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M-Estimations of Shape and Scale Parameters by Order Statistics in Least Informative 

Distributions on q-deformed logarithm 

Mehmet Niyazi ÇANKAYA1* 

ABSTRACT: The maximum logq likelihood estimation (MLqE) method is used to estimate robustly 

parameters recently. In robust estimation method, the least informative distribution (LID) proposed by 

Huber is a convex combination of two probability density functions 𝑓0 and 𝑓1. In this study, the recently 

proposed least informative distributions (LIDs) in MLqE are used to estimate parameters. This paper 

also studies on the objective functions proposed by maximum logq-likelihood principle (MLqE) 

originally derived by logq-likelihood. The role and capability of order statistics in LIDs in MLqE are 

examined while getting the estimates of shape and scale parameters. The distance measure for evaluation 

of fitting performance is given to choose a value for the parameter 𝑞 in logq when the objective functions 

derived from MLqE are used. The simulation and real data application are given. Thus, we compare the 

fitting performance of objective functions constructed by MLE on log, MLqE on logq and LIDs with 

order statistics in MLqE. We observed that order statistic chosen for density 𝑓1 in LID in MLqE has a 

new objective function to fit the data sets. In the simulation, we make two contaminations into artificial 

data sets. The first contamination is inliers derived by order statistics and the second one is outliers.  

Thus, we observe that the new objective function can give satisfactory results. 
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INTRODUCTION 

M-estimation is a very general method based on likelihood estimation method to estimate the 

model parameters of underlying distribution. Maximum likelihood estimation (MLE) method can have 

logarithm (log) function to proceed the analytical tractability while getting the estimators of parameters.  

In MLE, log function can be replaced by logq so we have a generalized form of log. The parameter 𝑞 is 

responsible to have different forms of log.  The robust estimation based on the objective function is 

originally proposed by (Huber, 1964). The robust estimation is a generalization of maximum log-

likelihood estimation method. In the robust method, the objective functions which can give better fitting 

than probability density function 𝑓(𝑥; 𝜽) are used for modeling.  The generalized likelihood estimation 

method works mainly a mapping form of a p.d. function 𝑓(𝑥; 𝜽), i.e., 𝜌(𝑥; 𝜽) = Λ(𝑓(𝑥; 𝜽)). If Λ is 

chosen as log function, then log-likelihood principle (LP) works. One can choose logq function for Λ. 

In this case, LP still works but the different forms of p.d. function 𝑓(𝑥; 𝜽) is obtained due to the 

properties of the function Λ. According to the chosen function Λ, 𝜌 can be a member of escort distribution 

(Jizba, 2004). The origin of objective functions is mainly based on the escort distributions which do not 

have the normalizing constant that makes a function defined on the interval [0,1]. LIDs are a member 

of the escort distributions as a rich family. Different examples of objective functions can be read from 

(Huber, 1981; Shevlyakov et al., 2008; Ni and Huo, 2009;  Hampel et al. 2011; Andrews and Hampel, 

2015) and references therein.  

The objective function which will be used to model the data set should adjust the efficiency. In 

this direction, we will propose objective functions which use the role of order statistics (OS) and the 

parameter 𝑞. OS is responsible to fit data set by means of many p.d. functions. In our case, the objective 

function has a p.d. function from OS but it also has the properties of underlying distribution. Our case is 

mainly based on LID proposed by (Huber, 1964). The generalized form of LIDs for arbitrary p.d. 

functions has recently been studied by (Çankaya and Korbel, 2018). Note that M-functions from (Huber, 

1981; Ni and Huo, 2009; Hampel et al. 2011; Andrews and Hampel, 2015) are mainly strict functions and 

they are not flexible to get the different forms of functions. They have strict tuning constant which can 

only conduct some part of function instead of scanning the function completely. For example, Huber M-

objective function is a strict function and it is normal in the middle and Laplace at the tails on the real 

line (Huber, 1964). In our study, we can have a neighborhood of a function by means of parameter 𝑞. 

Further,  LIDs based on logq are capable to fit data set efficiently as well because LIDs in logq have two 

p.d. functions 𝑓0 and 𝑓1 which work with the parameter 𝑞 which is responsible to have different forms 

of functions. Note that using parameter 𝑞 is advantage to manage efficiency and robustness (Çankaya 

and Korbel, 2018).    

The main aim of this study is to use the objective functions based on logq. In this perspective, we 

apply the order statistics (OS) to LIDs in MLqE to test the role and capability of OS for the estimations 

of parameters. Thus, we also test the performance of OS at LID in MLqE. Further, OS can give an 

advantange to manage efficiency and so the data sets can be fitted well. We can also manage robustness 

via parameter 𝑞 in logq. Since LIDs in MLqE have the underlying distribution 𝑓0 and the contaminated 

distribution 𝑓1, we consider to use order statistics for 𝑓1 in order to manage the robustness and efficiency 

at the same time. The estimators are produced by use of the objective functions from M-functions. Since 

the estimators are produced by use of likelihood type estimation method, they can be called as M-

estimators. The numerical values of M-estimators are replaced by parameters of the underlying 

distribution 𝐹0 which is cumulative distribution function (c.d. function). Thus, the probability value (p-
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value) of Kolmogorov-Smirnov (KS) test statistic for the underlying distribution 𝐹0 is computed (Huber-

Carol et al., 2012). We can observe the role of p-values of KS in order to adjust the tuning constant 𝑞. 

This can be an alternative approach if the integrals in information geometry (Çankaya and Korbel, 2018; 

Bozdogan, 1987, Csaki, 1981; Çankaya and Korbel, 2017) are computational extensive and cannot be 

convergence to finite value, which is an another approach given by this paper when compared with OS 

used for 𝑓1 in LID.    

The remainder of this study is as follows: Materials and methods give the tools used to estimate 

the parameters in a p.d. function 𝑓(𝑥𝑖; 𝜽). We introduce the well-known OS and the popular Weibull 

distribution. We express the goodness of fit test how to test the fitting competence. The optimization as 

important stage at the computational evaluation of objective functions is carried out by genetic 

algorithm. Simulation is provided to show how the procedure OS in LID works especially. The real data 

application is provided. Thus, we observe the cooperative cross-cheking between the p-values of KS test 

statistic and illustrative figures for the evaluation of fitting performance. The last section is divided for 

the conclusion.  

MATERIALS AND METHODS 

Maximum log and 𝐥𝐨𝐠𝐪 likelihood estimation methods  

The well-known maximum likelihood estimation (MLE) method is given by  

 

𝐿(𝜽, 𝑥1, 𝑥2, … , 𝑥𝑛) = ∏ 𝑓(𝑥𝑖; 𝜽)

𝑛

𝑖=1

, (1) 

 

where 𝑥𝑖, 𝑖 =  1, 2, … , 𝑛 are observations and 𝑛 is a sample size drawn from a hypothetical parametric 

model 𝑓. In the MLE method, the main working principle is based on the p.d. function 𝑓(𝑥𝑖; 𝜽), because 

the parameters 𝜽 are estimated via using the likelihood function 𝐿. 

In order to get analytically simple expressions, we can take the log function of both sides of the 

given expression in equation (1). Thus, we have the following expression given by 

 

log(𝐿(𝜽; 𝑥))  = ∑ log(𝑓(𝑥𝑖; 𝜽))𝑛
𝑖=1 . (2) 

 

The maximum logq likelihood estimation method (Ferrari and Yang, 2010; Giuzio et al., 2016) is 

a generalization of the log-likelihood estimation method in the M-functions (Huber, 1964; Hampel et al. 

2011). The maximum logq likelihood estimation (MLqE) method is given by 

 

log𝑞(𝐿(𝜽; 𝑥)) = ∑ log𝑞(𝑓(𝑥𝑖; 𝜽))𝑛
𝑖=1 , (3) 

 

where 𝑞 ∈ ℝ\{1}. logq( 𝑓) =
𝑓1−q−1

1−q
  is derived from Tsallis q-entropy (Tsallis, 1988; Elze, 2004). In 

MLqE method, let us introduce a part again as the following form: 

 

ρlogq
(𝑥; 𝛉) = logq(𝑓0(𝑥; 𝛉)), (4) 
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which is an objective function based on logq. If 𝑞 → 1, ρlogq
 drops to  𝜌log(𝑥; 𝛉) = log (𝑓0(𝑥; 𝛉)) is a 

part from MLE method. logq is a strictly monotonic function (Huber, 1964; Çankaya and Korbel, 2018). 

Since M-estimation method in M-function is a generalization of ML estimation method, we can 

consider to use M-functions to estimate the parameters 𝜽 of function 𝑓 simultaneously as well. M-

functions in (Hampel et al. 2011) are strict/rigid functions and they do not have a rich family when 

compared by MLqE method, because MLqE can be applied for any p.d. function 𝑓(𝑥𝑖; 𝛉). Further, it is 

noted that 𝑓(𝑥𝑖; 𝛉) can be an escort distribution or p.d. function. The working principle of modeling is 

based on the objective functions. These are mainly escort distributions and it is not essential to have a 

normalizing constant in an escort distribution (Jizba, 2004; Jizba and Korbel, 2016; Çankaya and Korbel; 

2017). 

Order statistics  

Let 𝑋 be a random variable whose distribution function (d.f.) and probability density function (p.d. 

function) are 𝐹(𝑥; 𝛉) and 𝑓 (𝑥; 𝛉) respectively. Let 𝑋1, 𝑋2, … , 𝑋𝑛 have independent and identical d.f. 

𝐹(𝑥; 𝛉) and p.d. function 𝑓(𝑥; 𝛉). 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 denote the order statistics (OS) of these 

random variables. For 1 ≤ 𝑟 ≤ 𝑛, the p.d. function of 𝑋𝑟:𝑛 is given by 

 

𝑓𝑟:𝑛(𝑥; 𝛉) =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
[𝐹(𝑥; 𝛉)]𝑟−1[1 − 𝐹(𝑥; 𝛉)]𝑛−𝑟𝑓(𝑥; 𝛉), 𝑛, 𝑟 ∈ ℤ+,     (5) 

 

factorials are replaced by 𝑛! = Γ(𝑛 + 1), (𝑟 − 1)! = Γ(𝑟) and (𝑛 − 𝑟)! = Γ(𝑛 − 𝑟 + 1), 𝑛, 𝑟 > 0 

(Arnold, 1992; Prudnikov, 1986). 

 

Least informative distributions  

The least informative distribution (LID) is given by 

 

𝑓𝜀(𝑥; 𝜽) = (1 − 𝜀)𝑓0(𝑥; 𝜽) + 𝜀𝑓1(𝑥; 𝜽). (6) 

 

𝑓ε indicates the contaminated distribution. The constant ε is the contamination rate. 𝑓0 is the 

underlying distribution and 𝑓1 is the contamination into underlying distribution 𝑓0 and so 𝑓1 is a 

contamination distribution (Huber, 1964; Huber, 1981).  

Least informative distributions based on 𝐥𝐨𝐠𝐪 

The following objective function is derived by using LIDs and MLqE method 

 

ρlogq
(𝑓0(𝑥; 𝛉), 𝑓1(𝑥; 𝛉)) =  𝑓0(𝑥; 𝛉)−q(𝑓1(𝑥; 𝛉) − 𝑓0(𝑥; 𝛉)) , (7) 

 

where 𝑓0 and 𝑓1 are p.d. function. If 𝑓1 is zero, then equation (7) is  −𝑓0
1−𝑞

. The main part in logq can 

be obtained. Thus, we can see the role of 𝑓1. Since 𝑓1 exists in the LIDs in MLqE, the objective function 

can have a high fitting capability on a data set. It is possible to apply different distributions into LIDs in 

MLqE (Godambe, 1960). Note that LIDs in MLqE have a big framework when one wants to use it for 

modeling (Gelfand and Fomin, 1963; Suyari, 2006; Çankaya and Korbel, 2018; Huber, 1964; Huber, 

1981).  Note that when OS form in equation (5) for a p.d. function 𝑓(𝑥; 𝜽) is chosen for 𝑓1(𝑥; 𝜽) at LID 

in MLqE, we can have a new objective functions to fit data set efficiently. In the working principle of 
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LIDs including any 𝑓0 and 𝑓1 at the same time, it is not essential to have a strict/rigid function which can 

be used to fit data set.  

Weibull distribution 

Weibull distribution is flexible and has main parameters which are shape and scale in a parametric 

model. The c.d. function of the Weibull distribution is given by 

𝐹(𝑥; 𝑎, 𝑏) = 1 − exp {− (
𝑥

𝑏
 )

𝑎

} , 𝑥 > 0; 𝑎, 𝑏 > 0. (8) 

The p.d. function 𝑓(𝑥) =
𝑑

𝑑𝑥
𝐹(𝑥) is given by 

𝑓(𝑥, 𝑎, 𝑏) =
𝑎

𝑏
(

𝑥

𝑏
)𝑎−1 exp {− (

𝑥

𝑏
 )

𝑎

} , 𝑥 > 0; 𝑎, 𝑏 > 0, (9) 

𝑎 and 𝑏 are the shape and scale parameters respectively, it is represented by 𝑊(𝑎, 𝑏) (Rinne, 2008).  

Since Weibull distribution is a member of exponential family and also Weibull has a kernel 

exp (− (
𝑥

𝑏
)

𝑎

), finiteness of integral is satisfied (Malik, 1992; Prudnikov et al., 1986; Çankaya, 2018). 

Thus, we can use 𝑊(𝑎, 𝑏) for modeling. We will use 𝑊(𝑎, 𝑏) in our numerical experiment. 

M-estimation method based on the objective functions from M-functions  

In the M-estimation method, the objective function 𝜌 is minimized according to parameters 𝜽. M-

estimators �̂� from M-functions ρ are produced by 

�̂� ≔
∑ ρ(𝑥𝑖; 𝜽)

𝑛

𝑖=1

arg min 𝜽

 (10) 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is a vector of observations (Huber, 1964; Huber, 1981).  

 

Goodness of fit test: Distance measures for evaluation of fitting performance  

Since the main nature of distribution structure of a real data set is not known exactly, the different 

objective functions which can be alternative or accommodate to each other should be used for analyzing 

a real data set. The objective functions will be used to estimate the parameters of p.d. function 𝑓(𝑥; 𝜽). 

Let us remind that LIDs in logq have underlying and contamination distributions. Researcher should 

keep the characteristic of underlying p.d. distribution 𝑓𝑈 or c.d. distribution 𝐹𝑈, because we prefer to get 

robust and efficient M-estimates from M-functions which can be insensitive to contamination into 

underlying distribution. Since the main characteristic of a real data set can be expressed by means of 

underlying distribution, we can use the cumulative distribution (c.d.) functions for any statistical 

distributions to detect the performance of robustness and efficiency. As it is expected, we can use this 

approach to evaluate the fitting performance if M-estimates from M-functions are plugged into to c.d. 

function 𝐹𝑈(𝑥; �̂�𝑀). �̂�𝑀 are M-estimators produced by objective or M-functions. �̂�𝑀: = �̂�𝑀0
 are values 

called as M-estimates from M-estimators �̂�𝑀. Note that the information criterions (ICs) based on log 

and logq such as Akaike and Bayesian ICs should not be used, because log and logq are based on the 

different sense and they are not comparable to determine the fitting performance of the objective 

functions. For this reason, we prefer to use distance measure evaluated from underlying distributions. 

Since we use the c.d. functions, c.d. functions for Weibull, normal, etc. are defined on the closed interval 

[0,1], that is, they are at a same base for comparison among M-estimates plugged into 𝐹𝑈(𝑥; �̂�𝑀0
).  �̂�𝑀0
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represent the estimates which are numerical values obtained after the optimization of objective functions 

in equations (2), (4) and (7) according to parameters 𝜽 is performed.  

𝐾𝑆 = max
1≤𝑖≤𝑛

|𝐹𝑈(𝑥(𝑖); �̂�𝑀) −
𝑖

𝑛 + 1
| (11) 

is Kolmogorov-Smirnov (KS) test statistic. KS test statistic gets the maximum value of differences 

evaluated by absolute distance between 𝐹𝑈(𝑥(𝑖); �̂�𝑀) and 
𝑖

𝑛+1
. The biggest value of p-value of KS test 

statistic indicates that the best fitting is accomplished by underlying distribution function 𝐹𝑈(𝑥(𝑖); �̂�𝑀0
). 

𝑥(𝑖) represents the ordered form from smallest to highest values for variable 𝑥. 𝑖 indicates a number for 

the order in the sample size 𝑛, i.e., 𝑖 = 1,2, . . . , 𝑛 (Huber-Carol et al. 2012; Huber, 1964; Huber, 1981). 

The different values for 𝑞 are tried until the highest p-value of KS test statistic is obtained. 𝑓0 is assumed 

to be a hypothetical model which can be real nature of observations in a data set. Note that using 𝑓0 is 

an idea proposed by Huber's variance covariance matrix (Huber, 1964; Huber, 1981). This is why we 

prefer to use KS statistic as an alternative way to Huber's variance covariance matrix in information 

geometry. Thus, computational error for evaluating the integral of Fisher information (FI) in information 

geometry (Çankaya and Korbel, 2018) can be skipped. We choose OS which has an extensive analytical 

expression in expected value of FI. Since main function is 𝑊(𝑎, 𝑏), we can use c.d. function 

𝐹𝑈(𝑥(𝑖); �̂�𝑀0
) of 𝑊(𝑎, 𝑏) to get p-value of KS test statistic. Using KS is simple and effective way to 

determine value of parameter 𝑞. 

Numerical experiment: Simulation and real data applications 

Knowing the design of the artificial random numbers from a p.d. function 𝑓(𝑥; 𝜽) is an important 

indicator to observe the fitting performance of the proposed objective functions. OS into LIDs in MLqE 

is used. Artificial data sets and real data set which has non-known behavior are used. We apply objective 

functions derived by equations (2), (4) and (7) to estimate te shape and scale parameters. Since we use 

order statistic for p.d. function 𝑓1 in the LID in MLqE, we add some ordered artificial data set from the 

same artificial data set. Inliers and outliers are derived by items in order:  

1. xxx=randWei(n,au,bu); 2. xx=sort(xxx);for j=1:nc  xc(j)=xx(ceil(n*r)); xc(j)=2*xc(j); end 4. x=[xx(1:nu) 

xc]; 

'nc' and 'xc' represent the number of sample size and artificial data set for contamination, respectively. x 

is a vector of artificial numbers. x has contamination from some ordered data set for xxx. r is a rate of 

order. r is taken as 1 which shows the biggest last value of xx to generate outliers.  

‘randWei’ is a written function in MATLAB2013a. 𝐹(𝑥) = 𝑦, 𝑦 is uniformly distributed random 

variable defined on interval [0,1]. The artificial numbers for variable 𝑥 of  𝐹 are generated by 𝑥 =

𝐹−1(𝑢) (Huber-Carol et al., 2012). Thus, we have artificial numbers for distribution 𝐹 with 'au' and 'bu' 

which show values of parameters for underlying distribution 𝑓0. We use 𝑊(𝑎, 𝑏)  with 'au' and 'bu'. Since 

Weibull is flexible and the popular distribution for modeling a data set and is finite for 𝑥 → ∞ (Malik, 

1992), it can be used for fitting.  We can also observe the performance of Weibull when it is applied to 

LID in MLqE and MLqE.  

Optimization of M-functions  

MLE, MLqE and LID in MLqE have their corresponding M-functions with parameters 𝜽.  

Optimization is a process to find the global point of function 𝐺(𝑥; 𝜽) minimized according to parameters 

𝜽.  Since we have data from function 𝐺, that is, 𝑥 is a variable which can have different values which 

are regarded as observations, we have a sampling form of function 𝐺. Thus, 𝜽 will be estimated by 
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canditate estimators �̂� from ∑ ρ(𝑥𝑖; 𝜽)𝑛
𝑖=1  (Huber, 1964; Huber, 1981). Since we use logq, optimization 

is an important stage to convergence global point of function 𝐺. Thus, we will have estimators which 

can obtained by optimization at the global point of function 𝐺 (Örkcü et al., 2015). For optimization of 

function 𝐺, we use genetic algorithm (GA) which is produced by evaluationary framework. Even if a 

function is non-smooth, GA can find the global point in function 𝐺. We use GA to avoid convergence 

to local points in 𝐺. Further, GA has nice property which is that search region for values of parameters 

is used instead of using initial point while performing optimization according to parameters 𝜽.  HGA at 

a module in MATLAB 2013a is used. Optimization is performed by ‘ga’ function. 'CrossoverFcn' and 

'crossoversinglepoint’ are selected to have less numerical computation error. The search space for values 

of parameter of p.d. function is necessary for input in ‘ga’. The search space of 𝜌(𝑥; 𝜽), 𝜽 = (𝑎, 𝑏), 

optimized according to the parameters 𝑎 and 𝑏 is the closed range [0,1010] for both parameters. 

RESULTS AND DISCUSSION 

The results of simulation for the estimations of shape and scale parameters  

Tables 1-2 and Table 3 give inliers and outliers case for values of parameters, respectively. In 

Tables 1-3, 𝜃, 𝑉𝑎�̂�(�̂�) and 𝑀𝑆�̂�(�̂�) represent estimates, simulation variance and mean squared error of 

M-estimators, respectively. 𝑁𝑜𝑟𝑚(�̂�, 𝜽) = 𝑑1
2 + 𝑑2

2 + ⋯ + 𝑑𝑝
2. 𝑫 = �̂� − 𝜽, 𝑫 = (𝑑1, 𝑑2, … , 𝑑𝑝) (Huber-

Carol et al., 2012). We have different sample sizes 𝑛1 = 30, 𝑛2 = 50 and 𝑛3 = 100. The number of 

replication for each sample size is 104.  The contamination rate 𝜀 is 0.1.  Inliers and outliers were 

explained by numerical experiment section. The objective functions 𝜌log(𝑥; 𝛉), ρlogq
(𝑥; 𝛉) and 

ρlogq
(𝑓0(𝑥; 𝛉), 𝑓1(𝑥; 𝛉)) are used to estimate 𝑎 and 𝑏. To determine the values of tuning constant 𝑞 for 

robustness, our tryings are performed until the smallest values of 𝑀𝑆�̂�(�̂�) are obtained. As it is logically 

expected, there is only one objective function which fits data well for the given values of 𝑞 in logq and 

𝑟 in OS. For the simulation, the known value of 𝑟 is already used for p.d. function of OS. 

For inliers in Tables 1-2, we observed that the estimates of �̂� and �̂� from LIDOSq are better than 

that of MLqE. When sample sizes are increased, 𝑀𝑆�̂�(�̂�) values get smaller values. In outlier case, there 

is a small situation which cannot be satisfied at a small computational error. It is also noted that when 

the sample size gets larger, size of contamination is increased, so this can be reason of small increasing 

in the sample size from 𝑛 = 50 to 𝑛 = 100 at 𝑎 = 2 and 𝑏 = 10 in Table 3.  For the outlier cases from 

Table 3, we observed that the estimates of �̂� from LIDOSq and the estimates of �̂� from MLqE have 

small 𝑀𝑆�̂� values, which shows us that the shape parameter 𝑎 can be predicted well if the objective 

function 𝜌 from LIDOSq is used. In the same comment, MLqE should be used to get small 𝑀𝑆�̂� values 

for the estimates of scale parameter 𝑏. 
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Table 1. Inliers case:  �̂� and �̂� from 𝜌 based on MLE, MLqE and LIDOSq when 𝑎 = 3 and 𝑏 = 5 

   MLE MLqE LIDOSq 

    𝑞 = 1.67 𝑞 = 1.24 

𝑟 𝑛 𝜽 𝑎 = 3 𝑏 = 5 𝑎 = 3 𝑏 = 5 𝑎 = 3 𝑏 = 5 

  �̂� 3.6194 4.5253 3.0575 4.5599 2.9910 4.6486 

0.25 30 𝑉𝑎�̂�(�̂�) 0.3881 0.1017 0.2588 0.0981 0.1890 0.0974 

  𝑀𝑆�̂�(�̂�) 0.7718 0.3270 0.2621 0.2918 0.1891 0.2209 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.0988 0.5539 0.4100 

    𝑞 = 1.67 𝑞 = 1.03 

  �̂� 3.5495 4.5169 2.9669 4.5406 3.0070 4.6154 

0.25 50 𝑉𝑎�̂�(�̂�) 0.2156 0.0598 0.1504 0.0577 0.0981 0.0552 

  𝑀𝑆�̂�(�̂�) 0.5175 0.2932 0.1515 0.2687 0.0981 0.2031 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 0.8107 0.4202 0.3012 

    𝑞 = 1.49 𝑞 = 0.92 

  �̂� 3.5118 4.5129 3.0295 4.5208 3.0099 4.5893 

0.25 100 𝑉𝑎�̂�(�̂�) 0.1042 0.0302 0.0772 0.0288 0.0423 0.0273 

  𝑀𝑆�̂�(�̂�) 0.3661 0.2675 0.0781 0.2584 0.0424 0.1960 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 0.6336 0.3365 0.2384 

    𝑞 = 1.57 𝑞 = 1.42 

  �̂� 3.8580 4.6213 3.1896 4.6013 3.1440 4.7269 

0.5 30 𝑉𝑎�̂�(�̂�) 0.4267 0.1037 0.2832 0.0973 0.2306 0.0955 

  𝑀𝑆�̂�(�̂�) 1.1629 0.2471 0.3191 0.2563 0.2513 0.1702 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.4100 0.5754 0.4215 

    𝑞 = 1.66 𝑞 = 1.44 

  �̂� 3.7960 4.6211 3.0502 4.5918 3.0215 4.6999 

0.5 50 𝑉𝑎�̂�(�̂�) 0.2466 0.0615 0.1645 0.0581 0.0993 0.0557 

  𝑀𝑆�̂�(�̂�) 0.8802 0.2051 0.1670 0.2248 0.0997 0.1458 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.0853 0.3918 0.2455 

    𝑞 = 1.61 𝑞 = 1.3 

  �̂� 3.7616 4.6231 3.0175 4.5806 3.0360 4.6727 

0.5 100 𝑉𝑎�̂�(�̂�) 0.1138 0.0310 0.0839 0.0298 0.0466 0.0279 

  𝑀𝑆�̂�(�̂�) 0.6939 0.1730 0.0842 0.2057 0.0479 0.1350 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 0.8669 0.2899 0.1829 

    𝑞 = 1.89 𝑞 = 2.06 

  �̂� 3.8353 4.7620 2.9925 4.6951 2.9976 4.8135 

0.75 30 𝑉𝑎�̂�(�̂�) 0.4546 0.1065 0.2655 0.1016 0.2604 0.1022 

  𝑀𝑆�̂�(�̂�) 1.1523 0.1631 0.2656 0.1946 0.2604 0.1370 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.3154 0.4602 0.3974 

    𝑞 = 1.95 𝑞 = 1.75 

  �̂� 3.7763 4.7554 2.8721 4.6742 3.0365 4.7805 

0.75 50 𝑉𝑎�̂�(�̂�) 0.2500 0.0625 0.1500 0.0598 0.1472 0.0585 

  𝑀𝑆�̂�(�̂�) 0.8527 0.1224 0.1664 0.1660 0.1486 0.1067 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 0.9751 0.3324 0.2553 

    𝑞 = 1.85 𝑞 = 1.64 

  �̂� 3.7386 4.7547 2.8482 4.6616 3.0544 4.7496 

0.75 100 𝑉𝑎�̂�(�̂�) 0.1200 0.0320 0.0859 0.0311 0.1019 0.0297 

  𝑀𝑆�̂�(�̂�) 0.6656 0.0922 0.1089 0.1456 0.1049 0.0924 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 0.7578 0.2545 0.1973 
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Table 2. Inliers case: �̂� and �̂� from 𝜌 based on MLE, MLqE and LIDOSq when  𝑎 = 2 and 𝑏 = 10 

   MLE MLqE LIDOSq 

    𝑞 = 1.98 𝑞 = 1.55 

𝑟 𝑛 𝜽 𝑎 = 2 𝑏 = 10 𝑎 = 2 𝑏 = 10 𝑎 = 2 𝑏 = 10 

  �̂� 2.4039 8.6137 2.0680 9.2462 2.0443 9.5880 

0.25 30 𝑉𝑎�̂�(�̂�) 0.1723 0.8165 0.0936 0.8506 0.0671 0.9298 

  𝑀𝑆�̂�(�̂�) 0.3354 2.7382 0.0982 1.4189 0.0690 1.0995 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 3.0736 1.5171 1.1685 

    𝑞 = 1.97 𝑞 = 1.54 

  �̂� 2.3671 8.5931 2.0186 9.1898 2.0014 9.5249 

0.25 50 𝑉𝑎�̂�(�̂�) 0.0950 0.4840 0.0533 0.4902 0.0358 0.5463 

  𝑀𝑆�̂�(�̂�) 0.2297 2.4634 0.0537 1.1465 0.0358 0.7720 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 2.6931 1.2002 0.8078 

    𝑞 = 1.91 𝑞 = 1.49 

  �̂� 2.3458 8.5938 1.9967 9.1334 1.9966 9.4596 

0.25 100 𝑉𝑎�̂�(�̂�) 0.0469 0.2538 0.0281 0.2537 0.0313 0.3039 

  𝑀𝑆�̂�(�̂�) 0.1665 2.2313 0.0281 1.0046 0.0313 0.5959 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 2.3978 1.0327 0.6272 

    𝑞 = 1.97 𝑞 = 1.44 

  �̂� 2.5596 8.8893 2.1113 9.3266 2.1336 9.6510 

0.5 30 𝑉𝑎�̂�(�̂�) 0.1935 0.8768 0.1005 0.8654 0.0793 0.9094 

  𝑀𝑆�̂�(�̂�) 0.5067 2.1105 0.1129 1.3190 0.0971 1.0312 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 2.6172 1.4319 1.1283 

    𝑞 = 2.05 𝑞 = 1.62 

  �̂� 2.5352 8.8880 2.0446 9.3175 2.0504 9.6616 

0.5 50 𝑉𝑎�̂�(�̂�) 0.1103 0.5280 0.0569 0.5207 0.0352 0.5508 

  𝑀𝑆�̂�(�̂�) 0.3967 1.7645 0.0589 0.9865 0.0377 0.6653 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 2.1612 1.0454 0.7030 

    𝑞 = 2.03 𝑞 = 1.67 

  �̂� 2.5056 8.8885 2.0017 9.2777 2.0145 9.6375 

0.5 100 𝑉𝑎�̂�(�̂�) 0.0545 0.2553 0.0300 0.2535 0.0108 0.2759 

  𝑀𝑆�̂�(�̂�) 0.3102 1.4907 0.0300 0.7751 0.0110 0.4073 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.8009 0.8051 0.4183 

    𝑞 = 1.79 𝑞 = 1.56 

  �̂� 2.5591 9.3062 2.1744 9.5089 2.1414 9.8888 

0.75 30 𝑉𝑎�̂�(�̂�) 0.1929 0.9065 0.1076 0.8931 0.0930 0.9578 

  𝑀𝑆�̂�(�̂�) 0.5056 1.3878 0.1380 1.1343 0.1130 0.9702 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.8934 1.2723 1.0832 

    𝑞 = 2.07 𝑞 = 1.65 

  �̂� 2.5178 9.2975 2.0487 9.5670 2.0729 9.8761 

0.75 50 𝑉𝑎�̂�(�̂�) 0.1114 0.5432 0.0579 0.5450 0.0482 0.5722 

  𝑀𝑆�̂�(�̂�) 0.3795 1.0368 0.0603 0.7325 0.0535 0.5876 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.4163 0.7928 0.6411 

    𝑞 = 2.07 𝑞 = 1.65 

  �̂� 2.4962 9.2794 2.0026 9.5153 2.0457 9.8142 

0.75 100 𝑉𝑎�̂�(�̂�) 0.0540 0.2688 0.0309 0.2683 0.0207 0.2801 

  𝑀𝑆�̂�(�̂�) 0.3002 0.7881 0.0309 0.5032 0.0228 0.3146 

  𝑁𝑜𝑟𝑚(�̂�, 𝜽) 1.0883 0.5341 0.3374 
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Real data application for the estimations of shape and scale parameters of Weibull distribution 

A real data set (Proschan, 1963) represents the time for the consecutive failures of the air 

conditioning system of a fleet of Boeing 720 jet airplanes. The hours of flying time between failures are 

analyzed for the real data application. The data are  23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 

20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. The data set is fitted by the objective 

functions in Table 4.  

 

 

 

Table 3.  Outliers case: �̂� and �̂� from 𝜌 based on MLE, MLqE and LIDOSq when 𝑎 = 3 and 𝑏 = 5 

  MLE MLqE LIDOSq 

   𝑞 = 0.77 𝑞 = 0.0275 

𝑛 𝜽 𝑎 = 3 𝑏 = 5 𝑎 = 3 𝑏 = 5 𝑎 = 3 𝑏 = 5 

 �̂� 1.6325 5.9845 4.0598 4.6354 3.3172 7.0909 

30 𝑉𝑎�̂�(�̂�) 0.0191 0.1524 0.6648 0.1112 0.5830 2.4881 

 𝑀𝑆�̂�(�̂�) 1.8891 1.1216 1.7880 0.2441 0.6836 6.8598 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 3.0107 2.0321 7.5434 

   𝑞 = 0.82 𝑞 = 0.0275 

 �̂� 1.5829 6.0438 3.7733 4.6668 3.0104 6.7880 

50 𝑉𝑎�̂�(�̂�) 0.0128 0.0983 0.5787 0.0789 0.6290 3.1528 

 𝑀𝑆�̂�(�̂�) 2.0210 1.1877 1.1766 0.1899 0.6292 6.3498 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 3.2087 1.3665 6.9790 

   𝑞 = 0.82 𝑞 = 0.02 

 �̂� 1.5286 6.1231 3.8261 4.6377 2.6398 5.7445 

100 𝑉𝑎�̂�(�̂�) 0.0075 0.0550 0.1884 0.0350 0.3734 1.6099 

 𝑀𝑆�̂�(�̂�) 2.1727 1.3163 0.8709 0.1663 0.5031 2.1643 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 3.4890 1.0372 2.6674 

   𝑞 = 0.83 𝑞 =0.025 

  𝑎 = 2 𝑏 = 10 𝑎 = 2 𝑏 = 10 𝑎 = 2 𝑏 = 10 

 �̂� 1.2807 11.7543 1.9953 9.5624 2.0507 12.5667 

30 𝑉𝑎�̂�(�̂�) 0.0192 1.4457 0.5919 1.2707 0.2401 8.5996 

 𝑀𝑆�̂�(�̂�) 0.5366 4.5232 0.5919 1.4623 0.2427 15.1877 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 5.0598 2.0542 15.4304 

   𝑞 = 0.84 𝑞 = 0.02 

 �̂� 1.2301 11.8787 1.8505 9.6980 1.9440 11.8211 

50 𝑉𝑎�̂�(�̂�) 0.0126 1.0803 0.4572 0.9621 0.2063 7.3526 

 𝑀𝑆�̂�(�̂�) 0.6053 4.6098 0.4796 1.0533 0.2094 10.6689 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 5.2151 1.5329 10.8783 

   𝑞 = 0.835 𝑞 = 0.01 

 �̂� 1.1772 12.0162 2.0038 9.4158 2.0029 10.7047 

100 𝑉𝑎�̂�(�̂�) 0.0081 0.8980 0.4024 0.6709 0.2099 5.7911 

 𝑀𝑆�̂�(�̂�) 0.6851 4.9631 0.4024 1.0122 0.2099 6.2877 

 𝑁𝑜𝑟𝑚(�̂�, 𝜽) 5.6482 1.4146 6.4976 
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Table 4. Estimates of parameters 𝑎 and 𝑏 by using different objective functions based on log, logq and 

LID in logq 

M-functions: Objective functions �̂� �̂� 𝑝-values of 𝐾𝑆 

𝜌log(𝑓0 = 𝑊(𝑎, 𝑏)) 0.8536 54.6180 0.4370 

𝜌logq=0.9135
(𝑓0 = 𝑊(𝑎, 𝑏)) 0.8507 47.6563 0.7612 

𝜌logq=0.03,r=1.95
(𝑓0 = 𝑊(𝑎, 𝑏), 𝑓1 = 𝑂𝑆𝑊(𝑎, 𝑏)) 0.8590 47.1482 0.7701 

𝑂𝑆𝑊(𝑎, 𝑏) represents the order statistics (OS) of 𝑊(𝑎, 𝑏). Table 4 shows M-estimates from M-

estimators produced by objective function 𝜌. As much as the p value of KS test statistic is near to one, 

the best fitting with estimates �̂� and �̂� of  𝑊(𝑎, 𝑏) can be accomplished by means of 𝐹𝑈(𝑥(𝑖); �̂�𝑀0
), as 

given by the section for goodness of fit test.  The best fit has been performed by 𝜌logq=0.03,r=1.95
 which is 

LID with OS in MLqE. We prefer to use the non-integer order for OS to manage the efficiency of 

function 𝜌, i.e., if r = 1.95, then the highest value for 𝑝-values of KS has been obtained. When the 

overall results in Table 4 are observed, it is seen that using OS for 𝑓1 in LID in MLqE gave the best 

fitting. Thus, the efficiency via LID with OS for 𝑓1 in MLqE is managed well. Further, using OS can 

give an advantage to model the data set which can have inlier(s) due to the nature of OS.  

  
Figure 1. The fitted c.d. and p.d. functions superimposed onto empricial CDF (c.d. function) and PDF 

(p.d. function) 

 

Figure 1 is given for illustrative purpose. Thus, it is also possible to observe the accordance 

between the fitted densities which are c.d. and p.d. functions and 𝑝-values of KS test statistic. Since we 

use three objective functions which are 𝜌log, 𝜌logq=0.9135
 and 𝜌logq=0.03,r=1.95

 in Table 4, we have three M-

estimates produced by 𝐶𝐷𝐹𝑀𝐿𝐸 for 𝜌log, 𝐶𝐷𝐹𝑀𝐿𝑞𝐸 for 𝜌logq
 and 𝐶𝐷𝐹𝐿𝐼𝐷𝑂𝑆𝑞 for 𝜌logq,r

.    

General comments for simulation real data application  

It is noted that if 𝑓1 in LID is chosen as 1 − 𝑓1, then OS into LID in MLqE can work properly and 

gave the satisfactory results for simulation and real data application. As a result, when the shape of 

objective function and the structure of data set are accommodated to each other well, MSE values for 

simulation are small. Due to the page number restriction, we did not give some results of simulation. In 

our non-given tryings, there were situations in which MLqE and LIDOSq are more better than the 

estimations of shape parameter 𝑎 especially.  

CONCLUSION 

The present paper has studied on the applicability of order statistics in LIDs in MLqE. The p-value 

of KS test statistic has been proposed to use the determine the value of parameter 𝑞 in logq. The OS into 
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LID in MLqE can work properly and gave the satisfactory results if 𝑓1 in LID is chosen as 1 − 𝑓1. 

Otherwise, they did not give small MSE values in the simulation. In addition, in the application of the 

real data sets, the p-values of KS are enough high when 1 − 𝑓1 is taken. It has been observed that if we 

choose 1 − 𝑓1 for 𝑓1, we can have satisfactory results for capability of modeling.  The shape and scale 

parameters as main parameters in modeling procedure have been considered to fit the data sets. We have 

made a comparison among the objective functions which take its inheritance rooted from likelihood 

estimation method based on log and logq. Since 𝑞 manages the overall shape of function, we consider 

only these type functions. The different generalized logarithms and their performance at the different 

estimation methods will be investigated for future studies. The further properties for asymptotic 

behavior, asymptotic expansions and robustness for the used objective functions at here will be studied 

extensively as a separate study in the future.   
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