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Abstract  

In this article, we consider a Bayesian model averaging approach for hierarchical log-linear models to analyse 
the “dumping severity” dataset from the Bayesian perspective. A wide range of log-linear models fits this 
dataset well when analyzed with classical approaches. However, only one log-linear model is determined to fit 
the dataset well by the Bayesian model averaging approach. Therefore, use of the BMA approach for this 
dataset is found to be more advantageous than classical model selection approaches.   

Keywords: Gibbs sampling; Markov Chain Monte Carlo; Model selection; Log-linear modelling; Prior 
distribution; Full conditional posterior. 

Özet  

Ağrı şiddeti veri kümesi için hiyerarşik log-doğrusal modeller üzerinden  
bir Bayesci model ortalama yaklaşımı

Çalışmada hiyerarşik log-doğrusal modeller için Bayesci model ortalama yaklaşımı kullanılarak “ağrı
şiddeti” veri kümesi Bayesci yaklaşım ile çözümlenmiştir. Veri kümesinin özelliği, birçok log-doğrusal modelin 
bu veri kümesi için uygun bulunmasıdır. Uygun bulunan modellerden hangisinin bu veri kümesi için en iyi 
model olduğu tartışmalıdır. Bayesci model ortalama yaklaşımı ile bu veri kümesi için sadece bir model uygun 
model olarak bulunmuştur. Bu nedenle, Bayesci model ortalama yaklaşımının bu veri kümesi için kullanımının
klasik yaklaşımların kullanılmından daha üstün olduğu söylenebilir.  

Anahtar sözcükler: Gibbs öreklemesi algoritması; Markov zinciri Monte Carlo; Model seçimi; Log-doğrusal 
modelleme; Önsel dağılım; Tam koşullu sonsal dağılım.  

 

1. Introduction  

Categorical data is collected and analyzed in many fields of scientific investigation. Collected categorical 
data includes an association structure. Appropriate exploration of this association structure is one of the 
major concerns of categorical data analysis. Log-linear models are widely used for this aim. Each log-
linear model corresponds to an association structure and parameters of it give detailed information on the 
variables. Choosing the log-linear model that fits best the data is an important step in the log-linear 
analysis of categorical data. There are a huge number of approaches for model selection in the classical 
and Bayesian settings. Some of the methods are based on a series of significance tests and some of them 
include prior information, use Markov chain Monte Carlo methods (MCMC) and some are based on 
Bayes factors. Almost each method has its own difficulties or problems. The most important problem is on 
the inclusion of the model uncertainty in the model selection process. If a particular model is selected and 
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inferences are conditionally based on the selected model, model uncertainty is ignored. When the model 
uncertainty is ignored, drawn inferences are valid only if the assumed model is exactly the correct model. 
Underestimation due to the model uncertainty can lead too risky false decisions [10]. This case is 
especially seen in the classical setting. 
 
This difficulty can be overcome by using Bayesian approaches to the model selection. Bayesian model 
averaging (BMA) is one of these approaches [13, 17]. BMA is used to determine a particular model for 
model determination and parameter estimation, simultaneously. In the BMA approach, posterior 
distribution of considered quantity is obtained over the set of suitable models, and then they are weighted 
by their posterior model probabilities. Model uncertainty is included in the analysis by this way. The most 
common way of including the information, provided by different sources, is to use the average. From the 
Bayesian point of view, this averaging is applied in BMA such that posterior distribution of the quantity of 
interested is obtained over the set of suitable models, then they are weighted by their posterior model 
probabilities [13, 17]. 
 
Roberts [20] extended the model averaging idea of Leamer [13]. However, computational difficulties were 
a handicap for progress of model averaging idea. Draper [8] and Raftery [18] review the Bayesian model 
averaging and the cost of ignoring model uncertainty. Madigan and Raftery [16] give Occam's razor and 
Occam's window approaches to reduce the number of candidate models. Hoeting et al. [11] give a good 
tutorial for BMA. Demirhan and Hamurkaroglu [6] consider a BMA approach for hierarchical log-linear 
models, propose an approach for the calculation of posterior model probabilities, and apply the approach 
to a traffic accidents dataset. 
 
In this article, we analyze a well known dumping severity dataset, which is given by Grizzle et al. [9], by 
using the approach given by Demirhan and Hamurkaroglu [6]. Results of this analysis were presented at 
the Applied Statistics 2009 Conference [7]. A wide range of log-linear models including simple 
independence model fit this dataset well, when analyzed with classical approaches [1]. However, only one 
log-linear model is determined to fit the dataset well by the BMA approach. Therefore, use of the BMA 
approach for this dataset is found to be more advantageous than classical model selection approaches. 
 
Log-linear model notation and hierarchy principle are mentioned in Section 2. BMA for hierarchical log-
linear models is outlined in Section 3. The analysis of "Dumping Severity" data of Grizzle et al. [9] by 
using BMA approach is given in Section 4. Conclusions are given in Section 5.  

2. Notation and hierarchical log-linear models 

Number of terms of a log-linear model increases by the increase in the number of categorical variables and 
standard notations become cumbersome. Instead, King and Brooks [12] give very flexible and practical 
notations, which are also used in this work. 
 
Set of sources (variables constituting the contingency table of interest), where the data come from, is 
denoted by S. Number of elements of a set is denoted by ⋅ , so each source is labelled such that 

{ }S,...,1:SS =λ= λ . Set of levels for source iS is iK , for S,...,1i = . Cells of a contingency table are 

represented by the set S1 KKK ××= � , so the cells are indexed by K∈k . Expected cell counts and 

observed cell counts are denoted by kn and ky for K∈k , respectively. The set of subsets of S is defined 
by { }Ss:s)S( ⊆=P . Then )S(m P⊆ is used to represent a log-linear model, where m lists the log-
linear terms presented in the model. Each element of the model, m is included in a set c such that 

)S(c P∈ . Constant term of the log-linear model is represented by )S(P∈∅ . The set 





= cc

1
c ,..., cM

mmM contains all possible combinations of the levels of sources included in c. In 
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general, the highest level is not included by the elements of cM . The log-linear model vector for each 

)S(c P∈ is 






 ββ= ccc ,...,
1 cM

mmβ . Thus the log-linear parameter vector for the model m is 

( )m1
cc βββ ,...,m = . Design matrix or model matrix corresponding to the model )S(m P⊆ is denoted by 

mX , columns of which include -1, 0, and 1 values when all variables are nominal. If there is an ordinal 
variable mX includes -1, 0, 1 and score values. Score values are represented by i

j

c
mx , m,,1i …= and 

i,,1j cM…= , where ic corresponds to an ordinal variable. Using this design matrix and the parameter 
vector, the log-linear model is represented as follows: 
 

mmlog βXn =

More detailed notations for the elements of design matrix, order of parameters and cells, and examples are 
given in King and Brooks [12] and Demirhan [3, 4]. 
 
The family of hierarchical models is such that if any cβ term is not included in the model then all of its 
higher relatives must not be included in the model, and all of its lower order relatives must be in the model 
at the same time [2]. Hierarchy principle helps us to decrease the number of considered models. 

3. Bayesian model averaging for hierarchical log-linear models 

The probabilistic definition of BMA is given as follows. Let the quantity of interest, which would be a 
group of parameter, effect size, odds ratio, etc., be ∆ , and D be data then 

( ) ( ) ( ) ( )
( ) ( )∑ ∑⊆

⊆

∆=∆
)S(m

)S(m
mPmDP

mPmDP
D,mPDP

P
P

(1) 

 
where 
 

( ) ( ) ( )∫= mmm dmPm,DPmDP βββ . (2) 
 
Posterior mean of ∆ is as follows: 
 

( ) ( )∑
⊆

∆=∆
)S(m

m DmPˆDE
P

,

where ( )D,mEˆ
m ∆=∆ .

Although the application of BMA is simple, BMA has some difficulties, which makes the BMA 
unpopular. Dimension of the model space can be enormous, which prevents considering whole model 
space. The integral in (2) is in general hard to compute. Specification of )S(P is not clear, especially if 
there is prior information on some of the models of )S(P . Choice of the model class over which to 
average is also problematic [8, 11, 16]. 
 
To reduce the dimension of model space, Occam's window and Occam's Razor principles of Madigan and 
Raftery [16] is used. A subset of whole model space, which is found by Occam's window, has the property 
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that it includes models that are not predict data far less well than the best model. Complex models, which 
receive less support from the data than their counterparts are excluded by the Occam's Razor approach. 
 
Number of log-linear models grows rapidly by the increase of the number of categorical variables. 
Occam's Window approach of Madigan and Raftery [16] provides a solution to this situation. Adapted 
form of the Occam's Window approach for hierarchical log-linear (HLL)  models is given by Demirhan 
and Hamurkaroglu [6]. 
 
Another difficulty of the BMA, which is also valid for HLL models, is the computation of the integral (2). 
The integral is calculated by Demirhan and Hamurkaroglu [6], and ( )mDP for HLL models is obtained 
as follows: 
 

( ) ( )( )
( ) ( ) [ ]







 −+−

π= −−
−

AzzµΣµbVb
ΣV

A
b

β
T

m
1

m
T
mm

1T
m

mb

2/)dim(

m

m

m

2
1exp

detdet
2detmDP ,

where mb is the vector of maximum likelihood estimates (MLEs) of mβ , )dim(⋅ is the dimension of 

inner vector, 1
m

−
bV is the inverse of covariance matrix of MLEs, mµ and 1

m
−Σ are prior mean vector and 

the inverse of prior covariance matrix of mβ , respectively, and 1
m

1
m

−− += ΣVA b and 

m
1

mm
1
m

µΣbVAz b
−− += .

To represent our degree of belief in the prior information, a prior distribution for mΣ is specified in two 
stages. In the first stage, covariance matrix of the prior distribution is taken as, mmm cICΣ α=α= ,

where mI is the identity matrix dimension of )dim( mβ , and ( )1
m m

tr)dim(c −= bVβ [13]. The distribution 

of the general precision parameter α is given by the second stage prior. It is taken as )1(1 α+=τ and 
)1,0(Uniform~τ to make calculations easier. Values of τ represent the degree of our belief in prior. 

Leonard [15] and Leighty and Johnson [14] state that values of this precision parameter close to zero 
represent disbelief. 
 
To complete the BMA procedure for HLL models, posterior distribution and posterior estimates of the 
log-linear parameters, given the data and model, should be obtained. For this purpose, Gibbs sampling 
algorithm is employed. Implementation of Gibbs sampling algorithm with these prior and likelihood 
settings requires full conditional distribution of each log-linear parameter given the rest of parameters, 
model and the data. These full conditionals are given by Demirhan and Hamurkaroglu [5]. The same 
procedure is followed here.  

4. Analysis of dumping severity data 

Variables that are included in the Dumping Severity dataset are operation (OP), hospital (HO) and 
dumping severity (DS). When analyzed with the assumption that all variables are nominal, even simple 
independence model can be found as suitable for this dataset. In addition to the independence model, 
various partial association models are found to be suitable [1].  
 
Operation levels are drainage and vagotomy, 25% resection and vagotomy, 50% resection and vagotomy, 
and  75% resection. There are four hospitals numbered from 1 to 4. Levels of dumping severity are none, 
slight and moderate. Operation and dumping severity are treated as ordinal and hospital is treated as 
nominal variables. 
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Following the notation given in Section 2, 3S = , 1S is OP, 2S is HO, and 3S is DS. Thus, 

{ }4,3,2,1KK 21 == , { }3,2,1K3 = , { })3,4,4(),...,3,1,1(),2,1,1(),1,1,1(K = , and 
{ } { } { } { } { } { } { }{ }321323121321 S,S,S,S,S,S,S,S,S,S,S,S,)S( ∅=P .

Log-linear parameter vector for the largest model is ( )81 cc βββ ,...,m = . Here the largest model is not 
saturated due to the ordinal variables. Interactions between OP and HO, and DS and HO are represented 
by row effect parameters. jx 2

j

c
m = for 4,,1j …= and ix 4

i

c
m = , 3,2,1i = . Interaction between OP and DS 

is represented by a homogeneous association parameter, namely 5c
1β .

After these definitions, BMA is applied using Occam’s Window approach. For this approach RO and LO
are taken as 20 and 510− , respectively. To obtain 

mbV and a classical estimate of the log-linear parameter 

vector, mb , the Newton-Raphson algorithm is used. Prior model probability for each model in the model 
space is taken as 1/18. Prior distributions of log-linear parameters are defined by using the approach of 
Leigthy and Johnson [14], τ of which is taken as 610− . This setting implies a noninformative prior for the 
log-linear parameters. Gibbs sampling is employed to obtain posterior estimate of each model parameter 
for a given model. Total number of iterations was 50000, 10000 of which were discarded as burn-in. To 
reduce the autocorrelation of the Gibbs sequence, a record has been made at end of each 200 cycles. Full 
conditional posterior distributions of Demirhan and Hamurkaroglu [5] are used in the Gibbs sampling 
algorithm.  
 
After the application of Occam’s Window, the whole model space was reduced to 8 models from 19. 
Therefore Occam’s Razor approach was not applied. Elements of possible models and corresponding 
posterior model probabilities are given in Table 1. 

Table 1. Elements of possible models and corresponding posterior model probabilities. 

Model Posterior model probability 
{ } { } { }{ }31311 S,S,S,S,m ∅= 0.99 
{ } { } { } { }{ }313212 S,S,S,S,S,m ∅= 8.9 10-7 

{ } { } { } { } { }{ }31213213 S,S,S,S,S,S,S,m ∅= 3.5 10-12 
{ } { } { } { } { }{ }32313214 S,S,S,S,S,S,S,m ∅= 9.9 10-13 
{ } { } { } { } { } { }{ }3231213214 S,S,S,S,S,S,S,S,S,m ∅= 4.2 10-18 

Obtained posterior model probability for 1m is 0.99, therefore, it is the most appropriate model for the 
data, and it is not necessary to go on with the application of the Occam's razor. According to 1m , there is 
a homogeneous association between operation and dumping severity over the levels of these variables. 
 
∆ of Eq. (1) is taken as 

1mβ and Bayesian estimates of model parameters ( )
1m

~β are obtained. 

52 mm
~,,~ ββ … are not obtained due to the very low posterior model probabilities. Results, obtained over the 

Gibbs sampling, are given in Table 2 for 1m . In Table 2, 2c
iβ for 3,2,1i = and 4c

iβ for 2,1i = correspond 
to main effects of OP, HO and DS, respectively. 6c

1β is the homogeneous association parameter between 
OP and DS. There is a positive and moderate homogeneous association between levels of OP and DS. 
This is a reasonable inference for this dataset. Levels of main effects of OP and DS are positive. 
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Table 2. Bayesian parameter estimates of model parameters. 

Parameter Estimate Parameter Estimate 
1cβ 0.024 4c

1β -0.039 

2c
1β 0.081 4c

2β -0.218 
2c

2β 0.070 6c
1β 0.225 

2c
3β 0.152   

According to odds ratio obtained using the homogeneous association parameter 5c
1

~
β , namely 

( ) 303.1~exp 66 c
1

c =β=θ , the odds of one level increment in dumping severity is 1.303 times the odds of 
having an operation 1i + instead of operation i, for 3,2,1i = .

4. Conclusions 

Agresti [1] also analyses the dumping severity data set from the classical point of view. When all the 
variables treated as nominal { } { } { } { }{ }31321 S,S,S,S,S,∅ model is obtained as the best fitting model [1]. 
However, in this case ordinality of operation and dumping severity variables are ignored. When operation 
and dumping severity are treated as ordinal and hospital is treated as nominal, the model 

{ } { } { } { } { }{ }3121321 S,S,S,S,S,S,S,∅ is obtained as the best among other appropriate models [1]. Maximum 
likelihood estimate of the association parameter of the latter model is obtained as 0.163 by Agresti [1]. It 
is not suitable to compare the results of the Bayesian and classical analyses, but the inferences can be 
compared. We estimate the association parameter as 0.225 obtain the best fitting model as 

{ } { } { }{ }3131 S,S,S,S,∅ by BMA. We expect the more the amount of resection the more the severity of 
dumping and existence of an association between operation and dumping severity. The inferences 
obtained by the classical and BMA approaches are both compatible with our expectations. The difference 
between Bayesian and classical inference is the inclusion of main effect of hospital and interaction 
between operation and hospital. When evaluated in their own theoretical basis, inferences obtained from 
BMA are stronger then those obtained from classical approach due to the very high posterior model 
probability of the identified model. Also, having no interaction between operation and hospital, and 
hospital and dumping severity is reasonable. Therefore, it can be concluded that the model giving the best 
fit to the dumping severity data is { } { } { }{ }3131 S,S,S,S,∅ and BMA is able to determine only one possible and 
a more parsimonious model for the dumping severity dataset. 
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