
 

 

 
www.istatistikciler.org 

İstatistikçiler Dergisi 5 (2012) 32-42 

  

Đstatistikçiler 
Dergisi 

Risk Measures and Risk Capital Allocation 
 

 

 

 

 

 

Abstract 

The fundamental problem of the portfolio/risk management is the measurement and the allocation of risk. Various risk measures 

provide a solution to the former problem. However, in the recent decade’s risk measures have been criticised dramatically and a new 

concept so called ’coherent risk measures’ have been arisen. In the meantime allocation distributes the diversification benefits 

among the constituents of the portfolio. We show that risk allocation can provide a better risk management if one pays the 

necessary attention for the choice of the risk measure and the allocation method.  

Keywords: risk capital allocation, risk measures, Black-Scholes model  

 

Özet 

Risk Ölçümleri ve Risk Sermayesi Dağıtımı 

Riskin ölçülmesi ve dağıtılması portföy/risk yönetiminde karsılasılan temel sorunlardır. Birçok risk ölçümü risklerin ölçülmesi 

için çözümler sunar.  Fakat son yıllarda risk ölçümleri önemli ölçüde elestirilmis ve ortaya tutarlı risk ölçümleri olarak 

adlandırılan yeni bir yaklasım çıkmıstır. Aynı zamanda risk dağıtımı çesitlendirmeden kaynaklanan faydaların portföyü 

olusturan birimlere dağıtımını yapar. Bu çalısmada risk ölçüm ve risk dağıtım yöntemlerini doğru seçen yöneticilerin daha iyi 

bir risk yönetimi sağlayabileceğini gösterdik. 

Anahtar sözcükler: risk ölçümleri, risk dağıtımı, Black-Scholes modeli  

 

 
1. Introduction 

Financial institutions such as banks, firms or insurance companies (which we refer by the term 

portfolios) have to hold cash reserves as a cushion against unforeseen losses. This amount is called risk 

capital and regulators determine this capital by a measure of risk.  Therefore, we can define the risk 

capital as the minimum amount of cash that managers have to add to their portfolios for their risk to be 

acceptable to the regulator.  

Many risk measures exist in the literature, however lately main interest shifted to coherent risk measures 

that is defined by some axioms; positive homogeneity, monotonicity, sub-additivity and translation 

invariance [2]. We will analyse these axioms in the following sections.  

On the other hand, risk capital allocation is required for management decision support, performance 

measurement, profitability assessment and building optimal risk-return portfolios [11]. The risk capital 

allocation in financial institutions has already been discussed by several authors [20, 15, 24, 26, 27, 8, 21, 

10, 29, 19, 7]. Another important problem related with the allocation is the coherency. The concept of 

coherent allocation of risk capital has been introduced by [10] which defines some set of properties to be 

fulfilled by an allocation method where the calculation of risk capital is based on a coherent risk measure.  
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The purpose of this paper is: (i) to explore various risk measures and allocation methods; (ii) to discuss 

coherency of these measures and allocation methods; (iii) to simulate a stock portfolio and to discuss 

effects of different combinations of risk measures and allocation methods on allocations.  

2. Measures of Risk 

Given a probability space (Ω, F , P), we will consider the vector space L
p
(Ω, F , P), or just L

p
(P), for 1 ≤ p ≤ 

∞. We treat L
p
(P)’s elements as random variables. We have || X ||p= (EP | X |

p
)

1/p
. A risk measure, ρ, is 

a mapping from a set of random variables L
p
(P), 1 ≤ p ≤ ∞ to the real line R, i.e.  

 

ρ : L
p
(P) → R  

 

X → ρ(X)  

Precisely, an unacceptable risk can be transformed into an acceptable risk by adding other instruments to 

the position and the cost of this instrument (minimum cash) measures the risk of the position. 

Alternatively risk measures can be obtained from acceptance sets. An acceptance set A ⊆ L
p
(P) is a set of 

all ‘acceptable’ risks. This set is determined by regulators or investment managers of a company. For 

instance, an acceptance set could be all positions with a profit. For more details, see [2].  

 

2.1. Value at Risk 

In the 1980’s, many financial institutions tried to find models to measure risk. As firms became 

complex, it was very important to measure the financial risk which they are exposed to. In 1994, JP 

Morgan constructed a measure system that was based on standard portfolio theory using estimates of the 

standard deviations and correlations between the losses to different instruments. It’s system: Value at Risk 

(VaR); measures the maximum potential loss of a given portfolio over a prescribed holding period at a 

given confidence level α where α ∈ (0,1) and it can be described as,  

                             VaRα(X) = − inf{x ∈ R : P(X ≤ x ) > α}.                        (2.1) 

VaR also can be seen as a negative α quantile of the distribution function of X. The rapid rise of VaR 

was due to its certain characteristics:  

• VaR provides a common measure of risk across different positions and risk factors.  

• VaR enables us to aggregate the risks of positions taking account of the ways in which risk factors 

correlate with each other.  

• VaR is probabilistic and gives useful information on the probabilities associated with specified loss 

amounts.  

• VaR is expressed in simple and understandable way, namely, ‘lost money’ [12].  

In 1996, the Basel Committee approved the use of VaR for calculating capital requirements for banks and 

VaR has become the most widely used risk measure, heretofore. However, VaR is deficient for many 

reasons. VaR is capable of measuring the worst loss but it fails to address how large this loss can be, if the α 

probability events occur. VaR can not consider tail losses beyond the selected quantile, therefore, it is 

risky to rely VaR completely. Another important problem with VaR is nonconvexity. So, it is mostly 

impossible to find unique global minimum in optimization problems. The most important problem of 

VaR is, it can penalize the diversification in portfolios instead of rewarding it. For these reasons, a 

number of consistent risk measures have been introduced in the literature.  

 

2.2. Coherent Measures of Risk  

Shortcomings of VaR led many researchers to seek alternative risk measures. In 1997 Artzner et al. criticized 
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VaR and introduced a more theoretical approach to risk measurement in their study [1]. In their context, 

they define some properties that a good risk measure should satisfy. However, VaR does not belong to 

these -so called- coherent risk measures. The theory of coherent risk measures relies on the idea that an 

appropriate risk measure is consistent with economic intuition and finance theory.  

A risk measure ρ : L
p
(P) → R, for 1 ≤ p ≤ ∞ is called a ‘coherent risk measure’ on L

p
(P) if it satisfies 

the following properties.  

 

Subadditivity: For all X1, X2 ∈ L
p
(P)  

ρ(X1 + X2) ≤ ρ(X1) + ρ(X2)  

This property ensures that the combination of two positions reduces the risk; therefore it represents the 

‘diversification’ effect.  

 

Positive Homogeneity: For all X ∈ L
p
(P) and for all real numbers λ ≥ 0 we have  

ρ(λX) = λρ(X)  

Positive Homogeneity ensures that the risk of a position depends linearly on the size of the position.  

 

Monotonicity: For all X1, X2 ∈ L
p
(P)  

ρ(X1) ≥ ρ(X2), if X1 ≤ X2 a.s.  

Monotonicity represents that a position X2 with a higher value than a position X1 has a lower risk.  

Translation Invariance: For all X ∈ L
p
(P) and for all real numbers a  

                                      ρ(X + a) = ρ(X) − a  

Translation Invariance property states that adding cash to a position reduces the risk by the same amount. 

For more details, see [2,18]. Note that we assume interest rates are zero; therefore there is no discounting 

factor in definitions.  

VaR is not a coherent risk measure due to the missing subadditivity property. This property expresses the fact 

that a portfolio made of sub-portfolios will risk an amount which is at most the sum of the separate amounts 

risked by its sub-portfolios. This is the most important character of a risk measure. For a sub-additive 

measure, portfolio diversification always lead to risk reduction, while for measures which violate this 

property, diversification may produce an increase in the risk.  

 

2.3. The Expected Shortfall 

 

ESα(X) = −E[X | X ≤ −VaRα(X)]                      (2.2) 

is called expected shortfall (ES) at level α (α usually close to 1) which is defined as an average of VaRs 

of X at level α and higher. VaR is only the minimal loss in the ‘bad’ cases which happens with the 

probability α, whereas expected shortfall measures the average loss in these ‘bad’ cases. ES is very familiar 

to actuaries, it is also known as the Conditional Tail Expectation (CTE) or Tail VaR. In the mean time, 

it has been variously labelled as Expected Tail Loss, Tail Conditional Expectation, Conditional VaR, 

Tail Conditional VaR and Worst Conditional Expectation in financial risk management area. There is no 

consistency of terminology in either literature. In the case of continuous loss distribution, all of these 

measures give the same result but in the discrete case they can differ.  

Expected shortfall belongs to the family of coherent risk measures and it provides better approach for 

risk management. It is more sensitive to the shape of the loss distribution and it counts tail of the loss 

distribution completely. For more details, see [18].  
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2.4. Further Measures of Risk 

We now define some particular risk measures which are commonly used in the literature. 

 

The Standard Deviation 

 

)()()( XVarXXsd == σρ
     

                                                                                                    (2.3) 

where Var(X) denotes the variance. The standard deviation is a widely used measure of the variability or 

dispersion. It shows how much variation there is from the mean. A lower standard deviation indicates that 

the data points tend to be very close to the mean, whereas a higher standard deviation indicates that the data 

are spread out over a large range of values. This measure is not coherent because it is not translation 

invariant. Also, it penalizes not only the risk of a return below the mean but also the risk of a return above 

the mean. For more details, see [18].  

 

A risk measure based on standard deviation  

 

[ ] 0),()(, >+−= aXaXEXasd σρ
 

                                                                     (2.4) 

where E[X] denotes the expected value and σ(X) the standard deviation. This measure includes a risk 

load that is proportional to the standard deviation of the risk. This risk measure is translation invariant, 

subadditive and positively homogeneous.  However, it is not monotonic for a properly chosen X, hence, is 

not coherent [6]. We refer this measure by the term MSD, hereafter.  

 

A risk measure based on one-sided moments  

 

[ ] 0),()(, >+−= − aXaXEX pap σρ
                                                               

                          (2.5) 

where 
−X  defined as { }0,max X−  , [ ]( )

p
p XEXX

−− −=)(σ  for 1 ≤ p ≤ ∞. It is well known fact 

that most of the loss distributions are skewed. Therefore, if one understands risk as an asymmetrical 

concept related to outcomes below the mean (or target level), standard deviation is inadequate as both 

positive and negative deviations from the mean increase risk. Considering this, one needs to measure the 

downside risk which is measured by semi-standard deviation. This measure is coherent if 0 ≤ a ≤ 1, as 

shown by [13]. We refer this measure by the term MSSD, hereafter. 
  

3. Allocation of Risk Capital  

Once a manager has determine the risk capital of the portfolio (or company), she must then allocate it 

back to each risk component in the portfolio.  The allocation of risk capital has its own challenges due to 

the nature of dependence structures of combined risks. There are many motives behind the risk capital 

allocation. Firstly, by comparing different losses on capital for each component, it is often possible to 

answer if a component is worth to keep or not. Secondly, since capital is defined as a risk measure of whole 

company, one can assess the riskiness of each component’s position by splitting this capital, and compare one 

to another. Another motive is, allocation provides a useful device for assessment of performance of 

managers, which can be linked to their compensations. Last but not least, insurers may want to use the 

allocation in pricing [22, 30].  

 

Consider now that a portfolio has n sub-portfolios where N={1,2,...,n} is the set of all sub-portfolios. 

Each sub-portfolio’s loss is represented by Xi, i ∈ N then, aggregate loss of the portfolio can be described 

as XX
n

i i =∑ =1   
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In the literature, many researchers have proposed a set of axioms that any desirable allocation method is 

expected to satisfy [10, 16, 17]. The following Axioms are adapted
 
from [10].

  

 

Let D be the set of risk capital allocation problems: pairs (N,ρ) composed of a set of n lines and a 

coherent risk measure ρ. Allocated capital for line i is denoted by ai. An allocation is a functional Π: D → 

R
n
 that maps each allocation problem, (N,ρ), into a unique allocation: 

 

( )

( ) 





















=























∏

∏

nn a

a

N

N

.

.

.

,

.

.

.

, 11

ρ

ρ

                                            

             (3.0)

 

 

3.1. Properties for a coherent Allocation 

An allocation Π is said to be coherent, if for every allocation problem (N,ρ) satisfies the following 

properties.  

 

Full Allocation: The allocated capitals add up to the total capital.  
 

∑ =
=

n

i iaX
1

)(ρ  

 

No Undercut: The risk of any subset M of the total risk N is always lower than the sum of stand-alone 

risks of that subset. 

 

)(, ∑∑ ∈∈
≤⊆∀

Mi iMi i XaNM ρ  

Symmetry: For any subset M ⊆ N \ {i, j}, if sub-portfolios i and j make the same contribution to 

the risk capital of subset M , then ai = aj . This property ensures that a sub-portfolio’s allocation depends 

only on its contribution to risk within the portfolio.  

Riskless Allocation: Assume that last portfolio (line) is riskless with the initial price 1 and strictly 

positive price r in any state of nature at time T. Therefore, Xn = αr and  

an = ρ(Xn) = ρ(αr) = −α  

According to this axiom, a riskless portfolio should be allocated exactly its risk measure which can be 

negative. It is easy to see that this axiom is related to the translation invariance axiom of coherent risk 

measures.  

 

3.2. Methods of Allocation 

 

There are various allocation methods available in the literature. Theoretical and practical aspects of different 

allocation methods have been analyzed in a number of papers [9, 10, 13, 23, 27, 28, 29].  

 

3.2.1. Proportional Allocation  

Proportional allocation is a naive allocation method which is given by  
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( )
( )

( ))(
,

uX
Xu

Xu
a

Nj jj

iiP

i ρ
ρ

ρρ

∑ ∈

=

                                                                                (3.1)

 

where diversification effect is distributed proportionally to the risks. This method simply calculates stand-

alone risk measures for each risk and then allocates the total risk capital in proportion to separate risk 

measures. This approach guarantees the full allocation principle. However, it is not coherent as an 

allocation method and it ignores the stochastic dependencies between the risks.  
 

3.2.2. Variance-Covariance Allocation  

This allocation method, proposed by [23], is given by  
 

  

( )
( )

( ))(
)(

)(,,
uX

uXVar

uXXuCov
a iiCV

i ρ
ρ

=
−

                                                                               (3.2)

 

 

where ( ))(, uXXuCov ii  
 is the covariance between the individual risks uiXi (sub-portfolios) and 

aggregate risk (portfolio) X(u), Var(X(u)) is the variance of the portfolio X(u). This method focuses on 

how individual business units contribute to the standard deviation of the portfolio. It’s clear that sum of 

these individual covariance’s is equal to the variance of the portfolio. Therefore, the full allocation principle 

is satisfied. This relation can be given by 

 

( ) ( )∑∑∑∑∑ =









=




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


=

i j

jiji

j

jji

i

i

i

ii XXCovuuXuXCovuXuVaruXVar ,,)(

                       (3.3)  

 

 

3.2.3.Merton-Perold Allocation 

This method is based on the option pricing model of the firm. In this approach, the value of the 

policyholders’ claim on the firm is equal to the present value of losses minus the value of the ‘insolvency 

put option’. The insolvency put option is the expected loss due to the possibility of default of the firm. 

Simply for one period model the firm issues policies at time 0 and claim payments occur at time 1. If 

assets exceed liabilities at time 1, the firm pays the losses and the equity owners receive the difference 

between assets and liabilities. However, if liabilities exceed assets, the insurer defaults and the policyholders 

receive the assets. Therefore the payoff of this option at time 1 is L − max(L − A, 0), where L is losses 

and A is assets and max(L − A, 0) is the payoff on the insolvency put option [8]. Merton-Perold approach 

is an incremental capital allocation which focus on what happens to the insolvency put option if all sub-

portfolios are added or removed from the firm. Then the allocated capital for line i is given by 

( ) ( )
( ) {}( )( )i\

!

!!1,
SS

n

sns
a

NS

S

i ρρ
ρ

−
−−

= ∑
⊆                                                                                (3.4)

 

 

An important characteristic of this allocation method is that the incremental amounts do not add up to total 

risk capital. Hence, it is not coherent.  

 

3.2.4. Game Theoretical Allocation  

Game-theoretic methods provide a suitable framework for cost allocation problems [4, 5, 25]. Shapley 

method is an example for these methods. It describes how coalitions can be formed in a way that none of 

the players benefits more as a stand-alone than as a group. Aumann-Shapley method is another example 

for that kind of methods and it allows for fractional units and requires less computation compared to the 

Shapley method.  
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A coalitional game (N, ρ) consists of  

• a finite set of n players, N,  

• a cost function, ρ, which associates a real number, ρ(S), to any subset (coalition) S, of N .  

Then each player wants to minimise her cost and her strategies consist of agreeing or not to take part in 

coalitions. The main question in coalitional games is the allocation of the cost, ρ(N ), between all players 

and this question is formalized by the concept of value.  

A value is a functional Π which maps each game (N, ρ) into a unique allocation as in equation (3.0). 

The core of a game  

Given the subadditivity of ρ, the players of a game have an incentive to take part in the coalition, since by 

doing this they minimise the total cost when compared to the their stand-alone costs. Any player does not 

take part in the coalition if her allocated cost is higher than her stand-alone cost. The set of allocations that 

do not allow any player to be apart from coalition is called the core. The core of a coalitional game, (N, ρ), 

is the set of allocations 
nRa ∈  for which ∑ ∈

≤
Si i Sa )(ρ

 
for all coalitions S⊆N.  

The Shapley value  

The Shapley value was introduced by [25] as a method for each player to expect a benefit from playing a 

game and ever since has received interest. The Shapley value for the game (N, ρ) can be given by, 

 

( ) ( )
( ) {}( )( )i\

!

!!1,
SS

n

sns
a

NS

S

i ρρ
ρ

−
−−

= ∑
⊆                                                                                (3.5)

 

where s is the number of players in coalition S and n is the total number of players. Note that for any 

game with n players there are 2
n
 − 1 nonempty possible coalitions and the calculation of the Shapley 

Value may become harder if n gets bigger. The Shapley Value can be seen as expected  

marginal benefit added by each player. For more details, see [25].  

 

The Aumann-Shapley value  

[5] extended the concept of Shapley value to non-atomic games. Here non-atomic means divisible 

players/portfolios. The Aumann-Shapley value can be given by 

 

( )∫ ∂

∂
=

1

0

,&
)( dtutX

u
ua

i

i

SA

i ρ
ρ

                                                                                                       (3.6)

 

for a positively homogeneous risk measure ρ this simplifies to 

 

( )

i

i

SA

i
u

uX
ua

∂

∂
=

)(,& ρρ

                                                                                                                (3.7)

 

where the payoff ∑ =
=

n

i ii XuuX
1

)( of a portfolio ( ) n

nii Ruu ∈=
≤≤1

consists of sub-portfolios with payoffs 

Xi. In the case of a positively homogeneous, convex and differentiable cost function the core of such a game 

consists one element: the gradient of the cost function due to normed weights of players [3]. Therefore, in the 

case of subadditive and positively homogeneous risk measure which is differentiable at a portfolio u ∈ R
n
, 

the gradient is the ‘unique fair’ per unit allocation. For more details, see [10].  

Euler Principle: Consider a function ρ : L
p
(P) → R, if ρ is positively homogeneous and differentiable 

at u ∈ R
n
, then we have 
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Under Euler principle the capital allocated to the sub-portfolio Xi of X is the derivative of associated 

risk measure ρ at X in direction of Xi. For a positive homogeneous and differentiable risk measure the 

Aumann-Shapley method coincides with the Euler method. Game theoretical methods and the Euler 

method are coherent allocation methods. The Euler principle is the most-preferred allocation method in 

the literature due to its coherent properties, for more details see [18]. Note also that in this study all used risk 

measures are positive homogeneous and differentiable, therefore Euler method represents the game theoretical 

methods.  

For the calculation of allocations under Euler principle we need partial derivatives of risk measures 

with respect to asset weights. Detailed information about partial derivatives of risk measures can be found 

in [18].  

 

4. Scenario and a Simulation Study  

In order to show how theory works, we used a stock portfolio of five companies and data covers the 

period from February 2003 to February 2012. We assume that given total wealth is £1,000,000 which is 

equally weighted to sub-portfolios. We consider a one-period framework; therefore between time 0 and T 

no trading is possible. Note also that we study 1 year time horizon, thus T =1. We assume ‘risk’ to be 

given by a random variable X representing a cash flow at time T. Precisely, the corresponding loss variable at 

time T can be defined by X = X(T ) − X(0). Individual stock returns are modelled by geometric 

Brownian motions (GBM), i.e. price processes Xi(i = 1,...,5) with 

 

( ) 0,)2/(exp)0()( 2 ≥+−= tZttXtX iiiii σσµ
                                                                        

(4.0)

 

where µ i is the drift, σi is the diffusion coefficient, Xi(0) is the price of the i-th asset at time 0 and Z is a 

standard normally distributed random variable.  

With stochastic simulation we compute N market scenarios and by using these realizations we can 

compute estimates using the empirical distribution given by the simulation output.  For simulation we 

need a discretization. For more details about discretization, see [14]. Note that used time-step is 1/12 

(prices are monthly) for discretization. Estimated geometric Brownian motion parameters are given in 

Table 1. Estimated covariance matrix of hypothetical historical increments of underlying Brownian 

motions is given in Table 2. For computation of risk measures and risk capital allocations we simulated 

N=100,000 realizations of the random vector X = (X1, ..., X5).  

Allocation proportions of stock portfolio are given in Table 3. Allocations based on different allocation 

methods and different risk measures indicate that allocations show significant differences. We prefer the 

combination of expected shortfall and the Euler method due to their coherent properties. By assuming this 

combination results fair allocations, we can see how other risk measures and allocation methods perform.  

 

Table 1: Parameters of Stock Return Distributions 

 
Portfolio - Risk Sources 

Parameters BP Ltd GSK Ltd PRU Ltd TOMK Plc TSCO Plc 
Drift µ 0.093 0.012 0.112 0.016 0.151 

diffusion σ 0.197 0.172 0.356 0.319 0.207 
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 Table 2: Covariance matrix of hypothetical historical increments  

      of underlying Brownian motions. 
  

Covariance Matrix 

 BP Ltd GSK Ltd PRU Ltd TOMK Plc TSCO Plc 
BP Ltd 1.0000 0.1884 0.2279 0.1447 0.1753 

GSK Ltd 0.1884 1.0000 0.2996 0.2189 0.4457 

PRU Ltd 0.2279 0.2996 1.0000 0.5480 0.4292 

TOMK Plc 0.1447 0.2189 0.5480 1.0000 0.3034 

TSCO Plc 0.1753 0.4457 0.4292 0.3034 1.0000 

 

PRU Ltd. and TOMK Plc. turn out the most risky portfolios whereas BP Ltd. and TSCO Plc. seem less 

risky. Proportional method draws some inconsistencies compared to the other methods. BP Ltd. and 

TSCO Plc. have negative allocations under MSSD risk measure for other methods. However, proportional 

method has positive allocations for these portfolios. Allocations under this method are also dramatically 

different from allocations under the fair combination.  

Variance-Covariance method gives equal allocations with the combination of standard deviation and Euler 

method because this method is a fair allocation method for standard deviation (derivative of the standard 

deviation equivalent to the Variance-Covariance method).  

Allocation differences between expected shortfall and VaR are also noteworthy. By considering the fact that 

VaR is much sensitive to the confidence level, we can expect that these differences become more 

considerable for higher confidence levels.  

 

Table 3: Allocation Proportions of Sub-Portfolios at 95% Confidence Level 

Risk Measures                 BP Ltd       GSK Ltd         PRU Ltd        TOMK Plc     TSCO Plc 

Euler Method 
Value at Risk 6.51       15.32 34.71       32.83        10.63 

Exp. Shortfall 9.25       14.84 33.04       30.88        11.99 

S. Deviation 10.34       10.12 36.46       25.77        17.31 

MSSD -14.36       27.38 45.03        67.87       -25.92 

MSD -0.34       15.61 42.37       42.50         -0.14 

Proportional Method 
Value at Risk 14.57       16.37 27.80       28.56         12.69 

Exp. Shortfall 15.14       16.30 27.15       27.30         14.11 

S. Deviation 15.73       12.66 29.80       24.09         17.71 

MSSD 9.16       22.43 28.58       41.08          -1.25 

MSD 12.08       16.76 30.29      32.63           8.23 

Merton-Perold Method 
Value at Risk  3.63       16.01 37.67      35.05           7.64 

Exp. Shortfall  6.32       15.32 35.19       32.48         10.68 

S. Deviation  9.31       10.22 37.36       25.56         17.55 

MSSD -36.35       37.70 57.09        95.12        -53.56 

MSD -5.84       17.59 46.07       47.49          -5.32 

Shapley Method 
Value at Risk  8.45       15.91 33.37      32.78           9.49 

Exp. Shortfall 10.21       15.54 31.82       30.61         11.81 

S. Deviation 11.96       10.93 34.50       25.12         17.50 

MSSD -10.39       29.23 40.80        66.23        -25.87 

MSD  2.52       17.02 38.92      41.35           0.19 

Variance-Covariance Method  
All Risk Measures  10.34       10.12  36.46        25.77          17.31 
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5. Conclusions 

In this paper we have explored different risk measures and risk capital allocation methods. We have 

discussed their properties and have compared them by a simulation study. A more comprehensive 

simulation study which considers alternative risk models, examination of combinations of different risk 

models, risk measures and allocation methods have to be postponed to future research. 

We used the Euler method as a fair unique allocation method based on the results of game theory and risk 

adjusted performance management. Hence, comparisons are done between the Euler and other allocation 

methods. We found that not only choice of risk measure is important for efficient risk management but 

also choice of allocation method really matters. Managers can provide better risk management by giving the 

necessary attention to the choice of risk measures and allocation methods.  
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