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ABSTRACT

This paper presents global differential invariants of curves and paths in the 2-dimensional
Euclidean geometry for the groups of Euclidean transformations M(2) and special Euclidean
transformations M+(2). For these groups, analogues of the fundamental theorem for Euclidean
curves are obtained in terms of global differential invariants of a path and a curve. Moreover,
for given two paths(or curves) with the common differential G-invariants, evident forms of all
Euclidean transformations that maps one of the paths (or curves) to the other are found.
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1. Introduction

Let En be the n-dimensional Euclidean space. The groups of all orthogonal and all special orthogonal
transformations of En is denoted by O(n) and O+(n), resp. Let M(n) be group of all Euclidean transformations
of En and M+(n) be group of all special Euclidean transformations of En.

In the classical theory of curves in En, where n ≥ 3, using Frenet-Serret equations, curvature functions ki, i =
1, . . . , n− 1, of the curve were obtained (see [1, p.172]). The function ki is M(n)-invariant for i = 1, . . . n− 2.
But kn−1 is not M(n)-invariant. It is M+(n)-invariant. In the case n = 2, two different concepts of curvatures

were defined: the signed curvature κ± =
[x′(t)x′′(t)]

<x′(t),x′(t)>
3
2

(see [4, p.64-66], [5, p.14-15],[6, p.25], [19, p.8]) and the

curvature κ(x) =
|[x′(t)x′′(t)]|
<x′(t),x′(t)>

3
2

(see [1, p.31], [20, p.21]). The function κ± is M+(2)-invariant, but it is not M(2)-

invariant. The function κ isM(2)-invariant. The signed curvature κ± is more used for investigation of curves in
two dimensional classical differential geometry (see [4, p,64-66], [5, p.14-15]). Thus invariant theory of curves
in the classical differential geometry was developed only for the group M+(n). In addition, the method of
orthogonal frame in the classical differential geometry give conditions only for the local M+(n)-equivalence of
curves (see [16, p,9-19]).

In works [2, 7], by using invariant parametrization of curves, the problem of G-equivalence of curves (that
is nonparametric curves) was reduced to the problem of G-equivalence of paths (that is parametric curves) for
G = M(n),M+(n). Complete systems of global G-invariants of regular paths and regular curves in classical
geometries were obtained in [2, 7]. This approach was developed for curves in papers [10, 11, 17, 18] and for
vector fields in [8, 9].

In books ([4, Theorems 6.1 and 6.8], [5, p.136-137]) existence and uniqueness theorems for regular parametric
curves (that is paths) in E2 were obtained for the group G = M+(2).

The present paper is devoted to an investigation of problems of G-equivalence of paths and curves in E2

for groups G = M(2) and G = M+(2) in terms of global G-invariants of paths and curves. We give complete
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systems of global G-invariants of regular paths and regular curves. Existence and uniqueness theorems are
obtained.

Let G = M(2) or G = M+(2). The following is the structure of the present paper. In Sect.2, Euclidean motions
groups are redefined using complex numbers and its algebraic properties. In Sect. 3, descriptions of invariant
parametrizations of curves and the theorem on reduction are given. In Sec.4, definitions of all types of paths
are introduced. The global equivalence conditions of paths are found for the groups G. The existence and
uniqueness theorems of paths and curves are given. In Sec. 5, for given two paths with the common differential
G-invariants, evident forms of all Euclidean transformations that maps one of the paths to the other are given.
In Sect. 6, existence of rigidity theorems for regular curves are given. In Sect. 7, we obtain the global equivalence
conditions of regular curves for the group M(2).

2. Preliminaries

Let C be the field of complex numbers. Any complex number u ∈ C can be written in the form u = u1 + iu2,
where u1, u2 ∈ R, i2 = −1. It follows that the multiplication of two complex numbers u and v, denoted by uv, is
defined by

uv = (u1 + iu2)(v1 + iv2) = (u1v1 − u2v2) + i(u1v2 + u2v1)

Consider the complex number u = u1 + iu2 in the matrix form u =

(
u1

u2

)
. Then, the equality above uv can be

rewritten as

uv =

(
u1v1 − u2v2

u1v2 + u2v1

)
=

(
u1 −u2

u2 u1

)(
v1

v2

)
. (2.1)

Denote by Lu the matrix
(
u1 −u2

u2 u1

)
. Then the equality (2.1) can be written in the following form

uv = Luv, ∀u, v ∈ C (2.2)

The field C can be used to representsE2 with the inner product< u, v >= u1v1 + u2v2 for all u = u1 + iu2, v =
v1 + iv2 ∈ C. Here, the quadratic form on E2 is < u, u > for all u ∈ C. The conjugate of u, denoted by u, is
defined as u = u1 − iu2. Then we have u+ u = 2u1 and < u, v >=< u, v >. For u 6= 0, the inverse of u is defined

as 1
u = u

<u,u> . Moreover, let Λ =

(
1 0
0 −1

)
. Then we have u = Λu.

Put C∗ = {u ∈ C|u 6= 0}. For u = u1 + iu2 ∈ C∗, we have Pu =

(
u1√
<u,u>

−u2√
<u,u>

u2√
<u,u>

u1√
<u,u>

)
and Lu =

√
< u, u >Pu

such that Pu ∈ O+(2).

Let
(
u1 v1

u2 v2

)
be a matrix corresponding to complex numbers u = u1 + iu2, v = v1 + iv2 and its determinant

will be denoted by [u v].

Proposition 2.1. Let u, v ∈ C be two complex numbers such that u 6= 0. Then the complex number vu−1 exists and the
number has the form

vu−1 =
v

u
=
< u, v >

< u, u >
+ i

[u v]

< u, u >

and

L v
u

=

(
<u,v>
<u,u> − [u v]

<u,u>
[u v]
<u,u>

<u,v>
<u,u>

)
. (2.3)

Proof. The proof is known from [12, Proposition 14].
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Put S(C∗) = {u ∈ C | |u| = 1}, P (C∗) = {Lu | u ∈ C∗} and P (S(C∗) = {Lu | u ∈ S(C∗)}. S(C∗) is a subgroup
of the group C∗. Denote the set of all matrices {gW | g ∈ P (C∗)} by P (C∗)W , where gW is the multiplication of
matrices g and W .

Put O−(2) = {gW : g ∈ O+(2)}. Then O−(2) ⊂ O(2), O+(2) ∩O−(2) = ∅ and the set O+(2) is a subgroup of
O(2).

The following theorem is known from [3, p.172].

Theorem 2.1. (i) O+(2) = {F : E2 → E2|F (x) = Lux, u ∈ S(C∗),∀x ∈ E2}

(ii) O−(2) = {F : E2 → E2|F (x) = LuW (x), u ∈ S(C∗),∀x ∈ E2}

(iii) O(2) = O+(2) ∪O−(2).

(iv) M+(2) = {F : E2 → E2|F (x) = Lux+ b, u ∈ S(C∗), b ∈ E2,∀x ∈ E2}

(v) M−(2) = {F : E2 → E2|F (x) = LuW (x) + b, u ∈ S(C∗), b ∈ E2,∀x ∈ E2}

(vi) M(2) = M+(2) ∪M−(2).

3. Descriptions of invariant parametrizations of curves and the theorem on reduction

Let I = (a, b) ⊆ R and

ξ : I → E2 (3.1)

be a C2-mapping and we denote by ξ(t) = (ξ1(t), ξ2(t)). Clearly the path ξ is called an I-path in E2. The
functions ξ1(t) and ξ2(t) are real C2-functions on I . For convenience, we prefer ξ instead of ξ(t).

Let I1 = (a, b) and I2 = (c, d) be two intervals in R.

Definition 3.1. (see [2]) Let ξ(t1) be an I1-path and be η(t2) an I2-path in E2. If a C(2)-diffeomorphism
ψ : I2 → I1 exists such that ψ′(t2) > 0 and η(t2) = ξ(ψ(t2)), ∀t2 ∈ I2, we say that the paths ξ(t1) and η(t2) are
D-equivalent. A class of D-equivalent paths in E2 will be called a curve (non-parametrized curve) in E2 and
denote it by Φ. Moreover, we say that a path ξ ∈ Φ is called a parametrization of a curve Φ.

Let G = M(2) or G = M+(2).

Definition 3.2. Let two paths ξ and η be defined on the same interval I . Then these paths are called G-
equivalent if there is F ∈ G such that η(t) = Fξ(t) for all t ∈ I . In this case, it will be denoted by ξ(t) G∼ η(t).

Let Φ = {ντ , τ ∈ Π} be a curve , where ντ is a parametrization of Φ. Then FΦ = {Fντ , τ ∈ Π} is a curve for all
F in G.

Definition 3.3. Two curves Φ and Ψ are called G -equivalent if there is some F ∈ G such that Ψ = FΦ. In this
case, it will be denoted by Φ

G∼ Ψ.

Let ζ1, ζ2, . . . , ζn : I → E2 are paths defined on I .

Definition 3.4. A function ψ(ζ1, ζ2, . . . , ζn) is called G-invariant if ψ(Fζ1, F ζ2, . . . , F ζn) = ψ(ζ1, ζ2, . . . , ζn)i ∀F ∈
G and ∀t ∈ I .

For ξ′, ξ′′ of ξ, the determinant of the matrix
(
ξ′1 ξ′′1
ξ′2 ξ′′2

)
will be denoted by [ξ′ ξ′′].

Example 3.1. Let ξ(t), η(t) be I-paths in E2. By the definitions of the group O(2), the bilinear form < ξ(t), η(t) >
is O(2)-invariant. This implies that the bilinear form < ξ′(t), η′(t) > is M(2)-invariant.
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Example 3.2. Let ξ(t) =

(
ξ1(t)
ξ2(t)

)
, y(t) =

(
η1(t)
η2(t)

)
be I-paths in E2. Denote the determinant

∣∣∣∣ ξ1(t) η1(t)
ξ2(t) η2(t)

∣∣∣∣
by [ξ(t) η(t)]. Since det(g) = 1 for all g ∈ O+(2), we have [(gξ(t)) (gη(t))] = det(g)[ξ(t) η(t)] = [ξ(t) η(t)] for all
g ∈ O+(2). Hence [ξ(t) η(t)] isO+(2)-invariant function. This implies that the bilinear form [ξ′(t) η′(t)] isM+(2)-
invariant.

Example 3.3. The function [ξ(t) η(t)] is O+(2)-invariant. Using det(W ) = −1, we obtain
∣∣[ξ(t) η(t)]

∣∣ =
|[(Wξ(t)) (Wη(t))]| = |det(W )[ξ(t) η(t)]| = |[ξ(t) η(t)]|. Hence the function |[ξ(t) η(t)]| is O(2)-invariant. This
implies that the function |[ξ′(t) η′(t)]| is M(2)-invariant. Similarly, the function [ξ(t) y(t)]2 is O(2)-invariant.
This implies that the function [ξ′(t) η′(t)]2 is M(2)-invariant.

Definition 3.5. A C(2)-mapping ξ : I → E2 is called regular I-path if ξ′(t) 6= 0 for all t ∈ I .

For example, let ξ(t) = (t, t2) be an R-path. Then, ξ′(t) = (1, 2t) 6= 0 for all t ∈ R. Hence, ξ(t) is a regular R-
path.

A curve is called regular if it contains a regular path.

Proposition 3.1. Let Φ be a regular curve. Then every ξ ∈ Φ is a regular path.

Proof. It is clear from [12, Proposition 37].

The arc length of the regular I-path ξ from t = c to t = d is defined as follows:

`ξ(c, d) =
d∫
c

|[ξ′(t) ξ′′(t)]|
<ξ′(t),ξ′(t)>dt, for c, d ∈ I = (a, b) ⊆ R and c < d. Then there are the limits limc→a `ξ(c, d) ≤ +∞ and

limd→b `ξ(c, d) ≤ +∞. These limits denoted by `ξ(a, d) and `ξ(c, b), resp.
Assume the limits `ξ(a, d) = limc→a `ξ(c, d) ≤ +∞ and `ξ(c, b) = limd→b `ξ(c, d) ≤ +∞ exist. Then the

following statements exist:

(δ1) 0 < `ξ(a, d) < +∞, 0 < `ξ(c, b) < +∞.

(δ2) 0 < `ξ(a, d) < +∞, `ξ(c, b) = +∞.

(δ3) `ξ(a, d) = +∞, 0 < `ξ(c, b) < +∞.

(δ4) `ξ(a, d) = +∞, `ξ(c, b) = +∞.

Assume that the case (δ1) or (δ2) satisfies for some c, d ∈ I . Then l = `ξ(a, d) + `ξ(c, b)− `ξ(c, d), where
0 ≤ l ≤ +∞.

According to the group M(2), we introduce the type of a regular I-path ξ. The type of a regular path ξ will
be denoted by Lξ. In the cases (δ1) and (δ2), the type of the regular path ξ is (0, l). In the cases (δ3) and (δ4),
the types of the regular path ξ are (−∞, 0) and (−∞,+∞), resp. All types of the regular paths are (0, l), where
l < +∞, (0,+∞), (−∞, 0), and (−∞,+∞).

The proofs of the following propositions are similar to proofs of propositions in [2].

Proposition 3.2. (i) Let ξ and η be M(2)-equivalent. Then Lξ = Lη.

(ii) Let ξ, η ∈ Φ. Then Lξ = Lη.

According to the group M(2), the type of a regular path ξ ∈ Φ is called the type of the curve Φ and denoted
by LΦ.

Proposition 3.3. Let two curves Φ and Ψ be M(2)-equivalent. Then LΦ = LΨ.

For all types of the group M(2), the length of an arc sξ(t) for a regular I-path ξ is defined in accordance with
its the type as follows:

In the case Lξ = (0, l), where l ≤ +∞, we define sξ(t) = `ξ(a, t). In the case Lξ = (−∞, 0), we define sξ(t) =
−`ξ(t, b). In each interval I = (a, b) of the line R, we choose a fixed point and denote it by xI . In the case
I = (−∞,+∞), we choose xI = 0. We put sξ(t) = `ξ(xI , t) for the interval I .

Since ξ is a regular path,
dsξ
dt

> 0. Then an inverse function of the function sξ(t) exists and denote it by tξ(s).
Clearly, the domain of definition of the function tξ(s) is Lξ.

We omit the easy proofs of the following Propositions 3.4, 3.5, 3.6, 3.7.(see [2]).
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Proposition 3.4. Let I = (a1, b1) and J = (a2, b2). For I-path ξ, the following statements hold:

(i) sFξ(t) = sξ(t) and tFξ(s) = tξ(s) for all t ∈ I , for all s ∈ Lξ and all F ∈M(2).

(ii) for any C2-diffeomorphism with ψ′(r) > 0 for all r ∈ I , the following equalities hold: sξ(ψ)(r) = sξ(ψ(r)) +
a0,∀r ∈ I , and ψ(tξ(ψ)(s+ a0)) = tξ(s),∀s ∈ Lξ. Here, a0 = 0 for Lξ 6= (−∞,+∞) and a0 = `ξ(ψ(aJ), aI) for
Lξ = (−∞,+∞).

According to Proposition 3.4, we have ξ(tξ(s)) ∈ Φ.

Definition 3.6. (see [2]) ξ(tξ(s)) ∈ Φ is called an invariant parametrization of Φ.

Denote the set of all invariant parameterizations of a curve Φ by PΦ.

Proposition 3.5. Let ξ ∈ Φ and ξ be a I-path, where I = LΦ. Then the followings are equivalent:

(i) ξ ∈ Φ is an invariant parametrization.

(ii) |[ξ
′(t) ξ′′(t)]|

<ξ′(t),ξ′(t)> = 1, ∀s ∈ LΦ.

(iii) sξ(s) = s, ∀s ∈ LΦ.

Proof. A similar proof is given in [2, Proposition 3].

In the case sξ(s) = s,∀s ∈ LΦ, s is called an invariant parameter of Φ.

Assume that I is one of the intervals (0, l), l < +∞; (0,+∞), (−∞, 0) or (−∞,+∞).

Proposition 3.6. Let LΦ 6= (−∞,+∞). Then a unique invariant parametrization of Φ exists.

Remark 3.1. For LΦ = (−∞,+∞), PΦ is infinite and uncountable. Moreover, if ξ(t) is a periodic path then
Lξ = (−∞,+∞).

Proposition 3.7. Let ξ ∈ PΦ and LΦ = (−∞,+∞). Then
PΦ = {η : η(s) = ξ(s+ u), u ∈ (−∞,+∞)}.

The following theorem is given in [2, Theorem 1] for n-dimensional Euclidean space.

Theorem 3.1. Let Φ and Ψ are regular curves and ξ ∈ PΦ, η ∈ PΨ are invariant parametrizations.

(i) In the case LΦ = LΨ 6= (−∞,+∞), Φ and Ψ are G-equivalent if and only if ξ and η are G-equivalent.

(ii) In the case LΦ = LΨ = (−∞,+∞), Φ and Ψ are G-equivalent if and only if ξ and η(ψx) are G-equivalent for some
x ∈ (−∞,+∞),where ψx(s) = s+ x.

Theorem 3.1 reduces the problem of G-equivalence of curves to the problem of G-equivalence of paths in the
case LΦ = LΨ 6= (−∞,+∞). But we cannot claim the same in the case LΦ = LΨ = (−∞,+∞).

Definition 3.7. R-paths ξ and η are called [G, (−∞,+∞)]-equivalent if there exist g ∈ G and d ∈ R such that
η = gξ(t+ d) for all t ∈ R.

Let Φ and Ψ be two curves, where LΦ = LΨ = (−∞,+∞). Then, Theorem 3.1 reduces the G-equivalence of
these curves to [G, (−∞,+∞)]-equivalent of paths.

4. Equivalence of paths for the groups M(2) and M+(2)

Proposition 4.1. Let ξ and η be two I-paths. Then,

(i) ξ and η are M+(2)-equivalent if and only if ξ′ and η′ are O+(2)-equivalent.

(ii) ξ and η are M(2)-equivalent if and only if ξ′ and η′ are O(2)-equivalent.
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Proof. (i) ⇒: Let ξ and η be M+(2)-equivalent. Then, by Theorem 2.1, there is F ∈M+(2) such that η(t) =
Fξ(t) = Puξ(t) + b for the constant b in E2 and all t ∈ I . This equality implies η′ = Puξ

′. Then, we obtain
that ξ′ and η′ are O+(2)-equivalent.

⇐: Let ξ′ and η′ be O+(2)-equivalent. Then, by Theorem 2.1, there is F ∈ O+(2 such that η′(t) = (Fξ(t))′

for all t ∈ I . This equality implies that η′(t)− (Fξ(t))′ = (η(t)− Fξ(t))′ = 0 for all t ∈ I . Then there is a
constant b ∈ C such that η(t) = Fξ(t) + b. That is, ξ and η are M+(2)-equivalent.

(ii) The proof is clear from the case (i).

Remark 4.1. Proposition 4.1 reduces the problem of M(2)-equivalence and M+(2)-equivalence of I-paths to the
O(2)-equivalence and O+(2)-equivalence of I-paths, resp.

Let ξ(t) be a regular I-path. For shortness, we put fξ(t) =< ξ′(t), ξ′(t) >, gξ(t) = [ξ′(t) ξ′′(t)], hξ(t) =
[ξ′(t) ξ′′(t)]2 and kξ(t) =< ξ′′(t), ξ′′(t) >.

Proposition 4.2. (i) The functions fξ(t), kξ(t) and hξ(t) are M(2)-invariant.

(ii) The function gξ(t) is M+(2)-invariant.

Proof. It is clear from [12, Proposition 13] .

Theorem 4.1. Let ξ and η be two regular I-paths. Then

ξ
M+(2)∼ η ⇔

{
fξ(t) = fη(t)

gξ(t) = gη(t)
(4.1)

for all t ∈ I .
Moreover, there exists the unique F ∈M+(2) such that η(t) = Fξ(t) = Nξ(t) + b, where N ∈ O+(2) and b ∈ E2 which
are not depend on t in I have the forms

N =

(
<ξ′(t),η′(t)>

fξ(t)
− [ξ′(t) η′(t)]

fξ(t)
[ξ′(t) η′(t)]

fξ(t)
<ξ′(t),η′(t)>

fξ(t)

)
(4.2)

and

b = η(t)−Nξ(t) (4.3)

∀t ∈ I , resp.

Proof. A proof of this theorem is obtained from Proposition 4.1 and [15, Theorem 3.2].

Example 4.1. Let ξ(t) = (t2, et) and η(t) = (3
5 t

2 − 4
5e
t + 1, 4

5 t
2 + 3

5e
t + 2) be two R-paths. These paths are regular

and the equalities (4.1) hold. Then, by Theorem 4.1, ξ(t) and η(t) areM+(2)-equivalent. Further, using Theorem

4.1, we have N =

(
3
5

−4
5

4
5

3
5

)
and b = 1 + 2i.

Definition 4.1. (see [4, p.64-66], [5, p.14-15], [6, p.25], [19, p.8]) The function gξ(t)

fξ(t)
3
2

is called the signed curvature

of a regular path ξ(t) in E2 and denoted by κ±(ξ).

Theorem 4.2. Let ξ and η be two regular I-paths. Then

ξ
M+(2)∼ η ⇔

{
fξ(t) = fη(t)

κ±(ξ) = κ±(η).
(4.4)

for all t ∈ I .

Moreover, there exists the unique F ∈M+(2) such that η(t) = Fξ(t) = Nξ(t) + b, where N ∈ O+(2) and b ∈ E2

which are not depend on t in I have the forms (4.2) and (4.3),resp.
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Proof. Assume that the paths ξ(t) and η(t) are M+(2)-equivalent. Since functions fξ(t) =< ξ′(t), ξ′(t) > and
κ±(ξ) are M+(2)-invariant, equalities (4.4) hold.

Conversely, assume that (4.4) holds. The equality κ±(ξ) =
gξ(t)

fξ(t)
3
2

implies gξ(t) = κ±(ξ)fξ(t)
3
2 . This equality

and (4.4) imply the equality gξ(t) = gη(t). Hence equalities (4.1) hold. Then, using Theorem 4.1, we obtain the
unique special Euclidean transformation F of E2 such that η(t) = Fξ(t) = Nξ(t) + b, where N ∈ O+(2) and the
constant b in E2.

Remark 4.2. In [4, p.85-87,Lemma 6.6,Theorem 6.8] the part " (4.4) if and only if ξ(t) and η(t) are M+(2)-
equivalent " of Theorem 4.2 was obtained. The part " (4.4) if and only if ξ(t) and η(t) are M+(2)-equivalent
" of Theorem 4.2 for unit-speed regular curves was obtained in [5, p.136-137, Theorem 5.13]. In these books, the
uniqueness of F and the evident form of F are not given.

Definition 4.2. (i) An I-path ξ is called a completely degenerate regular path if gξ(t) = 0 for all t ∈ I .

(ii) An I-path ξ is called a non-degenerate path if gξ(t) 6= 0 for all t ∈ I .

By this definition, it is obvious that every non-degenerate path is regular. If ξ(t) and η(t) be I-paths in E2

such that ξ(t) is completely degenerate and ξ(t)
M(2)∼ η(t), then η(t) is also completely degenerate. Similarly, it

is obvious that if ξ(t) is non-degenerate and ξ(t)
M(2)∼ η(t), then η(t) is also non-degenerate.

Theorem 4.3. Let ξ and η be two completely degenerate regular I-paths.

ξ
M(2)∼ η ⇔ fξ(t) = fη(t) (4.5)

for all t ∈ I .
Moreover, there exist only F1, F2 ∈M+(2) such that η(t) = F1ξ(t) = N1ξ(t) + b1 or η(t) = F2ξ(t) = N2ξ(t) + b2. Then

(i) in the case η(t) = F1ξ(t) = N1ξ(t) + b1, N1 ∈ O+(2) and b1 ∈ E2 which are not depend on t in I have the forms
(4.2) and

b1 = η(t)−N1ξ(t) (4.6)

, resp.

(ii) in the case η(t) = F2ξ(t) = N2ξ(t) + b2, N2 ∈ O−(2) and b2 ∈ E2 which are not depend on t in I have the forms

N2 =

 <ξ
′
(t),η′(t)>
fξ(t)

[ξ
′
(t) η′(t)]
fξ(t)

[ξ
′
(t) η′(t)]
fξ(t)

−<ξ
′
(t),η′(t)>
fξ(t)

 . (4.7)

and

b2 = η(t)−N2ξ(t) (4.8)

for all t ∈ I ,resp.

Proof. A proof of this theorem is obtained from Proposition 4.1 and [15, Theorem 3.6].

Theorem 4.4. Let ξ(t) and η(t) be two non-degenerate I-paths in E2. Then

ξ
M(2)∼ η ⇔

{
fξ(t) = fη(t)

hξ(t) = hη(t)
(4.9)

for all t ∈ I .

Moreover, there exists the unique F ∈M(2) such that η(t) = Fξ(t). In this case there are the following statements:

(i1) gξ(t) = gη(t) for all t ∈ I .

(i2) gξ(t) = −gη(t) for all t ∈ I .
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In the case (i1), F has the form Fξ(t) = N1ξ(t) + b1, where N1 ∈ O+(2) and b1 ∈ E2 which are not depend on t in I
can be written as (4.2) and (4.3),resp.
In the case (i2), F has the form Fξ(t) = N2ξ(t) + b2, where N2 ∈ O(2) and b2 ∈ E2 which are not depend on t in I can
be written as (4.7) and (4.8),resp.

Proof. A proof of this theorem is obtained from Proposition 4.1 and [15, Theorem 3.7].

Definition 4.3. (see [1, p.31], [20, p.21]) The function κ(ξ) =
|gξ(t)|
fξ(t)

3
2

is called the curvature of a regular path ξ(t)

in E2.

We note that an I-path ξ(t) in E2 is completely degenerate if and only if κ(ξ) = 0 for all t ∈ I . Similarly, an
I-path ξ(t) in E2 is non-degenerate if and only if κ(ξ) 6= 0 for all t ∈ I .

Theorem 4.5. Let ξ(t) and η(t) be two non-degenerate I-paths in E2. Then

ξ
M(2)∼ η ⇔

{
fξ(t) = fη(t)

κ(ξ) = κ(η)
(4.10)

for all t ∈ I .
Moreover, there exists the unique F ∈M(2) such that η(t) = Fξ(t). In this case there are the following statements:

(i1) gξ(t) = gη(t) for all t ∈ I .

(i2) gξ(t) = −gη(t) for all t ∈ I .

In the case (i1), F has the form Fξ(t) = N1ξ(t) + b1, where N1 ∈ O+(2) and b1 ∈ E2 which are not depend on t in I
can be written as (4.2) and (4.3),resp.
In the case (i2), F has the form Fξ(t) = N2ξ(t) + b2, where N2 ∈ O(2) and b2 ∈ E2 which are not depend on t in I can
be written as (4.7) and (4.8),resp.

Proof. Assume that the paths ξ(t) and η(t) are M(2)-equivalent. Since functions fξ(t) =< ξ′(t), ξ′(t) > and κ(ξ)
are M(2)-invariant, equalities (4.10) hold.

Conversely, assume that (4.10) holds. Using equalities implies g2
ξ (t) = κ2

±(ξ)fξ(t)
3, g2

η(t) = κ2
±(η)fη(t)3 and

(4.10), we obtain equalities (4.9). Then the proof follows the proof of Theorem 4.4.

Theorem 4.6. Let ξ(t) and η(t) be two non-degenerate I-paths in E2. Then

ξ
M(2)∼ η ⇔

{
fξ(t) = fη(t)

kξ(t) = kη(t)
(4.11)

for all t ∈ I .
Moreover, there exists the unique F ∈M(2) such that η(t) = Fξ(t). In this case there are the following statements:

(i1) gξ(t) = gη(t) for all t ∈ I .

(i2) gξ(t) = −gη(t) for all t ∈ I .

In the case (i1), F has the form Fξ(t) = N1ξ(t) + b1, where N1 ∈ O+(2) and b1 ∈ E2 which are not depend on t in I
can be written as (4.2) and (4.3),resp.
In the case (i2), F has the form Fξ(t) = N2ξ(t) + b2, where N2 ∈ O(2) and b2 ∈ E2 which are not depend on t in I can
be written as (4.7) and (4.8),resp.

Proof. A proof of this theorem is obtained from Proposition 4.1 and [15, Theorem 3.9].

Remark 4.3. The part (4.11)⇔ ξ(t)
M(2)∼ η(t) of Theorem 4.6 was obtained in [2, Theorem 4].
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5. Determining a plane path from its global differential invariants

Theorem 5.1. Let a1, a2 : I → R. Assume that ξ : I → E2
1 be a regular path satisfying the following equalities{

fξ(t) = a1(t),

gξ(t) = a2(t)
(5.1)

for all t ∈ I . Then ξ(t) has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0

a2(u)

a1(u)
du
dr + c, (5.2)

where c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .
Conversely, every I-path in the form (5.2) is a regular I-path and satisfies the equalities (5.1).

Proof. ⇒: Let ξ be a regular I-path satisfies the equalities (5.1). From v
u = <u,v>

<u,u> + i [u v]
<u,u> in Proposition 2.1, we

have for the path ξ :

ξ′′

ξ′
=

f ′ξ(t)

2fξ(t)
+ i

gξ(t)

fξ(t)
=

a′1(t)

2a1(t)
+ i

a2(t)

a1(t)
. (5.3)

From this equality, we have

ξ′′ =

(
a′1(t)

2a1(t)
+ i

a2(t)

a1(t)

)
ξ′. (5.4)

From the equation (5.4), we obtain the following general solution:

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0

a2(u)

a1(u)
du
dr + c,

where c ∈ C and t0, r0 ∈ I .
⇐: Assume that an I-path ξ has the form (5.2). Then we obtain fξ(t) = a1(t) and gξ(t) = a2(t). Clearly, ξ is a

regular I-path.

Example 5.1. Let a1(t) = 4t2 + 1, a2(t) = 2 be two real continuous functions on R and ξ(0) = 1. For 0 ≤ θ < 2π
and t0 = 0 = r0 ∈ R, the general solution of the equalities (5.1) has the form:

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0

a2(u)

a1(u)
du
dr + c

= eiθ
∫ t

0

√
4r2 + 1e

i
∫ r
0

2
4u2+1

du
dr + 1

= eiθ
∫ t

0

√
4r2 + 1 [cos(arctan2r) + isin(arctan2r)] dr + 1

= eiθ
∫ t

0

√
4r2 + 1

(
1√

4r2 + 1
+ i

2r√
4r2 + 1

)
dr + 1

= eiθ(t+ it2) + 1.

Since ξ′(t) = eiθ(1 + 2it) 6= 0,∀t ∈ R, ξ(t) is a regular R-path.

Theorem 5.2. Let a1, a3 : I → R. Assume that ξ : I → E2
1 be a regular path satisfying the following equalities{

fξ(t) = a1(t),

κ±(ξ) = a3(t)
(5.5)

for all t ∈ I . Then ξ(t) has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0
a3(u)
√
a1(u)du

dr + c, (5.6)

where c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .
Conversely, every I-path in the form (5.5) is a regular I-path and satisfies the equalities (5.5) for all t ∈ I .
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Proof. The proof is follows from Theorem 4.5 and Theorem 5.1.

Remark 5.1. In [4, Theorem 6.1], the existence theorem was given in the following form: Let c : I → R be a
smooth function. There exists a regular parametrized curve z : I → E2 whose associated signed curvature
function is c(t). Thus in this book, the existence theorem is given only for the one equation κ±(ξ(t)) = c(t).

In [5, Theorem 5.14], the existence theorem was given for unit-speed curves (that is a1(t) = 1,∀t ∈ I in (5.2))
and it is given in the following form: Let k(s) be a real continuous function on I . Then there exists a regular
parametrized curve β : I → E2 whose associated signed curvature function is k(s) and it has the form

β(s) = (

∫
cosθ(s)ds+ c,

∫
sinθ(s)ds+ d),

where θ(s) =
∫
k(s)ds+ θ0 and c, d, θ0 are constants of integration. This path coincides with (5.2) in the case

a(t) = 1,∀t ∈ I .

Corollary 5.1. Let a1 : I → R. Assume that ξ : I → E2
1 be a completely degenerate regular path satisfying the following

equalities

fξ(t) = a(t) (5.7)

for all t ∈ I . Then ξ(t) has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)dr + c, (5.8)

where c ∈ C,0 ≤ θ < 2π and t0, r0 ∈ I .
Conversely, every I-path in the form (5.8) is a completely degenerate regular I-path and satisfies the equality (5.7) for

all t ∈ I .

Proof. The proof is obtained from the proof of Theorem 5.1.

Theorem 5.3. Let a1, a4 : I → R. Assume that ξ : I → E2
1 be a non-degenerate path satisfying the following equalities{

fξ(t) = a1(t),

h2
ξ(t) = a4(t)

(5.9)

for all t ∈ I . Then

(i) For every non-degenerate I-path ξ in E2, a1(t) > 0 and a4(t) > 0, ∀t ∈ I .

(ii) In the case gξ(t) > 0, ∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0

√
a4(u)

a1(u)
du
dr + c, (5.10)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

(iii) In the case gξ(t) < 0, ∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

−i
∫ r
r0

√
a4(u)

a1(u)
du
dr + c, (5.11)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

Conversely, for a4(t) > 0 for all t ∈ I , every path ξ of the forms (5.10) and (5.11) is a non-degenerate I-path satisfying
equalities (5.9).

Proof. Let ξ : I → E2
1 be a non-degenerate I-path. Then we have gξ(t) 6= 0 for all t ∈ I . By this inequality and

equalities (5.9), we have a4(t) > 0 for all t ∈ I . Furthermore, since gξ(t) 6= 0 for all t ∈ I , the statements gξ(t) > 0
or gξ(t) < 0 for all t ∈ I exist.
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In the case gξ(t) > 0,

h2
ξ(t) = a4(t) (5.12)

implies

hξ(t) =
√
a4(t). (5.13)

Then, by the equality (5.13), we have the system{
fξ(t) = a1(t),

hξ(t) =
√
a4(t)

(5.14)

By Theorem 5.1, a general solution of (5.14) obtain in the form (5.10).
Similarly, in the case gξ(t) < 0, the equality (5.12) imply

hξ(t) = −
√
a4(t)

Then, we have the system {
fξ(t) = a1(t),

hξ(t) = −
√
a4(t)

(5.15)

By Theorem 5.1, a general solution of (5.15) obtain in the form (5.11).
Conversely, assume that an I-path ξ have the forms (5.10) or (5.11). Then, we obtain equalities (5.9). However

since a4(t) 6= 0 for all t ∈ I , clearly ξ is a non-degenerate I-path.

Theorem 5.4. Let a1, a3 : I → R. Assume that ξ : I → E2
1 be a regular path satisfying the following equalities{

fξ(t) = a1(t),

κ±(ξ) = a5(t)
(5.16)

for all t ∈ I . Then

(i) For every non-degenerate I-path ξ in E2, a1(t) > 0 and a5(t) > 0, ∀t ∈ I .

(ii) For gξ(t) > 0, ∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0
a5(u)
√
a1(u)du

dr + c, (5.17)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

(iii) For gξ(t) < 0, ∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

−i
∫ r
r0
a5(u)
√
a1(u)du

dr + c, (5.18)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

Conversely, every path ξ of the forms (5.17) and (5.18) is a non-degenerate I-path satisfying equalities (5.16).

Proof. The proof is similar to the proof of Theorem 5.3.

Theorem 5.5. Let a1, a3 : I → R. Assume that ξ : I → E2
1 be a non-degenerate path satisfying the following equalities{

fξ(t) = a1(t),

kξ(t) = a6(t)
(5.19)

for all t ∈ I . Then
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(i) 4a1(t)a6(t)− (a′1(t))2 > 0 for all t ∈ I ,

(ii) For gξ(t) > 0, ∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

i
∫ r
r0

√
a1(u)a6(u)−(a′

1
(u))2

a1(u)
du
dr + c, (5.20)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

(iii) For gξ(t) < 0,∀t ∈ I , ξ has the form

ξ(t) = eiθ
∫ t

t0

√
a1(r)e

−i
∫ r
r0

√
a1(u)a6(u)−(a′

1
(u))2

a1(u)
du
dr + c, (5.21)

where ∀c ∈ C, 0 ≤ θ < 2π and t0, r0 ∈ I .

Conversely, in the case 4a1(t)a6(t)− (a′1(t))2 > 0, every path ξ of the forms (5.20) and (5.21) is a non-degenerate
I-path satisfying equalities (5.19).

Proof. The proof is obtained from Theorem 5.4.

6. Equivalence conditions of regular curves

Now, we will give the conditions of the global G-equivalence of regular curves in terms of the type and
global differential G-invariants of a regular curve for the groups G = M(2), M+(2).

By Theorem 3.1, G-equivalence and uniqueness problems for curves are reduced to the same problems for
invariant parametrizations of curves only for the case LΦ = LΨ 6= (−∞,+∞).

Let Φ be regular curves and ξ ∈ PΦ be an invariant parametrization.
We consider, for all s ∈ LΦ, the functions fξ(s), gξ(s), hξ(s) and kξ(s) in Proposition 4.2.

Theorem 6.1. Let Φ and Ψ are regular curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are
invariant parametrizations. Then Φ and Ψ are M+(2)-equivalent if and only if{

LΦ = LΨ

gξ(s) = gη(s)
(6.1)

for all s ∈ LΦ.
Moreover, there is the unique F ∈M+(2) such that Ψ = FΦ = R1Φ + c1, where R1 ∈ O+(2) and c1 ∈ E2 can be

written as

R1 =

(
< ξ′(s), η′(s) > − [ξ′(s) η′(s)]

[ξ′(s) η′(s)] < ξ′(s), η′(s) >

)
(6.2)

and

c1 = η(s)−R1ξ(s) (6.3)

for all s ∈ LΦ, resp. However, R1 and c1 are not depend on s ∈ LΦ.

Proof. ⇒: Let Φ and Ψ be M+(2)-equivalent. Using Proposition 3.3, we have LΦ = LΨ. Hence, by LΦ = LΨ and
Theorem 3.1, we have ξ and η are M+(2)-equivalent. By Theorem 4.1, for all s ∈ LΦ, we obtain fξ(s) = fη(s)
and gξ(s) = gη(s).

Since ξ and η are regular curves, with using gξ(s) = gη(s), the equalities (6.1) hold.
⇐: Let LΦ = LΨ, gξ(s) = gη(s) for all s ∈ LΦ. Since ξ ∈ PΦ, η ∈ PΨ, by Proposition 3.5, we have fξ(s) = fη(s) =

1 for all s ∈ LΦ. Using this equality and gξ(s) = gη(s), we obtain the equalities (4.1).
By Theorem 4.1, we obtain that ξ and η are M+(2)-equivalent. Then, there is the unique F ∈M+(2) such

that η(s) = Fξ(s) = R1ξ(s) + c1, where R1 ∈ O+(2) and c1 ∈ E2. Then R1 and c1 have the forms (6.2) and (6.4),
respectively. Here R1 and c1 are not depend on s in LΦ. From ξ ∈ PΦ, η ∈ PΨ, Theorem 3.1 and η = Fξ, we have
Ψ = FΦ.
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Remark 6.1. Theorem 6.1 shows that the system {LΦ, gξ(s)} is a complete system of invariants of a curve Φ for
the case LΦ 6= (−∞,+∞) and ξ(s) ∈ Φ. In the case LΦ = (−∞,+∞), they are not invariants of a curve Φ.

Theorem 6.2. Let Φ and Ψ are regular curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are invariant
parametrizations. Then Φ and Ψ areM+(2)-equivalent if and only if there exists c ∈ LΦ such that the following equalities{

gξ(s+ c) = gη(s) (6.4)

hold for all s ∈ LΦ.
Moreover, there is the unique F ∈M+(2) such that Ψ = FΦ = R2Φ + c2, whereR2 ∈ O+(2) and c2 ∈ E2 can be written
as

R2 =

(
< ξ′(s+ c), η′(s) > − [ξ′(s+ c) η′(s)]

[ξ′(s+ c) η′(s)] < ξ′(s+ c), η′(s) >

)
(6.5)

and

c2 = η(s)−N2ξ(s), (6.6)

respectively. Here R2 and c2 are not depend on s in LΦ.

Proof. ⇒: Let Φ and Ψ be M+(2)-equivalent. Using Proposition 3.3, we have LΦ = LΨ. Hence, by LΦ = LΨ and
Theorem 3.1, there exits c ∈ (−∞,+∞) such that ξ(s+ c) and η(s) are M+(2)-equivalent. By Theorem 4.2, for
all s ∈ LΦ, we obtain fξ(s+ c) = fη(s) and κ±(ξ)(s+ c) = κ±(η)(s).

Since ξ and η are regular, with using κ±(ξ)(s+ c) = κ±(η)(s), we obtain the equalities (6.4).
⇐: Let LΦ = LΨ, fξ(s+ c) = fη(s) for all s ∈ LΦ and for some c ∈ LΦ. Since ξ ∈ PΦ, η ∈ PΨ, by Proposition

3.5, we have fξ(s) = fη(s) = 1 for all s ∈ LΦ. Using this equality, we have fξ(s+ c) = fη(s) for all s ∈ LΦ. From
gξ(s+ c) = gη(s) and (6.4), we have (4.1). By Theorem 4.2, we obtain that ξ and η are M+(2)-equivalent.

Then, there exists the unique F ∈M+(2) such that η(s) = Fξ(s+ c) = R2ξ(s+ c) + c2, where R2 ∈ O+(2) and
c2 ∈ E2. Then R2 and c2 have the forms (6.5) and (6.6), respectively. Here R2 and c2 do independent of the
choice of s ∈ LΦ. From ξ ∈ PΦ, η ∈ PΨ, Theorem 3.1 and η(s) = Fξ(s+ c), we have Ψ = FΦ.

Proposition 6.1. Let Φ be a regular curve in E2 and ξ ∈ PΦ. Then κ±(ξ(s)) = gξ(s) for all s ∈ LΦ.

Proof. Since ξ ∈ PΦ, we have fξ(s) = 1 for all s ∈ LΦ. This equality and the equality κ±(ξ(s)) =
gξ(s)

fξ(s)
3
2

for all

s ∈ LΦ implies the equality κ±(ξ(s)) = gξ(s) for all s ∈ LΦ.

Theorem 6.3. Let Φ and Ψ are regular curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are
invariant parametrizations. Then Φ and Ψ are M+(2)-equivalent if and only if{

LΦ = LΨ

κ±(ξ(s)) = κ±(η(s))
(6.7)

for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M+(2)-equivalent, there is the unique F ∈M+(2) such that Ψ = FΦ = R3Φ + c3, where
R3 ∈ O+(2) and c3 ∈ E2 have the forms (6.2) and (6.4),resp.

Proof. It follows from Proposition3.3 Theorems 3.1, 4.2 and 6.1.

Theorem 6.4. Let Φ and Ψ are regular curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are invariant
parametrizations. Then Φ and Ψ are M+(2)-equivalent if and only if there exists c ∈ LΦ such that the equality

κ±(ξ(s+ c)) = κ±(η(s)) (6.8)

holds for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M+(2)-equivalent, there is the unique F ∈M+(2) such that Ψ = FΦ = R4Φ + c4, where
R4 ∈ O+(2) and c4 ∈ E2 have the forms (6.5) and (6.6),resp.

Proof. It follows from Proposition3.3 Theorems 3.1, 4.2 and 6.2.
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Definition 6.1. A curve Φ is called completely degenerate if it contains a completely degenerate path. A curve
Φ is called non-degenerate if it contains a non-degenerate path.

Proposition 6.2. Let Φ be a completely degenerate curve or a non-degenerate curve. Then every parametrization ξ ∈ Φ
is a completely degenerate regular path or a non-degenerate path.

Proof. It is similar to the proof of [15, Proposition 5.3].

Theorem 6.5. Let Φ and Ψ are completely degenerate regular curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and
ξ ∈ PΦ, η ∈ PΨ are invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if

LΦ = LΨ (6.9)

for all s ∈ LΦ.

Furthermore, there are only two F1, F2 ∈M(2) such that Ψ = F1Φ = T1Φ + d1 or Ψ = F2Φ = T2Φ + d2. Then

(i) in the case Ψ = F1Φ = T1Φ + d1, the element T1 ∈ O+(2) and d1 ∈ E2 can be written as (6.2) and (6.4), resp.

(ii) in the case Ψ = F2Φ = T2Φ + d2, the element T2 ∈ O−(2) and d2 ∈ E2 can be written as

T2 =

 < ξ
′
(s), η′(s) >

[
ξ
′
(s) η′(s)

][
ξ
′
(s) η′(s)

]
− < ξ

′
(s), η′(s) >

 . (6.10)

and

d2 = η(s)− T2ξ(s) (6.11)

for all s ∈ LΦ. Here T1, T2, d1 and d2 are not depend on s ∈ LΦ.

Proof. It follows from Theorems 4.3 and 6.1.

Theorem 6.6. Let Φ and Ψ are completely degenerate regular curves such that LΦ = LΨ = (−∞,+∞). Then Φ and Ψ
are M(2)-equivalent.

Proof. A proof follows easy from Theorems 3.1, 4.3 and 6.2.

Theorem 6.7. Let Φ and Ψ are non-degenerate curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and ξ ∈ PΦ, η ∈
PΨ are invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if

LΦ = LΨ (6.12)
hξ(s) = hη(s) (6.13)

for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ for all s ∈ LΦ. Then

(i) in the case gξ(s) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where the U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.2) and (6.4),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms
(6.10) and (6.11),resp.
Here U1, U2, k1 and k2 are not depend on s ∈ LΦ.

Proof. It follows from Theorems 3.1, 4.4 and 6.1.

Theorem 6.8. Let Φ and Ψ are non-degenerate curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are
invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if there exists c ∈ LΦ such that the equality

gξ(s+ c) = gη(s) (6.14)

holds for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ, then
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(i) in the case gξ(s+ c) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.5) and (6.6),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms

U2 =

 < ξ
′
(s+ c), η′(s) >

[
ξ
′
(s+ c) η′(s)

][
ξ
′
(s+ c) η′(s)

]
− < ξ

′
(s+ c), η′(s) >

 . (6.15)

and

k2 = η(s)− T2ξ(s+ c) (6.16)

for all s ∈ LΦ, resp.

Proof. It follows from Theorems 3.1, 4.4 and 6.2.

Proposition 6.3. Let Φ be a non-degenerate curve in E2 and ξ ∈ PΦ. Then κ(ξ) = |gξ(s)| for all s ∈ LΦ.

Proof. Since ξ ∈ PΦ, we have fξ(s) = 1 for all s ∈ LΦ. This equality and the equality κ(ξ) =
|gξ(s)|
fξ(s)

3
2

for all s ∈ LΦ

implies the equality κ(ξ) = |gξ(s)| for all s ∈ LΦ.

Theorem 6.9. Let Φ and Ψ are non-degenerate curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and ξ ∈ PΦ, η ∈
PΨ are invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if

LΦ = LΨ (6.17)
κ(ξ(s)) = κ(η(s)) (6.18)

for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ for all s ∈ LΦ. Then

(i) in the case gξ(s) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.2) and (6.4),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms
(6.10) and (6.11),resp.
Here U1, U2, k1 and k2 are not depend on s ∈ LΦ.

Proof. It follows from Theorems 3.1, 4.5 and 6.7.

Theorem 6.10. Let Φ and Ψ are non-degenerate curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are
invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if there exists c ∈ LΦ such that the equality

κ(ξ(s+ c)) = κ(η(s))) (6.19)

holds for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ. Then

(i) in the case gξ(s+ c) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.5) and (6.6),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms
(6.15) and (6.16),resp.

Proof. It follows from Proposition 6.3, Theorems 3.1, 4.5 and 6.8.

Theorem 6.11. Let Φ and Ψ are non-degenerate curves such that LΦ 6= (−∞,+∞), LΨ 6= (−∞,+∞) and ξ ∈ PΦ, η ∈
PΨ are invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if

LΦ = LΨ (6.20)
kξ(s) = kη(s) (6.21)

for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ for all s ∈ LΦ. Then
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(i) in the case gξ(s) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.2) and (6.4),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms
(6.10) and (6.11),resp.
Here U1, U2, k1 and k2 are not depend on s ∈ LΦ.

Proof. It follows from Theorems 3.1, 4.6 and 6.1.

Theorem 6.12. Let Φ and Ψ are non-degenerate curves such that LΦ = LΨ = (−∞,+∞) and ξ ∈ PΦ, η ∈ PΨ are
invariant parametrizations. Then Φ and Ψ are M(2)-equivalent if and only if there exists c ∈ LΦ such that the equality

kξ(s+ c) = kη(s) (6.22)

holds for all s ∈ LΦ.
Furthermore, if Φ and Ψ are M(2)-equivalent, there is the unique F ∈M(2) such that Ψ = FΦ. Then

(i) in the case gξ(s+ c) = gη(s), F has the form Ψ = FΦ = U1Φ + k1, where U1 ∈ O+(2) and k1 ∈ E2 have the forms
(6.5) and (6.6),resp.

(ii) in the case gξ(s) = −gη(s), F has the form Ψ = FΦ = U2Φ + k2, where U2 ∈ O(2) and k2 ∈ E2 have the forms
(6.15) and (6.16),resp.

Proof. It follows from Theorems 3.1, 4.6 and 6.2.

7. Existence and rigidity theorems for regular curves

By Theorem 3.1, the existence problem for curves is reduced to the same problem for invariant
parametrizations of curves. Below we use this reduction.

Theorem 7.1. Let Φ be a regular curve in E2, ξ(s) ∈ PΦ and b(s) be a real continuous function on LΦ. Let c ∈ LΦ,
h ∈ E2 be given. Then every ξ(s) ∈ PΦ such that ξ(c) = h and [ξ′(s) ξ′′(s)] = b(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
i
∫ v
v0
b(u)du

dv, (7.1)

where ϕ ∈ R, v0 ∈ LΦ. Conversely, every path ξ(s) of the form (7.1) is an invariant parametrization of a regular curve in
E2.

Proof. By Proposition 3.5, an invariant parametrization ξ(s) of a regular curve Φ satisfies the condition
< ξ′(s), ξ′(s) >= a(s) = 1 for all s ∈ LΦ. Using this equality and (5.1), we obtain (7.1). Conversely, (7.1) implies
ξ′(s) = eiϕe

i
∫ s
s0
b(u)du. It is easy to see< ξ′(s), ξ′(s) >= 1. Hence (7.1) is an invariant parametrization of the curve

Φ.

Theorem 7.2. Let Φ be a regular curve in E2, ξ(s) ∈ PΦ and b(s) be a real continuous function on LΦ. Let s0 ∈ LΦ,
h ∈ E2 be given. Then every ξ(s) ∈ PΦ such that x(s0) = h and κ±(ξ(s)) = b(s) has the form (7.1). Conversely, every
path ξ(s) of the form (7.1) is an invariant parametrization of a regular curve in E2.

Proof. It follows from Theorem 5.1 by using the equality < ξ′(s), ξ′(s) >= 1 for all s ∈ LΦ.

Theorem 7.3. Let Φ be a completely degenerate regular curve in E2. Let c ∈ LΦ, h ∈ E2 be given. Then every ξ(s) ∈ PΦ

such that ξ(c) = h has the following form

ξ(s) = h+ eiϕ(s− c), (7.2)

where ϕ ∈ R. Conversely, every path ξ(s) of the form (7.2) is an invariant parametrization of a completely degenerate
regular curve in E2.

Proof. Since< ξ′(s), ξ′(s) >= 1 and [ξ′(s) ξ′′(s)] = b(s) = 0 for the invariant parametrization ξ(s) of a completely
degenerate regular curve, a proof follows from Theorem 7.1.

131 www.iejgeo.com

http://www.iej.geo.com


Recognition of Paths and Curves

Theorem 7.4. Let Φ be a non-degenerate curve in E2, ξ(s) ∈ PΦ and c(s) be a real continuous function on LΦ such that
c(s) > 0 for all s ∈ LΦ. Let c ∈ LΦ, h ∈ E2 be given. Assume that ξ(s) ∈ PΦ such that ξ(c) = h and [ξ′(s) ξ′′(s)]2 = c(s).
Then the following cases exist:

(i) [ξ′(s) ξ′′(s)] =
√
c(s)

(ii) [ξ′(s) ξ′′(s)] = −
√
c(s).

In the case (i), ξ(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
i
∫ v
v0

√
c(u)du

dv, (7.3)

where ϕ ∈ R is arbitrary.
In the case (ii), ξ(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
−i

∫ v
v0

√
c(u)du

dv, (7.4)

where ϕ ∈ R is arbitrary and v0 ∈ LΦ.
Conversely, every path ξ(s) of the form (7.3) or the form (7.4) is an invariant parametrization of a non-degenerate

curve in E2.

Proof. In the case (i), we have [ξ′(s) ξ′′(s)] =
√
c(s). Since < ξ′(s), ξ′(s) >= a(s) = 1 for all s ∈ LΦ, ξ(s) has the

form (7.3) by Theorem 7.1. In the case (ii), we have [ξ′(s) ξ′′(s)] = −
√
c(s). Similarly, by Theorem 7.1, ξ(s) has

the form (7.4).

Theorem 7.5. . Let Φ be a non-degenerate curve in E2, ξ(s) ∈ PΦ and d(s) be a real continuous function on LΦ such
that d(s) > 0 for all s ∈ LΦ. Let c ∈ LΦ, h ∈ E2 be given. Assume that ξ(s) ∈ PΦ such that ξ(c) = h and κ(ξ(s)) = d(s).
Then, the following cases exist:

(i) [ξ′(s) ξ′′(s)] = d(s),

(ii) [ξ′(s) ξ′′(s)] = −d(s).

In the case (i), ξ(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
i
∫ v
v0
d(u)du

dv, (7.5)

where ϕ ∈ R is arbitrary.
In the case (ii), ξ(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
−i

∫ v
v0
d(u)du

dv, (7.6)

where ϕ ∈ R is arbitrary and v0 ∈ LΦ.
Conversely, every path ξ(s) of the form (7.5) or the form (7.6) is an invariant parametrization of a non-degenerate

curve in E2.

Proof. Since ξ(s) is an invariant parametrization, we have < ξ′(s), ξ′(s) >= 1,∀s ∈ LΦ. Using < ξ′(s), ξ′(s) >=

1,∀s ∈ LΦ and the equality κ(ξ) =
|[ξ′(s) ξ′′(s)]|
<ξ′(s),ξ′(s)>

3
2

= d(s), we obtain |[ξ′(s) ξ′′(s)]| = d(s). This equality implies

[ξ′(s) ξ′′(s)]2 = d2(s). Hence we obtain the equality c(s) = d2(s) for the function c(s) in Theorem 7.4. Then, by
Theorem 7.4, ξ(s) has the form (7.5) or the form (7.6).

Theorem 7.6. Let Φ be a non-degenerate curve in E2, ξ(s) ∈ PΦ and d(s) be a real continuous function on LΦ

such that d(s) > 0 for all s ∈ LΦ. Let c ∈ LΦ, h ∈ E2 be given. Assume that ξ(s) ∈ PΦ such that ξ(c) = h and
< ξ′′(s), ξ′′(s) >= d(s). Then the following cases exist:

(i) [ξ′(s) ξ′′(s)] =
√
d(s),
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(ii) [ξ′(s) ξ′′(s)] = −
√
d(s).

In the case (i), ξ(s) has the following form

x(s) = h+ eiϕ
∫ s

c

e
i
∫ v
v0

√
d(u)du

dv, (7.7)

where ϕ ∈ R is arbitrary and v0 ∈ LΦ.
In the case (ii), ξ(s) has the following form

ξ(s) = h+ eiϕ
∫ s

c

e
−i

∫ v
v0

√
d(u)du

dv, (7.8)

where ϕ ∈ R is arbitrary and v0 ∈ LΦ.
Conversely, every path ξ(s) of the form (7.7) or the form (7.8) is an invariant parametrization of a non-degenerate

curve in E2.

Proof. The equality < ξ′(s), ξ′(s) >= 1,∀s ∈ LΦ, implies < ξ′(s), ξ′′(s) >= 0 ∀s ∈ LΦ. Equalities [ξ′(s) ξ′′(s)]2 =<
ξ′(s), ξ′(s) >< ξ′′(s), ξ′′(s) > − < ξ′(s), ξ′′(s) >2, < ξ′(s), ξ′(s) >= 1, < ξ′(s), ξ′′(s) >= 0 and < ξ′′(s), ξ′′(s) >=
d(s) imply the equality [ξ′(s) ξ′′(s)]2 = d(s). Hence we obtain the equality c(s) = d(s) for the function c(s) in
Theorem 7.4. Then, by Theorem 7.4, ξ(s) has the form (7.7) or the form (7.8). By Theorem 7.4, the form (7.7) or
the form (7.8) is an invariant parametrization of a non-degenerate curve in E2.

8. Conclusion

Problems in computer vision and pattern recognition can be reduced to equivalence problem for paths and
curves in E2 or E3 with respect to the actions of the Euclidean transformation groups. A solution of problems
in this area can be given by finding evident form of the Euclidean transformations. (see [13, 14]). In the present
paper, by developing used method in the previous paper [15], for the group of Euclidean transformations in
E2, equivalence problems, existence and rigidity theorems for regular, completely regular and non-degenerate paths
and curves are given. For given two paths and curves with the common differential G-invariants, we obtain, for
the first time,evident forms of all Euclidean transformations that maps one of the paths and curves to the other.
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[18] Pekşen, Ö., Khadjiev, D., Ören, İ.: Invariant parametrizations and complete systems of global invariants of curves in the pseudo-Euclidean geometry.

Turkish J. Math. 36, 147-160 (2012).
[19] Spivak, M.: Comprehensive Introduction to Differential Geometry. Vol. 2 Publish Or Perish, INC., Houston, Texas, 1999.
[20] Toponogov, V. A.: Differential Geometry of Curves and Surfaces. Birkhauser, Boston, 2006.

Affiliations
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