
Journal of Naval Science and Engineering
2015, Vol. 11, No. 3, pp. 43-74

43

SURVEY ON VISIBILITY AND DATA DISTRIBUTION IN
DISTRIBUTED VIRTUAL ENVIRONMENTS

Yekta KILIÇ 1
Gürkan KOLDA Ş2

Şafak Burak ÇEVİKBAŞ3

1Naval Science and Engineering Institute, Turkish Naval Academy, Istanbul,
yektakilic2011@gmail.com

2Computer Engineering Department, Turkish Naval Academy, Istanbul,
gurkankoldas@gmail.com

3Computer Engineering Department, Middle East Technical University, Ankara,
safakburak@gmail.com

Abstract

The importance of data distribution increases in Multi-User Distributed
Virtual Environments (DVEs) in parallel to both the complexity of virtual
scenes and the number of clients. Main challenges are to load the relevant
part of the scene, estimate and render visible primitives by keeping the
frame rate fluent, since each user sees different part of the shared scene. In
order to achieve the frame rate goal, data distribution should be well
managed and optimization approaches based on network and visibility
should be applied according to the requirements of each DVE. This is
substantially handled by considering the area of interest for each user and
estimating visible primitives as early as possible. This paper surveys the
research on visibility culling, data management based on area of interest in
DVEs and consequently summarizes thirteen implementations in the
literature.

Keywords: distributed virtual environments; data distribution management;
visibility culling; area of interest

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

44

1. INTRODUCTION

Nowadays, everyone has a computer or smart devices such as smart
phones, tablets, TVs, game consoles with the recent developments in
technology. People may interact with anyone in the world with these
devices and share documents, videos, pictures, programs, ideas etc. Multi-
Player Online Games and Simulations in DVEs1 increase with the broad
bandwidth usage in the Internet access in addition to the number of
implementations on shared portals, forums, instant messaging,
teleconference etc. With an exciting new hardware, outstanding creativity
and software, game industry explode in the last decade. Especially,
distributed multi-player online games among the teenagers guide to firms in
the field. To take the attention of the customers, firms aim to increase the
immersion with more accurate 3D models and complex scenes while
keeping interactivity and frame rate fluent. This is still the main challenge of
distributed games or virtual environments.

In this paper we focus on 3D data distribution management
approaches considering visibility. A consistent visibility and interaction on
the remote user is the main purpose of multi-player online games like stealth
games. In such games, some optimization methods should be applied to
achieve the frame rate goal since there are usually constraints on network
bandwidth, hardware and software properties of both server and clients or
data sets those will be distributed.

As a course of DVEs’ nature, improvements have been done in
different domains like network, distributed simulations and graphics. In
network, different network topologies have been implemented such as
broadcasting, multicasting or centralized server approach [1]. In addition,
High Level Architecture provide a Data Distribution Management that is
implemented over Run-Time Infrastructure for distributed simulations [2],
[3]. In computer graphics, temporal and spatial subdivisions of scenes and

1 In this paper, the term of DVEs is used as general term for Distributed Virtual Environments, Networked Virtual
Environments, Multi-User Online Games and Distributed Virtual Simulations. Details and differences between
them are not discussed.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

45

visibility algorithms like occlusion culling are utilized for this purpose [4].

Visibility has been remarkable subject over the last few decades. The
aim of the visibility is to decide whether an object is visible from a given
viewpoint in the viewing direction, so that invisible ones would be culled. It
is basically performed by using traditional depth buffer, but more efficient
methods should be used in order to increase performance in much more
complex scenes and situations which have large data set [4].

In terms of efficiency, there is an important similarity between
visibility and data distribution. In visibility, it is aimed to reject invisible
polygons as early as possible so that either CPU or GPU wouldn’t be
occupied in working on them [4]. Likewise, in DVEs, if invisible or
unrelated data are not distributed to clients, network performance is
improved [5]. Because of this similarity in conceptual view, some of
methods related to the data distribution takes the advantage of visibility
culling approaches.

Although there are large numbers of studies on individual topic of
DVEs, data distribution and visibility, there is not any study which covers
both visibility and data distribution. In consequence of this motivation, we
aim to survey data distribution approaches considering visibility methods
for consistent visibility and interaction in DVEs. As illustrated in Figure 1,
general purpose of this paper is showing that network bandwidth is used
more efficiently by using data distribution and interest management (IM)
techniques along with visibility algorithms.

The rest of the paper is organized as follows. Firstly, we compare our
paper with related studies in section II. Then, we describe visibility culling
in section III and basics of data distribution and IM in terms of DVEs in
section IV. In section V, data distribution management approaches in DVEs
which take advantage of visibility techniques are discussed. Finally in
section VI, we conclude our survey.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

46

2. RELATED SURVEYS

Our paper contains three different topics as visibility, data distribution
and IM each of those have been studied in several surveys.

In the survey of Cohen-Or et al. [4], they classify visibility algorithms
as point-based and from-region and then summarize individual approaches
in terms of walkthrough applications. Bittner and Wonka [6] have also
studied and compared visibility algorithms however they present new
taxonomy

Figure 1. (a) A scene representation seen in the server. Filled star represents
a client, as dashed line do Area of Interest (AoI) and dotted line do Viewing
Frustum. (b) In brute force approach all geometries are sent to the client
from the server that causes occupying network bandwidth a lot. (c) In case
of considering AoI of the client, some geometries (diamond and square)
outside the AoI are not sent. (d) When visibility culling computations are
taken into account, more geometries are also culled and network usage is
relatively decreased. In this sense, reverse triangle and circle culled as a
result of viewing frustum test, triangle is culled because of being occluded
by rectangle and some part of pentagon is culled since back-face culling is
performed.

according to problem domain. Both of these studies focus on visibility
algorithms on discrete systems and do not consider distributed virtual
applications and data distribution or IM.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

47

Boulanger et al. [7] survey IM techniques for massively multiplayer
games and compare eight algorithms. Carter et al. [8] discuss area of interest
management (AoIM) and the distribution and communication protocol to be
considered when building P2P massive multiplayer online games. These
surveys cover interest and data distribution management methods in DVEs
while they don’t take visibility computations into consideration. In Liu and
Theodoropoulos’ detailed survey on IM [9], they give fundamentals about
DVEs and classify IM algorithms into six categories one of those is
visibility-based. In their survey some IM algorithms which use visibility
computations are discussed some of those are also explained in our paper.

There are several other works on DVEs which survey network
overlays, architectures and designs [10], [11], [12]. These don’t contain
neither visibility nor IM algorithms, only focus on network properties such
P2P overlays.

3. VISIBILITY

The topic of visibility emerged in 1960s on the purpose of
determining visible lines of surfaces [6]. As well as hidden surface removal
(HSR) algorithms, in 1975 z-buffer algorithm was presented by Catmull and
has been widely acclaimed for long years [13]. With the increase in data sets
in the last few decades, traditional HSR and z-buffer algorithms remained
incapable. Therefore, new visibility culling algorithms have been
implemented to fulfill the need in different problem domains [4], [6].

It is aimed to identify visible or invisible parts of scene as early as
possible in visibility algorithms [14]. Thus some computations and tests are
performed to determine whether a polygon is visible or not. Fundamentally,
there are three technique for this purpose: Back-face culling, occlusion
culling and viewing-frustum culling. These techniques constitute the base of
visibility culling algorithms where a polygon is determined as invisible if it
faces away from the viewpoint, is occluded by another part of the scene, or
is outside the current viewing frustum respectively as seen in Figure 2 [4],
[15].

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

48

Figure 2. Types of visibility culling methods. A polygon is determined as
invisible if it faces away from the viewpoint (Back-Face Culling), is
occluded by another part of the scene (Occlusion Culling), or is outside the
current viewing frustum (View-Frustum Culling).

Human visual system perceives pictures at higher frame rates more
than 10-12 frame per second (fps) as a moving pictures. For example silent
films has frame rates between 16 and 24 fps while standard filming and
projection format are 24 fps in motion film industry [16]. Digital video and
television formats support more than 24 fps where most of games and
simulations requires at least 30 fps for interactivity and fluent rendering.
Thus, determining visible parts and rendering them should be performed in
less than 1/30 sec. to obtain frame rates more than 30 fps. This is the most
desired objective to reach in computer graphics applications and games [17].
To accelerate this process, most of the approaches offered in visibility
culling aim to find potential visible set instead of exact one. Exact visible
set (EVS) contains all polygons which are at least partially visible for a
given viewpoint while potential visible set (PVS – in literature also called
conservative visibility set) may include some invisible polygons in addition
to all exactly visible ones [4], [17], [18]. Obtaining EVS in one shot is
costly, slow and underperformance in most applications which has complex
virtual scene. Some of the implementations uses graphics hardware to
estimate the EVS with the help of depth buffer and send all the primitives in
the scene to the graphics hardware. If the virtual scene is more complex and

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

49

larger than the memory capacity of graphics hardware, then a bottleneck
occurs during the translation between main memory and graphics hardware
during the implementation. For that reason, the preferred strategy is to
estimate PVS by culling most of invisible objects as early as possible in
graphics pipeline in low cost initially, and to remove the relatively small
amount of invisible primitives in the second step by determining EVS in
previously overestimated PVS. The main goal in this approach is to estimate
PVS as much as close to EVS in optimum cost and save up time rather than
processing all primitives with respect to the requirements of
implementation. Thus, the quality of the PVS that is related to size of
invisible polygons is crucial matter [17].

A user usually views only small portion of whole scene in complex
and large environments such as urban. Working on great deal of irrelevant
and invisible data increases the computations and running time in an
implementation. Visibility culling algorithms aim to be output sensitive. If
an algorithm is output sensitive, its running time is proportional to process
time of the size of its visible set instead of entire scene [4], [6]. In other
words, the more the visibility algorithm is output sensitive, the faster it is.

Until this point, we mention about the goals and performance issues of
a visibility algorithm in computer graphics implementations. We now
explain the basic classification of visibility algorithms as point-based and
region-based (or from region visibility) with respect to computations made
for only current viewpoint or a defined region respectively [4], [19].

3.1. Point-Based Visibility Algorithms

In point based visibility culling algorithms, visibility computation is
performed with respect to current viewpoint. Whenever viewer’s location or
looking direction changes, the number of visible primitive changes and new
computations should be executed. This characteristic of point-based
visibility algorithm necessitates to estimate EVS in each frame when user
moves in the virtual environment. This is a significant drawback where the
sequence of computations in runtime occupies hardware a lot and therefore
limits or incapacitates the usage of these methods in DVEs.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

50

Several methods has been presented to overcome point-based
techniques’ stated disadvantage. Most of them uses the occlusion culling
approaches which estimate the invisible primitives behind the close ones
which are called occluder. In the method that is based on selecting large
convex occluders, Coorg and Teller offers tracking visual events to exploit
temporal coherence [20]. In their subsequent work, they also proposed
selecting occluders in preprocessing stage [21]. Hudsan et al. make some
improvements about occluder selection to be used more efficiently [22]. In
addition, additive individual approaches, hierarchical data structures and
subdivision of scene such as octree [20], [23], [24], Shadow Volume Binary
Space Partition [25], hierarchical z-buffer [23] and hierarchical occlusion
map [17] are utilized.

Point-based methods are implemented in object or image space, or in
both. In object precision methods, computations are performed on the basis
of objects, whereas pixel-based processes are done in image-precision
techniques [4]. Since image-precision methods are performed in
rasterization stage, its performance is up to capacity and productivity of
hardware. In some complex scenes where working on object would be
costly, image-precision approaches may suit well according to the
implementation requirements.

3.2. Region-Based (or From Region) Visibility Algorithms

Point-based visibility algorithms can be utilized on a small scale
scenes where number of visible primitives are limited such as indoor scenes.
Because of the weakness of computing visibility for each frame in point-
based methods, they are not applicable to walkthrough applications in
outdoor scenes where a lot of primitive may be seen from an opening. To
overcome this drawback, rather than performing computations for a view
point, PVS for a region is computed and utilized when the user is in the
corresponding region. This way, minimizing processes executed in render
time using computed PVS for the region puts region-based visibility
algorithms forward. As well, most region-based approaches defines regions
in precomputation and in this way prefetching is provided especially for

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

51

DVE implementation. On the other hand, these algorithms may need
preprocessing phase and large size of memory for the overestimated PVS
for potential regions or view-cells [4].

Commonly used region-based visibility method is cell-and-portal
approach. It is suitable for indoor scenes where the environment is divided
into cells such as rooms. Portals are the openings such as doors or windows
defined between cells. Room walls bound cells where the user move in.
Even though this approach is utilized in point-based visibility methods, the
PVS of each cell is estimated by the neighborhood relation constructed by
portals of the cell. It means that if a cell is seen by any portal of the
corresponding cell, then the primitives of seen cell is added to the PVS. This
approach is utilized both point-based and region-based visibility culling
methods using neighboring relationship. In region-based visibility method,
cells and portals are usually identified in preprocessing stage and for each
cell possible visible adjacent regions are computed and added to PVS of
each cell.

The most important benefit of cell-and-portal approach is prefetching.
During run time, when a viewer transits to another cell, related scene
information, which is the precomputed PVS of cell, is retrieved from
storage. By means of prefetching, possible visible cells and thus transited
cell information are known. Also, whenever user stays in a cell there is no
need to make computation or retrieve data from memory. Using the
precomputed PVS which is significantly a small of the entire scene,
facilitates fluent display and prevents unwanted flickering of instant visible
primitives. As we will discuss later, this prefetching approach is greatly
desired in walkthrough applications in DVEs.

Though its momentous advantages, unfortunately, cell-and-portal
algorithms are not well suited to outdoor scenes. Not only this method but
also other approaches are difficult to implement effectively because this
kind of scenes may contain enormous objects and polygons. Its reason is
that a lot of primitives behind may be visible through the opening such as
streets. To overcome this, generic techniques were developed which is

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

52

based on defining view cells and testing occlusion between the view cell
and objects. Some methods utilizes occluder fusion approach to estimate the
occluder shadow constructed by close and small occluders as seen in Figure
3. Then these methods use the occluder shadow to cull the invisible
primitives in behind [15]. Some region-based methods utilizes sample
points on the view cell to estimate PVS of the cell. The difficulty of
estimating PVS from sample points is that an invisible primitive from the
sample points may be visible between sample points as seen in Figure 4 [6],
[15]. These methods use occluder shrinking or extended projection approach
to in addition to occluder fusion overcome this problem [4], [15], [26].

 (a) (b)

Figure 3. (a) Sampling of the occlusion from six sampling points. (b) The
fused umbra from the six points is the intersection of the individual umbra.

 (a) (b)

Figure 4. (a) Umbra of individual occluders. (b) Aggregated umbra.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

53

4. DATA DISTRIBUTION IN DVES

In DVEs, users share a common environment and be aware of other
participants via exchanging data such as position and orientation. Each
distributed simulation implementation has different strategy for data
distribution to obtain fluent and consistent simulation since latency between
clients disturbs the user and reduce the interactivity and consistency of the
simulation. It is not efficient to receive all data or messages those are
flowing over network because of both discrete workstations and network
constraints [27]. For this reason, data distribution whose task is managing
data transfer has great importance to avoid delays in such systems. The
importance of data distribution management increases especially on
interactive graphics implementation such as stealth games since they are
less tolerable to latencies on network and rendering.

In virtual applications, since visualization pipeline starts with
retrieving data from storage [28], bottleneck in this stage would affect the
rest of rendering pipeline. Thus, it is crucial for a remote user to have data
on time prior to process. In terms of distribution time, as Hesina and
Schmalstieg summarized [29], data can be distributed off-line (usually used
in simulations and CD-ROM based games), before use (preloading) or on-
the-fly (distributing individual objects during rendering). For a consistent
simulation, the amount of data needed by any user should be estimated
initially and then distributed to the corresponding client on time. These are
the challenges of each DVE to be fulfilled considering the virtual
environment, user’s area of interest (AoI), hardware capability of server and
client, network latency, number of users etc.

 DVEs are implemented over two main network architectures: server-
client and peer-to-peer (P2P) [30]. Hybrid architecture involving both
server-client and P2P can also be used in some applications. In server-client,
there is a centralized server where clients cannot communicate with each
other directly but only through server. Management of server client
architecture is easy, but it has some drawbacks like single point of failure,
bottleneck on server, not being scalable and cost of running server. In

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

54

contrast to server-client, there is no centralized server in P2P architecture
and clients can communicate with each other directly. This architecture is
highly scalable, but it is difficult to manage and has a security vulnerability.
The appropriate architecture is chosen with respect to the requirement of
DVE by taking their advantages and disadvantages into consideration.

The objective of data distribution strategy in DVE is to utilize the
limited resources such as network bandwidth, memory and process power of
both server and clients more efficiently. In this way, we improve the
scalability of the DVE and prevent possible errors caused by latency while
keeping its consistency and interactivity. Apart from field of network, this
can be accomplished by reducing message traffic by filtering them
according to the interest of clients, which is a quite separate topic called
interest management [7]. In IM, a client declares its interests with regards to
his location, what he sees or what his sensors engaged to. For instance, a
user walkthrough in urban environment and he only needs to get the visible
primitives in his AoI or his viewing direction. These primitives may be
static objects like buildings, roads or be dynamic objects like autonomous
cars, people or avatars of remote clients. This way, we may limit the data
distribution regarding to the requirements of each client and enable server
and client to utilize their resources more efficiently [31] [32].

IM approach in data distribution is usually used in message passing
related to dynamic objects. It can be classified as class-based and space-
based [7]. A client states its interests about object’s attributes in class-based
IM. For example, in an airport, a surveillance radar may only subscribe to
airplanes therefore it doesn’t take any message from other dynamic agents
such as busses, cars or people. In space-based, subscription is done in terms
of positions of agents. Turning back to our example, radar station may
subscribe only aerodrome control zone of that airport but not other airports’.
Space-based can also be categorized as region-based and aura-based [33].
Main distinction of them is that in region-based the scene is partitioned into
static regions, while in auras-based spaces are determined dynamically
according to agents and their interests [7], [33].

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

55

As a conclusion, seizing the frame rate objective is vital in rendering.
Since rendering pipeline starts with retrieving data from either network or
storage, bottleneck in this stage directly affects rendering time. Thus,
latencies and overloads in both network and storage should be minimized.
One way to accomplish this drawback is to distribute data to only relevant
clients. For this purpose, some IM and visibility techniques have been
proposed in time. In the next section, we review the well known thirteen
DVE implementations in the perspective of data distribution management.

5. VISIBILITY USAGE IN DVES

5.1. RING (1995)

RING presented by Funkhouser [34] is a system whose aim is to
reduce the number of messages sent from server to clients based on possible
visual interactions between entities in a virtual environment. The main idea
behind the RING is that clients should take update messages only if updates
are relevant to them. By using visibility algorithms, server decides which
update message should be sent to whom.

The implementation of RING is as follows. At the beginning, virtual
environment is divided into cells which are axis aligned and have static
boundaries. Then, the portals which provide line-of-sight visibility between
cells are defined. During the simulation, server keeps track of clients and
their regions. Thus, when a client informs server about an update, server
computes visible cells of the client and forward update messages to relevant
server or clients.

It would be an advantage of RING that storage, processing and
network requirements of clients individually are independent from number
of active clients since each of the clients keep and process only its local
data. Besides, performing computations on server side improves network
performance. However, because there is additional process in server, great
deal of latencies may occur.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

56

5.2. ϵ-Neighborhood (1998)

In a DVE using server-client architecture, the server should send only
relevant data instead of entire scene to the client. Common method to
accomplish this is calculating PVS in server side. However, as stated in
Section II, little change in viewpoint of a client may cause great deal of
difference in visibility. Therefore server might overwork on computing new
visible sets and sending them to the clients. In order to disburden the server
and reduce message traffic between the server and the client, Cohen-Or and
Zadicario [35] proposed an algorithm for computing superset of PVS by
taking a few neighbors of current viewpoints into consideration. By this
way, as long as the client is on these region there is no need to ask the server
to compute PVS.

Implementation details of the algorithm are as follows: From a
viewpoint, visibility of an object is determined by selecting a convex
occluder and testing whether the object is hidden by the occluder or not. If
this process is executed for two individual viewpoints and the object is
determined as invisible from both of them because of being hidden by the
same occluder, it is inferred that the object is invisible from any point
between selected viewpoints. Based on this, a tetrahedron shadow umbra is
constituted by combining edges of occluder and object and then the object is
accepted as invisible whenever the clients stay in the umbra. The superset of
the PVS is computed in server by the help of this umbra.

In this algorithm, the most expensive process is ray shooting to
construct shadow umbra. Besides, occlusion fusion is not supported.
Another disadvantage is that occluders must be in convex form although
some methods can be performed to overcome this.

5.3. Update Free Regions (1999)

In server-client architecture, a server knows where each client is
located at. Therefore, the server is able to filter messages, and can send
update messages to only relevant clients. However, in P2P architecture, it
may not be possible since keeping data of all clients causes additional cost.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

57

To handle this, Makbily et al. proposed a new concept that uses Update Free
Regions (UFRs) to compute visibility and reduce message traffic [36].

UFRs are determined in preprocess stage for each agent pair in their
algorithm. UFR is a region where an agent doesn’t send update messages to
another while it stays in. In other words, as long as an agent stay on its UFR,
it knows that the other agent cannot see it. When it leaves UFR, it comes to
mean that these agent pair may see each other; so update messages are sent
(Figure 5). As seen easily, this method is not efficient in multi-user
environments in the case UFRs are computed for each pair.

Figure 5. (a) According to initial positions of A and B, UFRs are identified
where A and B cannot see each other. As long as both of them stay in their
own UFR, they don’t send update messages to the other. (b) When one of
the clients leave its UFR, this come to mean that they can see each other and
thus it is tested whether new UFRs can be identified or not. (c) Since new
regions which fulfill the conditions can be identified, UFRs are updated.
(d) In the case one of the clients leave its region and new UFRs cannot be
identified, clients begin to send update messages to the other.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

58

5.4. Smart Visible Sets (2002)

In spite of the common acceptance of the PVS methods for reducing
the data amount flowing over network, in some complex environments
PVSs might not be small and simple enough. Moreira et al. [37] thus present
a Smart Visible Sets (SVS) concept that enables partitioning PVS into
smaller subsets and setting priorities to them. In this way, it is aimed to
decrease data amount sent from server by sending the most prioritized set
instead of less important ones in the event of congestion over network.

SVS is initially computed by splitting viewing frustum into pieces.
Each of the pieces covers specified angle. As the angle can be constant, it
can also be adaptive because defining constant angles may cause more than
needed split cells. In both cases, depth-traversal of the Binary Space
Partitioning (BSP) is performed to determine which geometries are located
in cells. Once division of the cells is completed, cell-to-cell visibility test is
performed by checking divided cells’ boundaries according to current
frustum. Besides angle specification, distance parameter can also be used in
partitioning by considering the distance from PVS region to the divided
regions. Hence, distances between divided cells are estimated and viewing
distance as well as visible other cells of the selected cell is stored.

The other purpose of this work is setting priorities to cells in order to
sort them in addition to defining SVS. Because some losses or latencies may
occur in the case of network bandwidth overload, some data might be sent
lately or incompletely from the server. Prioritization information is
maintained on the server and the server tries to send most desired and most
necessary cell first to overcome this drawback.

5.5. A Navigation System by Marvie et al. (2003)

In the work of Marvie et al. [38], they present a navigation system that
allows real-time remote walkthrough built on a server-client architecture.
Considering network bandwidth restrictions; visibility, prefetching and
Level-of-Details (LoD) techniques have been adapted in their system.

In this method, region-based visibility computations are used by

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

59

defining view cells and computing PVSs for each of them. In addition,
adjacency graph is also constructed to enable next cell estimation and thus
prefetching. Most important part of the approach within our context is that
the system takes the advantage of visibility computation results while
deciding LoD in order to reduce the amount of polygons to be rendered.
Different from traditional metric-based LoD determination, Average
Coverage Hint (ACH) is computed. ACH is the average surface area of the
object when projected from a viewcell. In the final rasterization, ACH is
used to determine LoD as a percentage of covered pixels.

5.6. CyberWalk (2003)

CyberWalk [39] is an on-demand distributed virtual walkthrough
system that enables walking through a virtual environment over internet. It
is built upon server-client architecture and all objects are stored in central
server. There are three featured issues in CyberWalk. Firstly, models are
maintained in compact form in order to reduce transmission and thus
rendering time. Secondly, the system keeps clients alive in case of
disconnection problems. Lastly, it provides catching and prefetching
mechanism.

Figure 6. In CyberWalk, since the user’s view scope (straight line) overlaps
with object A’s object scope (dashed line), A is handled for further
resolution determination. Though B is closer than A to the user, it is not
handled because most probably B’s size is much smaller.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

60

Most approaches identify AoI according to viewer. In CyberWalk, its
scope is extended by considering AoI from both viewer and object. The
former is called the viewer scope and the letter is called the object scope. A
viewer scope is an area bounded by viewer’s depth of sight, while object
scope indicates the area where the object can be seen by agents. In run time,
the visibility test is performed by comparing these circular regions’ (scopes)
relations between each other. As a result of the test if two scopes intersect, it
comes to mean that the viewer may see the object. Then, according to the
viewer’s viewing angle and distance between the viewer and the object,
resolution of the object is determined (Figure 6). Finally, object model with
the computed resolution is sent from server to client.

5.7. From-Point Based Prefetching (2003)

Correa et al. [40] presented a from-point visibility-based prefetching
algorithm for interactive out-of-core rendering. Their method uses
prioritized-layered projection (PLP) algorithm to compute approximate
visible set (AVS), cPLP to compute conservative visible set and a point-
based visibility algorithm to determine geometries that the user may need in
the near future. PLP performs computation like view-frustum culling except
the traversal of the nodes from the highest to lower priority, while it is
executed in pre-defined order in view-frustum culling.

Whenever camera position or orientation is changed, new visible set is
computed by the system according to the user’s selection (AVS or PVS).
Then the look-ahead thread estimates next camera position in regard to
camera’s direction and speed. After defining possible camera positions, the
look-ahead thread performs PLP to decide which nodes are possibly visible
and for each likely visible node it sends a prefetch request to geometry
cache. In this way, likely visible sets are predicted by the system and
transferred to memory, thus data is retrieved from memory instead of disk in
run time which is a less expensive process.

This algorithm has some advantages over region-based approaches.
First of all, it doesn’t need great preprocessing time since scene is not
partitioned to regions like cells. In this stage only hierarchical structure is

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

61

created and thus in the rendering time visible set is computed without
traversing over whole scene. Besides, because this algorithm handles
smaller amount of data relative to region-based techniques, it reduces disk
access. Lastly, there is no restriction like defining cell and portals or
identifying axis aligned bounding box as done in region-based methods.

5.8. Frontier Sets (2004)

Steed and Angus [41] has presented a new data structure called a
frontier set that is used to define mutually invisible cells between client
pairs in region-based visibility. Frontier is a region (may consist of nodes or
cells) where clients cannot see each other as long as both of them stay in
their own frontier. Frontiers are defined for client pairs and both of them
have knowledge about these frontiers. Whenever one of them leaves its
frontier, it comes to mean that it may see the other. In this point, client left
its frontier informs the other one and they renegotiate to identify new
frontiers. Frontier definition and updates are illustrated in Figure 7.

Creation of frontiers is based on cell-and-portal approach. Cells are linked
to each other in an adjacency graph and from the cell where clients exist in,
traverse is executed to decide whether nodes (cells) are visible or not.
Although frontier creation may take long time, in the run time data amount
flowing over network is reduced. This data structure is adapted to P2P
network architectures and provides well scalability.

In authors’ succeeding work [42], they aimed to reduce frontier
definition algorithm complexity. For this purpose, they proposed computing
enhanced PVS that is including visibility distance metric. By this way,
frontiers can be created during run time dynamically and though it needs
larger storage capacity because of distance parameter, complexity dropped
from O(N3) to O(N2).

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

62

(a) (b)

(c) (d)

Figure 7. A client pair negotiate and define their frontiers in initial position
(a). When at least one of them leave its frontier, they renegotiate and define
new frontier regions (b and c). If there is a line of sight between cells those
contain client pair, frontier cannot be constructed (d).

5.9. Partially Ordered Delivery for 3D Scenes (2006)

The method presented by Tian and AlRegib [43] aims to prevent
server side to send objects with unnecessarily high resolutions. To
accomplish this, a multiresolution method is implemented by considering
the fact that there are usually multiple objects in the same viewing frustum.
Thus, interactions between objects are taken into account for assigning them
a weight value that represents relative importance of the object in the
rasterization.

The weighting algorithm performs two processes. At first, well known
viewing frustum culling is executed. As a result of this test, two sets are
created: outside of the frustum and at least partially inside of the frustum.
For the second set, distances between view point and the center of the

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

63

bounding boxes surrounding objects is sorted with the closest objects first
order. In the second process, image-spaced mapping is performed by using
bounding volume projection map. From the sorted list, objects are mapped
to the scene projection according to their weight factor, and farther objects
are therefore not rendered. In subsequent stages of the method, LoD and
thus resolution are determined after visibility computations. Finally, the
server decides objects to send and their LoD characteristics.

5.10. Object-Initiated View Model (2006)

A client can see only objects lay inside its AoI or viewing frustum.
While the client cannot see objects immediate ahead of the viewing frustum,
those objects may suddenly be appear after a while during navigation [44].
Thus, this problem which cause discontinuities in walkthrough disturbs the
client’s view seriously and called popping problem [45].

In order to minimize popping problem, object-initiated view model
that take also the AoI of objects as well as users into consideration is
proposed by Seo and Zimmermann [44]. AoI for each object is computed
considering several parameters like illumination, distance, size. The basic
idea behind the visibility determination is testing whether the AoI of the
object covers the client or not. Seo and Zimmermann emphasize the
drawback of storing and retrieving such a big data rather visibility
determination. Therefore they present a new indexing method called edge
indexing which is out of our scope. In another work [45], they have
implemented the same paradigm into different environments as a stationary
user in a stationary environment, a moving user in a stationary environment
and a stationary user in a moving environment.

5.11. Flowing Level-of-Details (2008)

In DVEs, one method to distribute data to clients is delivering content
before application runs that is named as pre-downloading or pre-installing
[32] or offline distribution [29]. However, in the case there is much larger
and more dynamic content or larger number of objects, this method
becomes inadequate. For this purpose, Hu et al. presented a P2P 3D

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

64

streaming framework that is called Flowing Level-of-Details (FLoD) [46].

Main idea behind the FLoD is to enable clients obtaining data from
others those have similar AoI or overlapped visibility with that client. To
handle this, three requirements are emerged. First, because all data is
maintained in server initially, it is required to partition and deliver some
related scene data to clients in time. Second, clients must have knowledge
about others at least those share common AoI with it. Third, clients must be
able to select available peers among others from whom it can take scene
data efficiently. To meet these requirements, FLoD performs five tasks as
partition, fragmentation, prefetching, prioritization and selection.

FLoD uses Voronoi-based Overlay Network to organize peers
according to their AoI and boundary neighbors. When a peer login in first
time, it informs server about its initial location and AoI. Then, to decide
which part of the scene is visible, it requests likely visible objects from its
neighbors by reason of the fact that its neighbors might visit this peer’s
current location before, thus may have visibility information about that area.
Whenever the peer moves in VE, it updates its neighbors and make new
requests to them for visibility determination. By this way, server gets rid of
sending repeating data to clients.

5.12. Distributed Massive Model Rendering (2012)

Since CPU, GPU, or memory in a single host fail to cope with the
processing large amount of 3D geometries, a new framework distributing
discrete processes to individual hardware and hosts have been proposed by
Revanth and Narayanan [47]. Coarsely, in their distributed rendering
solution that is built upon a server-client architecture, the server performs
view-frustum culling, one GPU in the client performs visibility culling and
another GPU in the client executes rendering.

The proposed pipeline consists of four parallel modules. In the load
balanced frustum division module, viewing-frustum culling is performed by
the server. As the server has the whole knowledge about the scene, this
process can be handled efficiently according to the client’s position and

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

65

bounding boxes (or spheres) of objects. Thus, the server sends only relevant
data to the client instead of the entire scene. In the second module named as
visibility determination module, the client does visibility culling,
particularly occlusion test in the first GPU. In the sub-frame rendering
module which is the third stage, the second GPU of the client is used to
render sub-frame. Lastly, these sub-frames are sent to the server to be
assembled in the assemble frame module.

5.13. A3 (2008) and EA3(2013)

In order to use network bandwidth efficiently, a proximity-based IM
algorithm called A3 is presented by Bezerra et al [48]. By calculating
distances between the client and entities, it is decided whether the entity is
relevant to the client. For optimization, view distance, field of view (FoV)
and critical area of the client is considered in the algorithm. By defining
critical area that is a circle whose centre is the location of the client and
radius is the critical distance, it is provided that the client can take most
relevant updates in the immediate vicinity as soon as possible because
network bandwidth is allocated to critical area with priority (Figure 8.a).

A3 is improved by Vatjus-Antilla et al. [49] considering occlusions. In
their algorithm, which is named as EA3, they use ray visibility algorithms
additionally. Basic rational is as same as A3 in defining critical area and
FoV. Differently, obstacles are identified, then by using axis aligned
bounding box (AABB) ray casting algorithm occluded part of the FoV is
discarded and the area of the FoV is thus Minimized (Figure 8.b). As a
result, message traffic flow from the server to the client is greatly decreased
as this process is executed in the server.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

66

Figure 8. (a) In A3 algorithm, critical distance and view distance are
identified. Primitives in the critical area have more priority than others
which exist in rest of the FoV. (b) In EA3, only difference from A3 is taking
the obstacles into consideration and thus reducing the area of FoV.

6. CONCLUSION

In this paper, we aimed to propose a survey to the researchers who
plan to work on data distribution based on visibility and AoI in DVEs. Even
though there are individual surveys on visibility, data distribution with or
without AoI approach, our aim is to bring all of them together in the
perspective of visibility based data distribution.

We firstly discussed visibility that has the objective of rejecting
invisible primitives as early as possible in virtual scenes. By using effective
visibility culling techniques, unnecessary primitives are not handled and

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

67

therefore processes must be performed is reduced. Visibility algorithms are
classified as point-based and region-based according to considering visible
primitives from the current view point or a region. After examining methods
in both types, it is clearly seen that region-based algorithms have enormous
advantages over point based algorithms in providing prefetching, fluency in
scene transitions, exploiting coherence and less run time processes. On the
other hand, region-based approaches may need longer preprocessing time
for defining cells, portals, viewing cells etc. To seize the frame rate
objective, most suited techniques should be preferred considering scene
complexity, data sets, hardware and software properties.

Secondly, we mentioned the importance of data distribution and IM in
DVEs. Parallel to the recent developments in computer technology, data
amount in DVEs increase a lot as a consequence of increase at details and
reality of scenes. Thus, data transfer between participants should be well
managed. To overcome this challenge, data distribution management
techniques most of whose are based on considering AoI are used. By this
way, some data set are eliminated before transfer thus network bandwidth is
used more efficiently. Besides, each participant has only local data about the
scene and doesn’t have to cope with the entire scene that contains mostly
irrelevant data set.

Lastly, we surveyed thirteen data distribution techniques which are
summarized in Table 1 in terms of visibility and IM in chronological order.
All these methods have in common that they perform visibility methods
before distributing data to participants. They consider participants’ interests
and thus send related data set. To accomplish this, most of them benefit by
dividing scene into regions and construct relations between regions and user
interests. While some of them are directly focus on visibility culling, some
other use visibility computations in a small part of pipeline for example to
decide LoD or resolution.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

68

Table 1. Summary of Discussed Methods

Technique
Server-Client/

P2P
Point-Based/
Region-Based

Visibility Issues IM and DDM Issues

RING Server-Client Region-Based Cell-and-Portal approach is used.
Server keeps track of cells in which
clients exist and distribute data to relevant
clients.

ϵ-Neighborhood Server-Client Region-Based
Superset of PVS is computed by
constituting shadow umbra from a
selected convex occluder.

Since superset of PVS is computed, client
request updates from server rarely.

Update Free
Regions

Server-Client Region-Based
Regions in which clients cannot conduct
line-of-sight due to an obstacle are
determined.

Unless clients leave their region, no
message is requested from server.

Smart Visible
Sets

Server-Client Region-Based
PVS is partitioned into smaller cells and
cell-to-cell visibility is tested according
to the viewing frustum.

Smart visible sets are obtained by
assigning priorities to partitioned cells
and server send the highest priority data
first.

A Navigation
System by

Marvie et al.
Server-Client Region-Based

View cells are defined and PVSs are
computed for each of them.

Resolution of geometries sent from server
is decided as a result of visibility
computations by computing ACH.

Cyber Walk Server-Client Point-Based
PVS is computed by testing whether
objects’ and viewer’s scope overlap.

AoI is taken into consideration for both
objects and viewer.

From-Point
Based

Prefetching
Server-Client Point-Based

PLP or cPLP algorithms are used to
compute AVS or PVS. Besides, the
algorithm determines geometries which
the client may need in near future.

Likely necessary geometries are tested
firstly thus prefetching is enabled.

Frontier Sets P2P Region-Based Cell-and-Portal approach is used.
As long as peers are in their own frontier,
no message or update is transferred
between them.

Partially
Ordered

Delivery for 3D
Scenes

Server-Client Point-Based
Firstly, viewing frustum culling is
performed. Then, objects are sorted upon
their distances from viewer.

By considering distance factor of objects,
LoD of objects are determined and this
prevents server to send objects with
unnecessarily high resolution.

Object-Initiated
View Model

Server-Client Region-Based
Visibility is determined by testing
whether object’s AoI covers the client.

Edge Indexing method is presented in
order to overcome the drawback of
storing each object’s AoI.

 Flowing Level-
of-Details

P2P Region-Based
A peer request likely visible objects from
its neighbors.

Each connected peer declares its AoI and
position.

Distributed
Massive Model

Rendering
Server-Client Region-Based

Visibility computations are dispatched to
server and client. View-frustum culling is
performed in server, while visibility
culling is done in GPU of client.

By performing visibility culling in server
side, data amount to send from server is
decreased.

A3 and EA3 Server-Client Region-Based

Traditional view-frustum culling is
performed. Differently, in EA3, obstacles
are also taken into consideration to
reduce FoV.

Proximity based interest management
algorithm is used and objects are taken in
sort of priority according to each client’s
critical area.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

69

REFERENCES

[1] Michael Capps and Seth Teller, "Communication visibility in shared
virtual worlds," in Enabling Technologies: Infrastructure for
Collaborative Enterprises, 1997. Proceeding, Sixth IEEE Workshops
on. IEEE, 1997.

[2] Richard M. Fujimoto, "Parallel and distributed simulation," in
Proceedings of the 31st conference on Winter simulation:
Simulation-a bridge to the future-Volume 1., 1999.

[3] Katherine L. Morse and Jeffrey S. Steinman, "Data distribution
management in the HLA: Multidimensional regions and physically
correct filtering," in Proceedings of the 1997 Spring Simulation
Interoperability Workshop, 1997.

[4] Daniel Cohen-Or, Yiorgos L. Chrysanthou, Cláudio T. Silva, and
Fredo Durand, "A survey of visibility for walkthrough applications,"
in Visualization and Computer Graphics, IEEE Transactions on 9.3
(2003): 412-431.

[5] Azzedine Boukerche, Nathan J. McGraw, and R. B. Araujo, "A
novel data distribution management scheme to support
synchronization in large-scale distributed virtual environments," in
Virtual Environments, Human-Computer Interfaces and
Measurement Systems, 2005. VECIMS 2005. Proceedings of the
2005 IEEE International Conference on. IEEE, 2005.

[6] Jiri Bittner and Peter Wonka, "Visibility in computer graphics," in
Environment and Planning B: Planning and Design 30 (2003): 729-
755.

[7] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Verbrugge,
"Comparing interest management algorithms for massively
multiplayer games," in Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games, 2006.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

70

[8] Chris Carter, Abdennour El Rhalibi, and Madjid Merabti, “A survey
of AoIM, distribution and communication in peer-to-peer online
games,” in Computer Communications and Networks (ICCCN), 2012
21st International Conference on. IEEE, 2012.

[9] Elvis S Liu, and Georgios K. Theodoropoulos. "Interest management
for distributed virtual environments: A survey," in ACM Computing
Surveys (CSUR)46.4 (2014): 51.

[10] Bingqing Shen, Jingzhi Guo, and Peng Chen. "A survey of P2P
virtual world infrastructure,," in e-Business Engineering (ICEBE),
2012 IEEE Ninth International Conference on. IEEE, 2012.

[11] John S. Gilmore and Herman A. Engelbrecht. "A survey of state
persistency in peer-to-peer massively multiplayer online games,"
Parallel and Distributed Systems, IEEE Transactions on 23.5, 2012,
pp. 818-834.

[12] Eliya Büyükkaya, Maha Abdallah, and Gwendal Simon. "A survey
of peer-to-peer overlay approaches for networked virtual
environments," Peer-to-peer networking and applications 8.2, 2013,
pp. 276-300.

[13] Edwin Catmull, “A subdivision algorithm for computer display of
curved surfaces,”, Ph.D. dissertation, University of Utah, Salt Lake
City, Utah, 1974.

[14] James T. Klosowski and Cláudio T. Silva, "The prioritized-layered
projection algorithm for visible set estimation," in Visualization and
Computer Graphics, IEEE Transactions on 6.2 (2000): 108-123.

[15] Gürkan Koldaş, “Efficient visibility estimation for distributed virtual
urban environments,” Ph.D. dissertation, Middle East Technical
University, Ankara, 2008.

[16] Frame rate, Wikipedia, [online] 2015, https://en.wikipedia.org/wiki/
Frame_rate (Accessed: 06 October 2015).

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

71

[17] Hansong Zhang, “Effective occlusion culling for the interactive
display of arbitrary models,” Ph.D. dissertation, The University of
North Carolina, Chapel Hill, 1998.

[18] Seth J. Teller and Carlo H. Séquin, "Visibility preprocessing for
interactive walkthroughs," Computer Graphics. Vol. 25. No. 4.,
1991.

[19] Ned Greene and Michael Kass, "Error-bounded antialiased rendering
of complex environments," in Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, 1994.

[20] Satyan Coorg and Seth Teller, "Temporally coherent conservative
visibility," in Proceedings of the twelfth annual symposium on
Computational geometry, 1999.

[21] Satyan Coorg and Seth Teller, "Real-time occlusion culling for
models with large occluders," in Proceedings of the 1997 symposium
on Interactive 3D graphics, 1997.

[22] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang,
“Accelerated occlusion culling using shadow frusta,” in Proceedings
of the thirteenth annual symposium on Computational geometry,
1997, pp. 1-10.

[23] Ned Greene, Michael Kass, and Gavin Miller, "Hierarchical Z-buffer
visibility," in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, 1993.

[24] Fausto Bernardini, James T. Klosowski, and Jihad El‐Sana,

"Directional discretized occluders for accelerated occlusion culling,"
in Computer Graphics Forum. Vol. 19. No. 3. Blackwell Publishers
Ltd, 2000.

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

72

[25] Jiří Bittner, Vlastimil Havran, and Pavel Slavik, "Hierarchical
visibility culling with occlusion trees," in Computer Graphics
International, 1998. Proceedings. IEEE, 1998.

[26] Frédo Durand, George Drettakis, Joelle Thollot, and Claude Puech,
"Conservative visibility preprocessing using extended projections,"
in Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, 2000, pp. 239-248.

[27] Mojtaba Hosseini, Steve Pettifer, and Nicolas D. Georganas,
"Visibility-based interest management in collaborative virtual
environments," in Proceedings of the 4th international conference
on Collaborative virtual environments, 2002.

[28] Huy T. Vo et al., "iRun: Interactive rendering of large unstructured
grids," in Eurographics Symposium on Parallel Graphics and
Visualization, 2007.

[29] Gerd Hesina and Dieter Schmalstieg, "A network architecture for
remote rendering." dis-rt. IEEE, 1998.

[30] James F. Kurose and Keith W. Ross, “Computer networking a top-
down approach,” Fifth Edition, Pearson Education, 2010, ch. 2, pp.
112-116.

[31] Katherine L. Morse, “Interest management in large-scale distributed
simulations,” in Information and Computer Science, University of
California, Irvine, 1996.

[32] Shun-Yun Hu, "Spatial publish subscribe," Proc. of IEEE Virtual
Reality (IEEE VR) workshop, Massively Multiuser Virtual
Environment (MMVE’09), 2009.

[33] Graham Morgan, Fengyun Lu, and Kier Store, "Interest management
middleware for networked games," in Proceedings of the 2005
symposium on Interactive 3D graphics and games, 2005.

[34] Thomas A. Funkhouser, "RING: a client-server system for multi-
user virtual environments," in Proceedings of the 1995 symposium
on Interactive 3D graphics, 1995.

Survey on Visibility and Data Distribution
in Distributed Virtual Environments

73

[35] Daniel Cohen-Or and Eyal Zadicario, "Visibility streaming for
network-based walkthroughs," in Graphics Interface. Vol. 98. No. 1,
1998.

[36] Yohai Makbily, Craig Gotsman, and Reuven Bar-Yehuda,
"Geometric algorithms for message filtering in decentralized virtual
environments," in Proceedings of the 1999 symposium on Interactive
3D graphics, 1999.

[37] Fábio O. Moreira, Joao L.D. Comba, and Carla M.D.S. Freitas,
"Smart visible sets for networked virtual environments," Computer
Graphics and Image Processing, 2002. Proceedings. XV Brazilian
Symposium on. IEEE, 2002.

[38] Jean-Eudes Marvie, Julien Perret, and Kadi Bouatouch, "Remote
interactive walkthrough of city models." in Pacific Conference on
Computer Graphics and Applications, 2003.

[39] Jimmy Chim, Rynson W.H. Lau, Hong Va Leong, and Antonio Si,
“CyberWalk: a web-based distributed virtual walkthrough
environment,” Multimedia, IEEE Transactions on,5(4), 2003, pp.
503-515.

[40] Wagner T. Correa, James T. Klosowski, and Claudio T. Silva,
"Visibility-based prefetching for interactive out-of-core rendering,"
in Proceedings of the 2003 IEEE Symposium on Parallel and Large-
Data Visualization and Graphics, IEEE Computer Society, 2003.

[41] Anthony Steed and Cameron Angus, "Frontier sets: A partitioning
scheme to enable scalable virtual environments," in Proceedings of
EUROGRAPHICS 2004, Short Presentations and Interactive Demos,
2004, pp: 13-17.

[42] Anthony Steed and Cameron Angus, "Supporting scalable peer to
peer virtual environments using frontier sets," in Virtual Reality,
2005. Proceedings. VR 2005. IEEE. IEEE, 2005.

[43] Dihong Tian and Ghassan AlRegib, "PODS: partially ordered
delivery for 3D scenes in resource-constrained environments," in

Yekta KILIÇ, Gürkan KOLDAŞ, Şafak Burak ÇEVİKBAŞ

74

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on. Vol. 5. IEEE,
2006.

[44] Beomjoo Seo and Roger Zimmermann, "Edge indexing in a grid for
highly dynamic virtual environments," in Proceedings of the 14th
annual ACM international conference on Multimedia, 2006.

[45] Beomjoo Seo and Roger Zimmermann, "Quantitative analysis of
visibility determinations for networked virtual environments,"
Journal of Visual Communication and Image Representation 23.5,
2012, pp. 705-718.

[46] Shun-Yun Hu, Ting-Hao Huang, Shao-Chen Chang, Wei-Lun Sung,
Jehn-Ruey Jiang, and Bing-Yu Chen, “Flod: A framework for peer-
to-peer 3D streaming,” in The 27th Conference on Computer
Communications. IEEE, 2008.

[47] Revanth N. R. and P. J. Narayanan, "Distributed massive model
rendering," Proceedings of the Eighth Indian Conference on
Computer Vision, Graphics and Image Processing, 2012.

[48] Carlos Eduardo B. Bezerra, Fábio R. Cecin, and Cláudio FR Geyer,
"A3: A novel interest management algorithm for distributed
simulations of mmogs," in Distributed Simulation and Real-Time
Applications, 2008. DS-RT 2008. 12th IEEE/ACM International
Symposium on. IEEE, 2008.

[49] Kari Vatjus-Anttila, Timo Koskela, Seamus Hickey, and Jarkko
Vatjus-Antilla, "Occlusion based message dissemination method in
networked virtual environments," in Next Generation Mobile Apps,
Services and Technologies (NGMAST), 2013 Seventh International
Conference on. IEEE, 2013.

