and primitive part of HePSi. This class is
especially needed when the solution space is extremely large and scanning
the whole solution space requires too much time. Note that reducing the
number of variables also reduce the size of the solution space (Law, 2007)
which significantly improves the performance. The search is conducted
randomly in PE. It starts from a random solution and travels randomly in the
solution space while checking the feasibility of the solution. It never
guarantees any optimal solution, but gives an indication of the space. It
helps the user to evaluate how decision variables affect the objective
function value. There is one parameter of this algorithm; the proportion of
the search space, e.g 10% of all possible and feasible solutions, that is to be
evaluated. Obviously, this module does not guarantee an optimum, but is
useful if the search space is large. PE can be used in factorial design
experimentation.

Multi Meta-Heuristics For Simulation Optimization

 19

Figure 1. Conceptual Representation of HePSi.

Neighborhood-Based Partial Enumeration (NBPE)

 This method is similar to PE. The search is done randomly but more
systematically. First a number of points in the search space is entered and
the algorithm proceeds with local searches in these points.

Complete Enumeration (CE)

 The efficiency of this module depends on the size of the solution
space, since in this module the whole solution space is scanned. CE
guarantees the optimum solution. However, searching the whole solution
space requires too much run time, and is in fact impossible when the size of
the problem is large. Even the problem size is reasonable, this module can
be beaten by the other algorithms. However since it guarantees the optimum
solution, it can be used for benchmarking (e.g. simulated annealing finds a

Serdar BOZOĞLAN, Murat M. GÜNAL

 20

near optimum solution in x seconds, and CE finds the optimum in x + or - y
seconds).

Genetic Algorithm (GA)

 GA is very popular as an optimization technique due to its
generality. Its concepts are influenced from evolution theory. It searches the
solution space iteratively and best solutions are evolved and others are
discarded.

 In HePSi’s GA module, GA parameters are chosen by the user
before the simulation model runs. These parameters are population size,
crossover and mutation rates, the policy to select the crossover point, and
the policy to select the mutation point. The GA operations may need some
adaptations to the problem domain. HePSi’s GA module is designed to
allow these adaptations. Consider a TSP where a complete tour is a solution.
This means that a city is not to be revisited. In GA’s crossover terms, two
solutions may have the same sequence of cities in which the crossover
operation may result in solutions with revisited cities. The mutation
operation has also similar attributes, e.g. a city to mutate violates the rule of
unvisited city. In the GA module, this kind of problem specific constraints
can be coded.

Simulated Annealing (SA)

 This heuristic algorithm is based on physical activity of annealing of
metals. The algorithm in-spires the atomic structure of solid objects such as
metals. Metals get their forms perfectly while they are cooling or loosing
temperature. This process continues until the metal crystallizes completely.
This algorithm also works iteratively. There are two notions in SA; the
neighborhood of solutions, and the temperature. SA algorithm depends on
one of the random neighbors of current solution in an iteration.

 As in the GA module, the parameters of SA algorithm (the
probability of accepting a “bad” solution) is entered before the simulation

Multi Meta-Heuristics For Simulation Optimization

 21

run. There are problem domain specifics in SA, such as the definition of the
neighborhood. These specifics can be amended in the code to fit SA to the
problem.

Tabu Search (TS)

 This method explores solution space beyond local optimality. Local
search is based on exploring neighborhood of any given candidate solution.
The best solution in a neighborhood is chosen even if it causes deterioration,
worse than the current candidate solution. This strategy enables to avoid
trapping in local optima. The algorithm memorizes old candidate solutions
and does not al-low progress in old candidate solutions’ direction for a
while. That means algorithm imposes a tabu. When a neighbor of a
candidate solution is chosen as a current solution, the change is considered
as tabu. While a defined iteration size, this change is not considered as
swap, except this change enables being the best solution ever. Tabu list is
composed of recently chosen candidate solutions. It prohibits choosing
better solutions as current solution to avoid local optima.

 TS algorithm is implemented in HePSi where its parameters are
entered in the execution module. As in the other algorithms, the user can
adopt domain specific features in the source code.

 4. A TEST CASE FOR HEPSI

Problem definition

We used a well-known optimization problem to test HepSi. There is
an imaginary company which desires to define the best route for its one
container ship to maximize its profit. This test problem is a combination of
“Travelling Salesman Problem (TSP)” and the knapsack problem. We
assume that there are several ports that are to be visited once in a tour. An
example tour map can be seen in Figure 2.

Serdar BOZOĞLAN, Murat M. GÜNAL

 22

The company declares direct transportation charges of one unit
cargo. The direct transportation charge matrix is diagonally symmetric and
is a user input. These tables show the charge of transportation of one unit
cargo directly from one port to another. However in the ship’s route a port
can be visited after visiting some other ports and therefore the charge may
vary depending on the ports visited previously. The rationale is that when
the ship takes a cargo directly to any port, delivery occurs in shorter time
however when the ship takes a cargo indirectly, the cargo owner must wait
longer for its cargo. Therefore cargo fees depend on the distance and the
number of ports visited. Ship owner company tries not to lose any customer
and therefore decreases transportation fees for the late delivery when the
ship goes indirectly to any port. We call this “corrected charge” of
transportation

Fig. 2. A sample tour map.

The demand for transportation is stochastic which makes this

problem appealing for a DES model. The number of containers that is to be
transferred to a port is determined from a stationary distribution. The ship
cannot know the quantity of next port’s cargo in advance. For example,
when the ship is in port 4 and the route is [0,3,10,5,4,6,7,9,8,2,0], the ship is

Multi Meta-Heuristics For Simulation Optimization

 23

incapable of knowing the cargos from port 6 to anywhere or from port 7 to
anywhere etc. We assume that the demand (number of containers) that
needs to be transferred to another port is normally distributed.

Three basic scenarios are determined. In the first scenario, there are

9 ports, in the second scenario the port number is increased to 12, and in the
last scenario, port size is extended to 15. In these scenarios, initial port is
always port 0. Additionally, each scenario is also categorized into two main
sub scenarios by altering the carriage capacity of the ship. The distances are
given in a matrix and measured in nautical miles. The details of each
scenario and assumption of the problems are given below.

The model

The model is implemented in Simkit (Buss, 2010). Simkit is a Java

based DES library which implements event-based modelling. Before writing
code in Simkit, the modeller builds an Event Graph (EG) of the system to be
modelled. Event graphing is a very efficient method for representing events
and their interactions in a system. An EG has two elements; nodes (events)
and edges (event transitions).

The EG of the system described in the previous section is simple and

includes two events; an arrival event and a departure event. When the ship
arrives to a port, it gets the cargo and related statistics are updated. An
arrival event also schedules a departure event to the travel time between
ports. The two events are executed iteratively until all ports are visited. Note
that the route is determined before the simulation run by the optimizer.

Problem Specifics in HePSi

As discussed earlier, HePSi is intended for generic use but some

customizations are necessary. For example in the problem defined above, a
feasible solution is represented by an array of integers which indicates port
numbers. In this array, though, every integer must exist only once since
every port is to be visited once.

Serdar BOZOĞLAN, Murat M. GÜNAL

 24

Adaptations in heuristic algorithms are also required. In GA module,

every time a crossover and mutation operation is executed, the new solution
(mutated or crossovered) must be checked for its feasibility. For example,
mutation by one port is not possible for feasibility and therefore
displacement mutation is appropriate (Michalewicz (1992)). In SA module,
definition of neighbourhood is important since this algorithm progresses
towards neighbours. A neighbour of a port in our problem is chosen as the
highest direct charge per distance port. If the first neighbour is already in the
solution set (the route) then second neighbour is included and so on.

Experimentation

We defined three main scenarios, each having two sub-scenarios, as

presented in Table 1. In main scenarios, we altered the number of ports that
the container ship visits. Sub-scenarios include the capacity of the ship.
Container quantities are measured in TEU (Twenty-foot Equivalent Unit)
which is a standard measure in maritime transportation. Partial Enumeration
(PE), Neighborhood-Based Heuristic (NBPE), Genetic Algorithm (GA),
Tabu Search (TS) and Simulated Annealing (SA) methods of HePSi are
applied to all scenarios. We conducted our experiments on a computer with
2 Gb RAM and 2.2 GHz Intel Core 2 Duo Processor.

Table 1. Configuration of scenarios

Scenario
No
(Main-
Sub)

Number of
ports
(incl.Port 0)

Cargo ship
capacity
(TEU)

1-1 9 400
1-2 9 4000
2-1 12 400
2-2 12 4000
3-1 15 400
3-2 15 4000

Multi Meta-Heuristics For Simulation Optimization

 25

Scenario 1

There 9 ports in this scenario and therefore the distance matrix and

direct charge matrix are 9 by 9. The demand, number of containers which
require transportation at ports, are distributed normally. The mean values of
number of cargos are user inputs and given as a matrix. Coefficient of
variation (cv) is 20 percent of mean value for each port. For instance, the
mean value of the cargo from port1 to port4 is 60. Thus, cv is 20% of mean
value of 60 TEU which is 12 TEU.

We evaluated that 60 replications are enough for estimating outputs

of scenario-1. In this scenario, approximately 50% of 40,320 solutions are
explored.

Scenario 2

This scenario includes 12 ports which increased the number of
feasible solutions to 39,916,800. As expected, the curse of dimensionality in
optimization problems affected the run time and the area to scan. In this
scenario, approximately 0.2% of whole solution space is explored and 70
replications are needed.

Scenario 3

This scenario includes 15 ports which caused the number of

solutions to increase to 87,178,291,200. Only 1/750,000 of whole solution
space is explored to find the optima. We evaluated that 85 replications are
enough for this scenario.

Results of the experiments are shown in Table 2. Note that this table

gives the best result of each experiment. For example for Scenario 1-1, the
best solution, that is the maximum Objective Function Value (OFV) of
$151,910, is found when Tabu Search (TS) algorithm is applied. However,
this table also shows that it took 5.8 minutes to achieve this solution and by
scanning 22% of the solution space. Since feasible solutions are generated

Serdar BOZOĞLAN, Murat M. GÜNAL

 26

based on a mechanism in that algorithm, it does not guarantee that the
solution is not generated before. A history is kept to check that solutions are
not fed to simulation model more than once.

 5. DISCUSSION AND CONCLUSIONS

Simulation optimization (SO) is an active research area both in

academia and in simulation software industry. Almost all commercial
simulation software has SO modules, and almost all of them use meta-
heuristic techniques for searching the optima. However, very few use
multiple heuristics and none, to the best of our knowledge, of these software
tools allow users to choose a method. Our work aims at contributing to the
discussion in this area and to evaluate the potential of having multiple meta-
heuristics. To achieve this objective, we developed a computer code library,
Heuristic Package for Simulations (HePSi), which implements well-known
meta-heuristic algorithms. HePSi is implemented in Java and can be used
attached to Simkit, a discrete event simulation (DES) library. The heuristics
and meta-heuristic methods included in HePSi are genetic algorithm, tabu
search, simulated annealing, neighborhood-based partial enumeration
heuristic, partial and complete enumeration.

To test our approach, we created an imaginary maritime

transportation problem where a shipping company wants to determine his
best profitable ship route. The demand for transportation in this problem is
stochastic. First, a simulation model of this imaginary system is built using
Simkit and an optimum route is sought using HePSi. As the objective of the
code library is to allow comparison, each heuristic method is applied to the
problem. This extensive experimentation yielded 6 tables, a brief of them is
given in Table 2. A table of this kind can help analyst to compare outputs of
different optimization methods and therefore give a great flexibility which is
not presented by other commercial SO software in the market.

The use of HePSi is independent from the modeling software. The

modeler builds a model and later HePSi is used to optimize the problem. At

Multi Meta-Heuristics For Simulation Optimization

 27

the model side, to demonstrate this approach, Simkit is used. Our preference
is due to its power in constructing event-based flexible simulation models.

In addition to meta-heuristics implemented in HePSi, we propose a

new heuristic, Neighbor-hood-Based Partial Enumaration (NBPE). The
analyst has some control on the randomness of the search on the solution
space by NBPE. This limited control distinguishes the algorithm partial
enumeration. To speed up the search for optimum, we propose history
structure for Genetic Algorithm, Tabu Search and Simulated Annealing.
This structure lessens the run time considerably especially when the same
solutions are generated. When a non-existing solution is produced, it is
pushed into the history with the objective function value. If the same
solution is reproduced, the simulation model is not run; the objective
function value is taken from the history. Therefore the computation cost of
the algorithms decreases considerably.

Experimentation for the test problem showed that parameter values

of the algorithms are determinant factors of the solutions. For example by
increasing the mutation rate in GA, or by increasing the temperature
coefficient value in SA, we can get better results in shorter time. Seeing this
kind of interactions in the experiments is a clear benefit of HePSi.

The parameter values in meta-heuristics affect the efficiency of the

algorithms significantly. In this study, parameter tuning is done manually.
That is after trying different values the best known parameter values are
chosen. Therefore choosing the right values for the algorithms is a limitation
of the study.

More applications are needed to justify the generality of the code

library. In this context, more problems are intended to be solved using
HePSi. This will increase the robustness as well as the generality.
Additionally, the future study may include a distributed version of HePSi
where a problem can be divided into sub-problems, or the methods in HePSi
can be distributed to different processors. This results in obtaining and

Serdar BOZOĞLAN, Murat M. GÜNAL

 28

comparing the results of the different algorithms in shorter time and
therefore more time can be dedicated to experimentation.

Multi Meta-Heuristics For Simulation Optimization

 29

Serdar BOZOĞLAN, Murat M. GÜNAL

 30

REFERENCES

[1] J. April, M. Better, F.Glover, P.J.Kelly (2004) New advances and
applications for marrying simulation and optimization. In Proceedings of the
Winter Simulation Conference, R .G. In-galls et al., Eds. IEEE, Piscataway,
NJ. 80–86.
[2] M.H.Alferaei, A.H.Diabat (2009) A Simulated Annealing Technique
for multi-objective simulation optimization. Applied mathematics and
computation.2009 215 pp 3029-3035
[3] F.Azadivar (1999) Simulation optimization methodologies.
Proceedings of the 1999 Winter Simulation Conference.
[4] A.H.Buss (2001) Basic Event Graph Modeling. Technical Notes,
Simulation News Europe, April 2001: 1-6.
[5] B.Dengiz, C. Alabas (2000) Simulation Optimization Using Tabu
Search. Proceedings of the 2000 Winter Simulation Conference. J. A.
Joines, R. R. Barton, K. Kang, and P. A. Fishwick, eds.
[6] M.C. Fu (2002) Optimization for simulation: Theory vs. practice.
INFORMS Journal on Computing 14:192-215.
[7] M.C. Fu, F.W. Glover, J.April (2005) Simulation Optimization: A
Review, New Develop-mens, and Applications. Proceedings of the 2005
Winter Simulation Conference. M. E. Kuhl, N. M. Steiger, F. B. Armstrong,
and J. A. Joines, eds.
[8] A.Homaifar, C. X. Qi, S.H. Lai (1994) Constrained optimization via
genetic algorithms. SIMULATION 62(4), 242–253.
[9] L. J. Hong, B.L. Nelson (2006) Discrete optimization via simulation
using COMPASS. Operations Research 54:115-129.
[10] L. J.Hong, B.L. Nelson (2007) A framework for locally convergent
random-search algorithms for discrete optimization via simulation. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 17(4), 19.
[11] A.Law, M.McComas (2000) Simulation-based optimization.
Proceedings of the 2000 Winter Simulation Conference.
[12] A.M.Law (2007) Simulation Modeling and Analysis, 4th ed.
McGraw-Hill, New York.
[13] Z.Michalewicz (1992) Genetic Algoritms + Data Structures =
Evolution Programs, Springer Verlag, Berlin Hiedelberg.

Multi Meta-Heuristics For Simulation Optimization

 31

[14] G. H.Neddermeijer, G.J. van Oortmarssen, N. Piersma, R. Dekker
(2000) A framework for response surface methodology for simulation
optimization. In WSC ’00: Proceedings of the 32nd conference on Winter
simulation, San Diego, CA, USA, pp. 129–136. Society for Computer
Simulation International.
[15] İ.Sabuncuoglu, E. Tekin (2004) Simulation Optimization: A
Comprehensive Review on Theory and Applications, IIE Transactions, Vol:
36, pp: 1067-1081, 2004.
[16] K.O.Willis, D.F. Jones (2008) Multi-objective simulation
optimization through search heuristics and relational database analysis.
Decision Support Systems 46 (2008) 277–286.
[17] L.Zhao, S. Sen (2006) A comparison of sample-path-based
simulation-optimization and stochastic decomposition for multi-location
transshipment problems, Proceedings of the 37th conference on Winter
simulation, December 03-06, 2006, Monterey, California.

