
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 70, Number 1, Pages 510�521 (2021)
DOI: 10.31801/cfsuasmas.724634
ISSN 1303�5991 E-ISSN 2618�6470

https://communications.science.ankara.edu.tr

Received by the editors: April 21, 2020; Accepted: February 1, 2021

DIFFERENTIAL GEOMETRIC ASPECTS OF NONLINEAR
SCHRÖDINGER EQUATION

Melek ERDO¼GDU1 and Ayşe YAVUZ2
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Abstract. The main scope of this paper is to examine the smoke ring (or
vortex �lament) equation which can be viewed as a dynamical system on the
space curve in E3: The di¤erential geometric properties the soliton surface
associated with Nonlinear Schrödinger (NLS) equation, which is called NLS
surface or Hasimoto surface, are investigated by using Darboux frame. More-
over, Gaussian and mean curvature of Hasimoto surface are found in terms of
Darboux curvatures kn; kg and �g . Then, we give a di¤erent proof of that the
s�parameter curves of NLS surface are the geodesics of the soliton surface.
As applications we examine two NLS surfaces with Darboux Frame.

1. Introduction

Investigation of motion of a vortex �lament provides the crucial problems of
mathematical physics and di¤erential geometry. The work of Hasimoto in 1972
is one of the leading studies that guide us in solving these extremely important
problems. It was concerned with an approximation to the self-induced motion of a
thin isolated vortex �lament traveling without stretching in an incompressible �uid.
If the position vector of vortex �lament is denoted by r = r(s; t), then the equation

rt = rs � rss
is hold [7]. This equation is called the smoke ring or vortex �lament equation.
It can be considered that these vortex motions, which involve no change of form,
correspond to traveling wave solutions of the Nonlinear Schrödinger (NLS) equation,
[14]. These kind of soliton surfaces that are associated with the NLS equation are
called NLS surfaces or Hasimoto surfaces. Hasimoto stated the complex function
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q = �ei
R
�ds of the curvature � and torsion � of a space curve and obtained that

if the curve evolves according to the vortex �lament equation, then it gives the
solution of the focussing cubic NLS equation

iqt + qss + vq jqj2 = 0
[7].
In the work [15], the binormal motion of curves of constant curvature is shown to

lead to integrable extensions of the Dym equations. Moreover, the binormal motion
of curves of constant torsion is shown to lead to integrable extensions of classical
sine�Gordon equations. A reciprocal invariance is used to establish the existence
of novel dual�soliton surfaces associated with a given soliton surface in the case of
the extended Dym equation. Then a cc�ideal formulation is adduced to obtain a
matrix Darboux invariance for the extended Dym and reciprocally linked m2KdV
equations. At the same time, a Bäcklund transformation is introduced which al-
lows us to generate the associated soliton surfaces. Similarities of both Bäcklund�s
and Bianchi�s classical transformations are derived for the extended sine�Gordon
system. In the study [13], NLS equation is examined in a general intrinsic geomet-
ric setting as introduced earlier in a kinematic analysis of certain hydrodynamic
motions by [16], and subsequently applied in magneto-hydrodynamics by [17]. Fur-
thermore, di¤erential geometric properties of the soliton surfaces associated with
NLS equation are obtained. Furthermore, the connection between Hasimoto deriva-
tion is stated. An intrinsic decomposition for the auto-Backlund transformation is
obtained at level of the soliton surfaces. Finally, the connection between decompo-
sition and a linear representation for NLS equation is investigated.
Emerging problems revealed that studies should be conducted for non-Euclidean

geometries. The NLS equation of repulsive type for timelike curves and nonlinear
heat system were examined in a general intrinsic geometric setting including a
normal congruence in 3-dimensional Minkowski space in the study [5]. Additionally,
the motion of timelike surfaces correspond to the repulsive type NLS equation in
timelike geodesic coordinates was studied in [6].
Erdo¼gdu and Özdemir investigated the Hasimoto surfaces in Minkowski 3-space

and obtained the geometric properties of these surfaces [2]. Kelleci and others ex-
amined the curvatures of Hasimoto surface according to Bishop frame and give some
characterization of parameter curves of these surfaces [10]. Grbovíc and Ne�ovíc
investigated vortex �lament equation for pseudo null curves in Minkowski 3-space
by using Bäcklund transformation in Minkowski 3-space [4].
In this paper, we investigate di¤erential geometric properties of the soliton sur-

face associated with Nonlinear Schrödinger (NLS) equation, which is called NLS
surface or Hasimoto surface, are investigated by using the Darboux frame. Firstly,
a brief summary is presented to provide the necessary background. We give a proof
of that the s parameter curves of NLS surface are the geodesics of the soliton surface
and that this surface provides the NLS equation. Then, we discuss the geometric
properties of NLS surface. We �nd Gaussian and mean curvature of NLS surface.



512 M. ERDO ¼GDU, A.YAVUZ

Also, we obtain new results and the necessary and su¢ cient conditions for NLS
surfaces to be �at or minimal surfaces. Finally, we investigate two di¤erent NLS
surfaces as applications.

2. Preliminaries

In this section, we give the necessary information about the regular curves on
surfaces to understand the main subject of the study. Let � : I ! M be a reg-
ular unit speed curve on the orientiable surface M: We may de�ne Frenet frame
fT;N;Bg at each points of the curve � where T is unit tangent vector, N is prin-
cipal normal vector and B is binormal vector. The Serret-Frenet formulas of the
curve � are given by

T 0(s) = �(s)N(s);

N 0(s) = ��(s)T (s) + �(s)B(s);
B0(s) = ��(s)N(s);

where the functions � and � are called the curvature and the torsion of the curve
�; respectively. On the other hand, we may also de�ne another orthonormal frame
�elds on the curve �; which is called Darboux frame, since the curve � lies on the
orientiable surface M: Darboux frame of (�;M) curve-surface couple includes unit
tangent vector �eld T of � and unit normal vector �eld of the surface n = N �� on
the curve �: To describe an orthonormal frame including these vector �elds, there
is only one way to choose last frame �eld as g = n� T: This implies the following
relations between Frenet and Darboux frames:24 T

N
B

35 =
24 1 0 0
0 cos� � sin�
0 sin� cos�

3524 T
n
g

35
and 24 T

n
g

35 =
24 1 0 0
0 cos� sin�
0 � sin� cos�

3524 T
N
B

35 ;
where � is the angle between the vector �elds N and n: The derivative formulas of
Darboux frame can be given as follows:

d

ds

24 T
n
g

35 =
24 0 kn kg
�kn 0 �tr
�kg tr 0

3524 T
n
g

35 ;
where

kn(s) = �(s) cos�(s);

kg(s) = ��(s) sin�(s);
tr(s) = ��0(s)� �(s):
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The functions kg is called geodesic curvature, kn is called normal curvature and tr
is called geodesic torsion of �: For a curve �(s) lying on a surface, the following
cases are satis�ed:
�(s) is a geodesic curve if and only if kg = 0;
�(s) is an asymptotic curve if and only if kn = 0;
�(s) is a principal line curve if and only if tr = 0:

The unit normal vector �eld N on a surface r can be de�ned by

N =
rs � rt
krs � rtk

The �rst fundamental form characterizes the interior geometry of the surface in a
neighborhood of a given point. This means that measurements on the surface can
be carried out by means of it. The �rst fundamental form is given by

I = Eds2 + 2Fdsdv +Gdv2:

At the same time, the second fundamental form

II = eds2 + 2fdsdv + gdv2;

where

e = hMss; Ni ; f = hMsv; Ni g = hMvv; Ni :
Gaussian curvature is given as

K = detS

and the mean curvature is related to the trace as follows

H =
1

2
trS:

Gaussian and mean curvatures of a surface are given by

K =
det II

det I
=

eg � f2
EG� F 2 ;

H =
Eg +Ge� 2Ff
2 (EG� F 2) ;

respectively.

3. Nonlinear Schrödinger Surfaces

In this section, NLS surface or Hasimoto surface are investigated by using the
Darboux frame and discuss the geometric properties of NLS surface. We �nd the
Gaussian and mean curvatures of this surface. Also, we obtain some of the results
and some necessary conditions for surfaces to be �at or minimal surfaces. We give a
proof of that s�parameter curves of NLS surface are geodesics of the soliton surface
and that this surface provides the NLS equation.
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The movement of a thin vortex in a thin vicous �uid by the motion of a curve
propagating in E3 is described by the following equation:

rt = rs � rss: (1)

This is called the vortex �lament or smoke ring equation, and can be viewed as a
dynamically system on the space of curves.

Theorem 1. Suppose r = r(s; t) is a NLS surface such that r = r(s; t) is a unit
speed curve with normal vector �eld for all t: Then the following is satis�ed:24 T

n
g

35
t

=

24 0 � �
�� 0 �

�� 
 0

3524 T
n
g

35 ;
where fT; n; gg is the Darboux frame, �; �; 
 are smooth functions given by following
equalities

� = kgs � kntr; (2)

� = �kns � kgtr; (3)


 =
1

k2g + k
2
n

�
(kgkgs + knkns)s � (kns + kgstr)

2

� (kgs � kntr)
2
+ kgtkn � kntkg

�
: (4)

Proof. We need to �nd these functions in terms of the curvatures kg; kn; tr of the
solution curve r = r(s; t) of smoke ring equation for all t: Using compatibility
conditions tts = tst, we get

�s = knt + 
kg � �tr;
�s = kgt � 
kn + �tr;

and using equality of nts = nst; we have

�s = knt + 
kg � �tr;

s = �kn � �kg + trt :

Similarly, using equality of gts = gst; we get following equalities


s = �kn � �kg + trt ;
�s = kgt � 
kn + �tr:

Thus, by the above relations, the following equations are obtained

�s = knt + 
kg � �tr; (5)


s = �kn � �kg + trt ; (6)

�s = kgt � 
kn + �tr: (7)

Again by compatibility condition of rst = rts, we �nd the following equalities

� = kgs � kntr;
� = �kns � trkg:
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Now, we assume that the velocity of the curve is of the form


 =
1

k2g + k
2
n

�
(kgkgs + knkns)s � (kns + kgstr)

2

� (kgs � kntr)
2
+ kgtkn � kntkg

�
:

For a solution of smoke ring equation, the velocity vector is given by

rt = rs � rss = t� (knn+kgg) = kgn� kng:
�

Theorem 2. If r = r(s; t) is a NLS surface where r = r(s; t) is a unit speed
curve with normal vector �eld for all t; then the Gaussian curvature K and mean
curvature H of r = r(s; t) are

K =
1

k2g + k
2
n

�
�
�
k2g + k

2
n

�

 + kgtkn � kntkg �

(�kn + �kg)

k2g + k
2
n

�
;

H =
1

2
�
k2g + k

2
n

�q
k2g + k

2
n

n�
k2g + k

2
n

�

 � kgtkn + kntkg �

�
k2g + k

2
n

�2o
;

respectively. Here, � is the curvature function, and � is the torsion function of the
curve r = r(s; t) for all t:

Proof. We have found the coe¢ cients of �rst fundamental forms of the r(s; t) as
E = 1; F = 0; and G = k2g + k

2
n: Thus, we say that EG� F 2 = k2g + k2n:

Normal vector �eld of the NLS surface is given by

N =
rs � rt
krs � rtk

=
T � (kgn� kng)
kT � (kgn� kng)k

=
�kgg � knnq
k2g + k

2
n

:

After some computations, one can easily obtain the coe¢ cients of the second
fundamental form as

e =
�
�
k2g + k

2
n

�q
k2g + k

2
n

;

f =
tr
�
k2g + k

2
n

�
� knkgs + kgknsq
k2g + k

2
n

;

g =
1q

k2g + k
2
n

n
(kgkgs + knkns)s � (kns + kgtr)

2 � (kgs � trkn)
2
o
:

Thus, the Gaussian curvature K and mean curvature H of the surface r(s; t) are

K =
1

k2g + k
2
n

�
�
�
k2g + k

2
n

�

 + kgtkn � kntkg �

(�kn + �kg)

k2g + k
2
n

�
;
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H =
1

2
�
k2g + k

2
n

�q
k2g + k

2
n

n�
k2g + k

2
n

�

 � kgtkn + kntkg �

�
k2g + k

2
n

�2o
;

respectively. �

Theorem 3. Suppose r = r(s; t) is a NLS surface in E3; the s-parameter curves
of the surface r = r(s; t) are geodesics.

Proof. Suppose r = r(s; t) is a NLS surface such that r = r(s; t) is unit speed curve
for all t: We know that

rss = knn+kgg:

And the surface normal of r = r(s; t) is

N =
rs � rt
krs � rtk

=
�kgg � knnq
k2g + k

2
n

:

Thus, rss is parallel to surface normal which means s-parameter curves of the
surface are geodesics. �

Remark 4. Since the s-parameter curves of NLS surface are geodesics, this implies
that kg = 0:

Theorem 5. Suppose r = r(s; t) is a NLS surface in E3: t-parameter curves of the
surface r = r(s; t) are geodesics if and only if kns = 0.

Proof. By above remark, we have

rt = kgn� kng = �kng:
Thus, we obtain the tangent vector �eld of t -parameter curve as

t =
rt
krtk

= �g:

Then, the third vector �eld of Darboux frame of t-parameter curve is found

g = �n� t = �n� (�g) = �T:
The geodesic curvature of the t-parameter curve is obtained as

kg =


tt; g

�
= h�T � 
n;�T i = �

where
� = �kns � kgtr = �kns :

Therefore, t-parameter curves of the surface r = r(s; t) are geodesics if and only if
kns = 0: �

Theorem 6. Suppose r = r(s; t) is a NLS surface in E3; NLS equation

iqt + qss + vq jqj2 = 0
is provide with Hasimoto transformation q = �knei

R
�trds:



DIFFERENTIAL GEOMETRIC ASPECTS OF NLS EQUATION 517

Proof. We know that Hasimoto transformation with Frenet frame is obtained as
follows

q = �ei�

such that � =
R
�ds: Since the following equations are satis�ed

�2 = k2n + k
2
g ;

tr(s) = ��0(s)� �(s);
and kg = 0, we obtain that Hasimoto transformation with Darboux frame as follows

q = �knei
R
�trds:

By taking derivative of q according to t parameter, we get

qt = (knt + ikntrt) e
i
R
�trds: (8)

We also know that
knt = �s + �tr; trt = 
s � �kn;

such that

� = �kntr;
� = �kns ;


 =
1

kn

�
knss�knt

2
r

�
;

by equations (5) and (6). Therefore, we obtain

knt = (�kntr)s � knstr
= �2knstr � kntrs

and

trt =

�
1

kn

�
knss � knt2r

��
s

+ knskn

=

�
knss
kn

� t2r +
k2n
2

�
s

:

If we substitute above equations into Equation (3.8), then we obtain

qt =

�
�2knstr � kntrs + ikn

�
knss
kn

� t2r +
k2n
2

��
ei
R
�trds:

Thus, we also get

qss =
�
knss + 2iknstr + ikntrs � knt2r

�
ei
R
�trds:

According to above �ndings, it is seen that the following NLS equation is satis�ed

iqt + qss + vq jqj2 = 0:
�
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Remark 7. The vortex �lament equation can be rewritten in terms of Darboux
frame as follows

rt = kgn� kng = �kng

such that

n = cos

�Z
�trds

�
N + sin

�Z
�trds

�
B;

g = � sin
�Z

�trds
�
N + cos

�Z
�trds

�
B:

Corollary 8. If r = r(s; t) is a NLS surface where r = r(s; t) is a unit speed
curve with normal vector �eld for all t; then the Gaussian curvature K and mean
curvature H of r = r(s; t) are given by

K = �
 � �

k3n
;

H =



2kn
� 1

2k3n
;

respectively, such that

� = kntr;

� = �kns


 =
1

k2n

n
(knkns)s � (kns)

2 � (�kntr)2
o
:

Proof. Since s-parameter curves of Hasimoto surface r = r(s; t) are geodesics, then
it should be kg = 0: This implies that the Gaussian curvatureK and mean curvature
H of r = r(s; t) are obtained as

K = �
 � �

k3n
;

H =



2kn
� 1

2k3n

by Theorem 2. �

Corollary 9. NLS surface r = r(s; t) is developable if and only if

(knkns)s = k
2
ns + k

2
nt
2
r � tr:

Corollary 10. NLS surface r = r(s; t) is minimal surface if and only if

(knkns)s = 1 + k
2
ns + k

2
nt
2
r:
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4. Applications

Example 11. Consider the NLS surface with the following parametrization

r(s; t) = (s� 2
3
tanh(3s);�2

3
sech(3s) cos(9t);�2

3
sech(3s) sin(9t)):

Let us examine Darboux frame of the curves r = r(s; t) for all t 2 R and NLS
surface. We �nd Darboux vector �elds as follows:

T (s; t) = (2 tanh2(3s)� 1; 2 sech(3s) tanh(3s) cos(9t); 2 sech(3s) tanh(3s) sin(9t));
n(s; t) = (�2 tanh(3s) sech(3s); (tanh2(3s)� sech2(3s)) cos(9t);

(tanh2(3s)� sech2(3s)) sin(9t));
g(s; t) = (0; sin(9t);� cos(9t)):
Then we obtain Darboux curvatures as follows

kn(s; t) = �6 sech(3s);
kg(s; t) = 0;

tr(s; t) = 0:

Furthermore, we get the Gaussian and mean curvatures of the NLS surface

K(s; t) = �9(tanh2(3s)� sech2(3s));

H(s; t) = �9
2
sech(3s) +

3

4 sech(3s)
:

The following �gure illustrate NLS surface and its geodesic some of s-parameter
curves on the surface.

Figure 1: Two geodesics on NLS surface are illustrated by the color yellow

Example 12. Let r(s; t) be a NLS surface with following parametric expression

r(s; t) = (cos s; sin s; t) :
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We �nd the Darboux frame of the curve as follows

T (s) = (� sin s; cos s; 0) ;
n(s) = (cos s; sin s; 0);

g(s) = (0; 0; 1);

and we �nd geodesic curvature, normal curvature, and geodesic torsion of � as
follows

kn = �1;
kg = tr = 0:

The following �gure illustrate NLS surface and its geodesic some of s-parameter
curve on the surface

Figure 2: The geodesic on ruled NLS surface is illustrated by the color yellow
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[10] Kelleci, A., Bektaş, M., Ergüt, M., The Hasimoto surface according to bishop frame, Ad¬ya-
man University Journal of Science, 9 (2019 ), 13-22.

[11] Özdemir, M., Ergin, A.A., Rotations with unit timelike quaternions in Minkowski 3-space, J.
Geom. Phys., 56 (2) (2006), 322-336. https://doi.org/10.1016/j.geomphys.2005.02.004

[12] Özdemir, M., Ergin, A.A., Parallel frames of non-lightlike curves, Missouri Journal of Math-
ematical Sciences, 20 (2) (2008), 127-137. DOI:10.35834/mjms/1316032813

[13] Rogers, C., Schief, W.K., Intrinsic geometry of the NLS equation and its backlund transfor-
mation, Stud. Appl. Math., 101 (3) (1998), 267-288. https://doi.org/10.1111/1467-9590.
00093

[14] Rogers, C., Schief, W.K., Backlund and Darboux Transformations: Geometry of Modern
Applications in Soliton Theory, Cambridge University Press, 2002. https://doi.org/10.
1017/CBO9780511606359

[15] Schief, W.K., Rogers, C., Binormal motion of curves of constant curvature and torsion,
generation of soliton surfaces, Proc. R. Soc. Lond. A., 455 (1988) (1999), 3163-3188. https:
//doi.org/10.1098/rspa.1999.0445

[16] Marris, A. W., Passman, S. L., Vector �elds and �ows on developable surfaces, Arch. Ration.
Mech. Anal., 32 (1) (1969), 29-86. https://doi.org/10.1007/BF00253256

[17] Rogers, C., Kingston, J. G. Nondissipative magneto-hydrodynamic �ows with magnetic and
velocity �eld lines orthogonal geodesics, SIAM J. Appl. Math., 26 (1) (1974), 183-195. https:
//doi.org/10.1137/0126015

https://doi.org/10.1142/S0219887816500778
https://doi.org/10.1017/S0022112072002307
https://doi.org/10.1017/S0022112072002307
 DOI: 10.3836/tjm/1270041992
https://doi.org/10.1155/S016117120320805X
https://doi.org/10.1016/j.geomphys.2005.02.004
DOI: 10.35834/mjms/1316032813
https://doi.org/10.1111/1467-9590.00093
https://doi.org/10.1111/1467-9590.00093
https://doi.org/10.1017/CBO9780511606359
https://doi.org/10.1017/CBO9780511606359
https://doi.org/10.1098/rspa.1999.0445
https://doi.org/10.1098/rspa.1999.0445
https://doi.org/10.1007/BF00253256
https://doi.org/10.1137/0126015
https://doi.org/10.1137/0126015

	1. Introduction
	2. Preliminaries
	3. Nonlinear Schrödinger Surfaces
	4. Applications
	References

