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Abstract

Numerical methods are commonly used in engineexingre the analytical results
are not reached or as a support of experimentadistl Various techniques are being used
as a numeritical method as finite difference, &niblume or finite elements, etc. In this
study, numerical solutions are obtained for a clacdfin of rectangular profile using finite
difference method, and the results are comparethid¢canalytical solutions. It is seen that
the analytical solution and numerical results aperfid to be compatible.

DIKDORTGEN KESITL1 BiR DAIRESEL KANATCI GIN
SONLU FARK MODEL i

Ozetce

Analitik ¢c6zimin mimkin olmgddurumlarda veya deneysel gahalara destek
olmak amaciyla sayisal yontemler mihendislikte yaydarak kullaniimaktadir. Sayisal
yontemler olarak sonlu farklar, sonlu hacim, sorleaman metodlar gibi g&li yontemler
kullaniimaktadir. Bu ¢cajmada sonlu fark yontemi kullanilarak dikddrtgenittiedairesel
bir kanatcik icin sayisal ¢6zim elde ediimie hesaplanan sonuclar analitik ¢éziimle
karsilastinimigtir. Analitik ve sayisal sonuclarin birbirleriyleldukca uyumlu olduklar
gOralmdstar.

Keywords Circular Fin, Numerical Methods, Finite Differeadviethod.
Anahtar Kelimeler: Dairesel Kanatc¢ik, Sayisal Yontemler, Sonlu Farkt¥ii.
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1. INTRODUCTION

Numerical analysis is the combination of mathensasicd computer
programming that creates and implements algoritHors solving the
problems of continuous mathematics. These problmoar throughout the
natural sciences, social sciences, engineering, taadother fields. The
growth in power and availability of digital comptgehas led to an
increasing use of numerical solution of the models science and
engineering.

Numerical methods are commonly used in engineewhgre the
analytical results are not reached, or as a supgoekperimental studies.
Various techniques are used to solve the toughapaditferential equations
which cannot be solved analytically. Most commoadusumerical method
for solving a partial differential equation is tfieite difference approach. In
this study, finite difference method is used to tpet numerical solution of
heat transfer inside a circular fin. The tempematdrstribution inside a
circular fin is governed by the general heat cotidacequation. This
equation is a three dimensional equation that lodis & source term and a
transient component. But a fin can be assumed wtehdhe base
temperature, ambient fluid temperature and combowmection-radiation
heat transfer coefficient are constant. Therefarene dimensional steady
simplified conduction equation is used with no hemairce.

2. FINITE DIFFERENCE METHOD

Finite-difference methods are numerical methods $&miving
differential equations by approximating them witffedence equations. The
derivatives are approximated by finite differences, finite difference
methods are discretization methods. Today, theskads are the most used
approach in numerical solutions of partial diffar@hequations [1]. The
finite difference approach is based upon convertihg differential
equations to finite difference equations using henerical expressions of
the derivatives.
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The error in an approximation is defined as théet#ihce between
the approximation and the exact analytical solutibhe two sources of
error in finite difference methods are round-offoerand the discretization
error. The round-off error is the loss of precision doeomputer rounding
of decimal quantities, where the discretizationoeris the difference
between the exact solution of the finite differerepuation and the exact
quantity assuming perfect arithmetic.

The finite difference formulas for the first andcerd derivatives
can be obtained from Taylor series expansion.
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Figure 1 The function y=f(x)

The Taylor Series Expansion for the poipt and x; from the Figure 1:

fX) = F(x)#RE(x)+ S hEE () + S F () 1)

f(x)= f(x)—h-f'(x)+%h2-f"(x)—%hs.f“'(x)+_.. 2)

if the first derivatives atjare expressed from the equations above:
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I — f(Xi+1)_f(Xi)_1 1 _1 2 gm
f(&)_# S (x) 3 (x)+... 3)
or
f'(x)=w+o(h) (4)
and the second expression can be defined as:

I _f(xi)_f(xi—l) 1 0 _1 2
f(xi)—f+5h.f (x) Fa (x)+... (5)
or
fl(xl): f()(l)_hf()(l—l)+o(h) (6)

The o(h) term on the right hand side is the truncation rerfiche finite
difference equations for the first derivative amdlexd forward difference
expression with error of ordér

F(x)= M )
and backward difference expression with error deoih:

fl(&):w (8)

If equation 2 is subtracted from equation 1, arelfitst derivative is
derived from the result, the central differenceagtoun for the first
derivative with error order df*

f I(Xi): f(X1+1)2_hf (Xi—l) (9)
is obtained.
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If the equations 1 and 2 are added together, thensederivative finite
difference equation can be written as:

()= Oa)* f(;ﬁz-l)—zf(&) (10)

with error order of’.

The error order of h means if you decrease h t, tia error also be
expected to decrease to half. But if the erraréer of 1, it means that if
you decrease the h to half, the error is expeaedetrease to 17Himes.
Therefore, to use the expressions with error ofhhayder should be
preffered. But such expressions may be more coatplicand they can
increase the calculation time. The finite diffeserexpressions with error
order oh, h, fi h* can be found in the literature. In this studyhéis been
avoided using the finite difference expressionshwarror order of h,
because it is needed much larger grid points toedse the truncation error
into the acceptable limits. Thus, the first orderwfard and backward
difference expressions with error order &f h

f'(Xi)= - f()(i+2)+4;£])(i+l)_3f(xi) (11)
fl(Xi):3f(xi)—4fg;;_l)+ f(x_,) (12)

has been preferred to the equations 7 and 8 [2].
To use a finite difference method to find a solatio a problem, at first the

problem's domain must be discretized. This is Wgukine by dividing the
domain into a uniform grid (Fig.2).
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1 OWrR SIDE

Figure 2 The discretized problem domain

The grid may be 1, 2 or 3 dimensional with resgecthe nature of the
problem. A 2-dimensional grid is used in this stumbcause temperature

change with respect tg axis,g—T is zero.
@

3. GEOMETRY

In thermal engineering, circular fins are widelyed€o enhance the
heat transfer from the surfaces. Adding a circiitato an object increases
the amount of surface area in contact with theosumding fluid, which
increases the convective and radiative heat trah&fisveen the object and
surrounding fluid and the surfaces. The radiatieathransfer usually can be
neglected if the convection is forced convectioec@ise the surface area
increases as length from the object increasesicalar fin transfers more
heat than a similar pin fin at any given lengthicGlar fins are often used to
increase the heat transfer in liquid—gas heat exgdrasystems. A schematic
diagram for a circular fin of rectangular profikegiven in Figure 3 [3]:
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Figure 3 Schemetic Diagram of a Circular Fin wistangular profile

4. GOVERNING EQUATION

The general heat conduction equation in a mediumbeaexpressed
in rectangular, cylindrical and spherical coordmaystems. Cylindrical
coordinates conduction equation is used in thidystince the problem is 2-
dimensional if this coordinate system is chosemed¢tangular or Cartesian
coordinate system is would be chosen, the problemidvbe 3-dimensional
ant it would be much more complicated to solveptablem.

The general heat conduction equation in cylindrimabrdinates is
given as:

li(kra_-rj+izi ka_T +£[ka_Tj+egen:Ia';a_T (13)
ror or r<og\ de@) 0z\ 0z ot

wherek is thermal conductivityp is densityc is specific heat, ané,,, is
the heat generated in a unit volume.
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The base temperature, ambient fluid temperatuee¢ctimbined convection-
radiation coefficient, and thermal conductivity tfe fin material are
assumed as constant. The problem is a steady, @@ is no heat

generation inside the fin. Under these assumptithesgoverning equation
becomes:

10T 0°T 07T
e+ 4+ = 14
ror or® 0z° (14)

For the governing equation, the central differeexgressions can be written
as:

a_T:THl,j _Ti—l,j (15)
or 2.Ar
0°T :Ti+1,j +Ti—:Lj _2Ti,j (16)
or? (ar )

2 T ..,+T ., —2T .
aT~ i,j+1 i,j-1 i,] (17)

0z (az)?

Using these finite difference equations, for théernal grid points, the
governing equation (14) is discretized as:

T T
T L1 +T N P L FE
_ 2r Ar At 2t ) Az Az

4+
Ar Az
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Boundary Conditions

At the base of the fine, the temperature is comstand it the base
temperature. So, the boundary condition for the lists

T, =T, (19)

as seen in Figure 4.
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Figure 4 The boundary condition for the base offitne

For the upper side, the heat conducted from theedonodes should be
equal to the convection to outside

oT _ po
- kE =hT-T,) (20)

as seen in Figure 5, whefg is the ambient fluid temperature.
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UPPER SIDE ﬁqmv

i,j-2
Figure 5 The boundary condition for the upper sitithe fin

As this equation is dicretized by equation 11, tmundary condition
becomes:

- Ko e et
T = 2.0N7 JAVA (21)
) 3 K
he o X
2 Az

For the lower side, the heat conducted from thpeumodes should be
equal to the convection to outside:

oT _\fr
- ka =h(T-T,) (22)

as seen in Figure 6.
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Figure 6 The boundary condition for the lower safi¢he fin

As this equation is dicretized by equation 12, timundary condition
becomes:

- K Ti,j+2 +27k-|-i,j+l+hToo
T = 207 Az (23)
R 3 k
h+o
2Nz

For the tip of the fin, the heat conducted from timeer nodes should be
equal to the convection to outside:

oT _ 4
—kBF—hﬁ T.) (24)

as seen in Figure 7.
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Figure 7 The boundary condition for the tip of fime

As this equation is dicretized by equation 12, timundary condition
becomes:

- 22 Ti—2,j +2kTi—1,j +hT,
T, == (25)
h+ ——
2 Ar
5. STUDY

A Matlab code has been written to calculate theperature
distribution inside the fin. Gauss-Seidel iteratimeethod was used for
iteration with an overrelaxation parameter, w, kw1 and 2 to speed up
convergence:

T =WTG jrew t @- W)T(i, )old (26)

After finding the temperature distribution, the héwnsferred to
ambient air from the fin has been calculated fromequation:
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. dT
Qi = _kAE (27)

base

since the heat transferred to ambient fluid is edaathe heat that is
conducted from the base of the fin.

The fin efficiency is defined as:

inn
inn max

Min = (28)

where Q,_ nax IS the heat transfer from a perfect fin with aninité

thermal conductivity, which has a surface tempeeateual to the base
temperature. Sy, . iS defined as:

inn max = h'Afin (Tbase_Tw) (29)

Heat transfer from the fin was calculated numelycahd compared to
the analytical solution exist in the literature. eThAnalytical solution of
efficiency is given as:

Kl(mrl) I 1(mr2c) -1 1(ml’1) Kl(erC)

Nw =C (30)
" o (mR)K, (M) + Ko (M), (mi,)
3 _2r/m -
where m=,/2ykt, C,=—*—, and |,,l,,K,,K,; are modified
2 1

Bessel functions of the first and second kind.
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6. RESULTS

The temperature distribution inside the fin was cchlited
numerically for 3 casesr,./r, =2, r,./r, =3, and r,./r, =4. The heat

transfer from the fin was calculated numericallgnir the Eq.27, and fin
efficiency was calculated from Eq.28, for differehtvalues,

i D)
£=18 {k%j (31)

where L is corrected lengthl., =L+t /and A, =Lt.

The results are given in Figure 8. The square, dimmand triangle
values are the numerical results while the contisusolid lines are
analytical values from Equation 30. There is a gagrteement between the
numerical solution and the analytical solutiontas seen in the figure.

It is seen in the figure that fin efficiency appchas to 1 as the
dimensionless variablé goes to zero.

As fin length L or convection coeffient h goes ter@ or thermal
conductivity k of the fin is very large in Eq. 3§, approaches to 0, which

means that the temperature of the fin is closééaemperature of the base,
which means the efficiency is very close to 1,xqseeted.
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HUMEMIDAL MESFULT S va. AMALTTIDAL SOLUTION
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Figure 8 Numerical Results vs. Analytical Smint
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