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Abstract

By making use of the principle of subordination, we introduce a certain class of multivalent analytic Bavilevi¢ functions. Also, we obtain
subordination and superordination properties, distortion theorems and inequality properties. The results presented here would provide
extensions of those given in earlier works.
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1. Introduction

Let ¢ (U) be the class of analytic functions in the open unit disk U= {z € C: |z| < 1} and 5 [a,n] be subclass of 7 (U) consisting of
functions of the form:

f@) =a+a " +ap 12"+ (ze ).

Also, let <7 (p,n) denote the subclass of J# (U) consisting of functions of the form:

f@=2+ Y a4 (pneN={1,23,.1}). (1.1
k=p+n

We write <7 (p,1) = o/ (p) and &7 (1,1) = o/ If f(z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z), or g(z) is
superordinate to f (z), written symbolically, f < gin Uor f(z) < g(z) (z € U), if there exists a Schwarz function ® (z), which (by definition)
is analytic in U with @ (0) = 0 and |® (z)| < 1(z € U) such that f(z) = g(®(z)) (z € U). Further more, if the function g (z) is univalent in U,
then we have the following equivalence (see [7] and [2]):

f(2) <¢(z) (z€U) <= f(0)=¢(0) and f(U)Cg(U).

Let ¢ : C2 x U — C and h(z) be univalent in U. If p(z) is analytic in U and satisfies the first order differential subordination:

¢ (p(2),2p' (2):2) < h(2), (1.2)

then p(z) is a solution of the differential subordination (1.2). The univalent function g (z) is called a dominant of the solutions of the
differential subordination (1.2) if p(z) < ¢ (z) for all p(z) satisfying (1.2). A univalent dominant § that satisfies § < ¢ for all dominants of
(1.2) is called the best dominant.

If p(z) and ¢ (p(z),zp’ (z);z) are univalent in U and if p(z) satisfies first order differential superordination:

h(z) < ¢ (p(2),2p"(2):2), (1.3)

then p(z) is a solution of the differential superordination (1.3). An analytic function ¢ (z) is called a subordinant of the solutions of the
differential superordination (1.3) if ¢ (z) < p (z) for all p (z) satisfying (1.3). A univalent subordinant § that satisfies g < g for all subordinants
of (1.3) is called the best subordinant.
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Definition 1.1. A function f; € o (p,n) (i =1,...,m) is said to be the class %, (A, 04,m;A,B) if it satisfies the following subordination
condition:

oy AT

1-2 ,
( ),I:—[l zP £a~ 1+Bz
i
i=1

where all the powers are principal values and throughout the paper unless otherwise mentioned the parameters A, &;, p, n, m, A, B are
constrained as follows: A € C, a; >0,i=1,...m, pneN, -1<B<A<landzeU.

Furthermore, the function f; € %), (4, 0;,m; B) if and only if f; € & (p,n) satisfies the following condition:

(i A CF) ()

% (-]

i\ g Q;
where 0 < 8 < 1 and we write %}, (0, &t,m; B) = %)) (o, m; B). We note that
(i) Zj(A,a,1;A,B) = 2 (A, a;A,B) (see Liu [5]);
(ii) &5 (1,0,1;A,B) = %, (a;A,B) (see Yang [13]);
(iii) %1 (1,a,1;A,B) = #(a;A,B), where % (a;A, B) is the class studied by Singh [12] and Owa and Obradovic [8];
(iv) B (A, a,1;A,0) = PB" (A, a;A), where B" (A, a;A) is the class introduced by Ponnusamy and Rajasekaran [10].
(v) %! (1,a,1;1-2B,-1) = 2" (o; ) (0< B < 1), where #" (a; B) is the class considered by Owa [9].

In order to establish our main results, we need the following definition and lemmas.

Definition 1.2. [6] Denote by Q the set of all functions f that are analytic and injective on U\E (f), where
E(f)= {Ce&U: limf(z):m}7
=

and such that f (§) # 0 for { € D\E ().
Lemma 1.3. (/3] and [7]) Let the function h be analytic and convex (univalent) in U with h(0) = 1. Suppose also that g (z) given by

g(2) =1+cnd" +en "+ (1.5)
is analytic in U. If

!
¢@+ 2L 1w @mzorr0zen), 16)
then

p(2) <q(z) = gz’% /Ozh(t)t%’1 dt < h(z),

and q(z) is the best dominant.
Lemma 1.4. [11] Let q be a convex univalent function in U and let 0 € C,n € C* = C\ {0} with

i
R (l + Zq/ (Z)) > max{O,fEK (g> }
q (2) n
If the function p is analytic in U and

op(2)+nzp' (z) < 0q(2) + 124’ (2),
then p(z) < q(z) and q is the best dominant.

Lemma 1.5. [6] Let q be convex univalent in U and x € C. Further assume that R (k) > 0. If
p(z) € #[q(0),1]NQ,

and p (z) + kzp' (z) is univalent in U, then

q(2) +x2q' (2) < p(2) + x2p' (2),

implies q(z) < p(z) and q is the best subordinant.

Lemma 1.6. [4] Let F be analytic and convex in U. If f,g € </ and f,g < F, then

Af+(1—-24)g<F(0<A<1).
Lemma 1.7. [14] For real or complex numbers a,b,c(c #0,—1,-2,...) andz € U,

1
Jy = ey = T o abesz) (R() > R(0) > 0): an

2Fi(a,b;c;2) = (1—2)7 2 F ( —b;c; ‘ 1) (1.8)

In the present paper, we obtain subordination and superordination properties, convolution properties and distortion theorem of the class
B (A, 0;,m;A,B).
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2. Main results
We begin by presenting our first subordination property given by Theorem 2.1 below.
Theorem 2.1. Let f; € %} (A, 0,m;A,B) with R (A1) > 0. Then
m a;
fi (z)) ’ 1+Az
JiIA) = = ) 2.1
1131< P 0) 1+Bz @1
where the function Q (z) given by
)”f Q;
A B—A) P . B
§+B((1+BZ) 2F1 171’ l:‘l +17]+ZBZ (B#O)
0(z) = m (2.2)
PY o
1+ —=—Az (B=0)
pY o +in
i=1
is the best dominant. Furthermore
m 3 Q;
R <—f’;)) >p (zeU), 2.3)
i=1
where
p E Q;
A B—A .= ._B
R YN BT (B#0)
p= " 2.4)
PLO;
11— —=—A (B=0).
pY ai+An
i=1
The estimate (2.3) is the best possible.
Proof. Let f; € #y (A, i, m; A, B) and suppose that
o i@\
s@=[I{7") €U (2.5)
i=1 '
Then the function g(z) is of the form (1.5), analytic in U and g (0) = 1. By taking the derivatives in the both sides of (2.5), we get
m o m /
m (2 04 =1 zF = pﬁ(z) 2 z / z
(1—A)H(ﬁ5,)) +— e =g+ ,‘i(). (2.6
=1\ < Yo pYo
i=1 i=1
Since f; € A} (A, 0, m; A, B), we have
Azg'(z) 1+Az
8@+ —y < “1iB
pPY o
i=1
Now, by using Lemma 1.3 for y = —=—, we deduce that
m m
: a ) m @ m o a ) m @
122" <00 - =l | (L, PES /l Lidan, By, @7
ST\ 2P 9= ¢ 0 1+ Bt " nA Jo 14+Buu ’
)'E Q;
A (B—A) - . _Bz
Bt aiisy 2 | LL: o T LR (B#0)
- \ 28)
PYOG
14 —=——Az (B=0),

pY ai+Ain
=1

where we have made a change of variables followed by the use of identities in Lemma 1.7 witha=1,b =
the assertion (2.1).
Next, in order to prove the assertion (2.3) of Theorem 2.1, it suffices to show that

inf {R(Q(2))}=0(-1).

lz]<1

and ¢ = b+ 1. This proves

(2.9)



24 Konuralp Journal of Mathematics

Indeed, we have for |z] <r <1,

%* 1+Az >1—Ar.
14+Bz) — 1—Br

Setting
14 Asz
G(z,5) = T Bs:
and
m
PlZI Q; , Z o 1
dv(s):Ts T ds (0<s<1),
which is a positive measure on the closed interval [0, 1], we get
1
:/G(z,s) dv(s)
0
so that
1
R{Q(2) 5)=0(=r) (ldf <r<1).
0

Letting » — 17 in the above inequality, we obtain the assertion (2.3). Finally, the estimate (2.3) is the best possible because the function
Q(z) is the best dominant of (2.1). This completes the proof of Theorem 2.1. O

Corollary 2.2. Let f € B} (A, 04,m;A*,B) with R(A) > 0 and B # 0, then

%H(ﬁz( ))ai >0 (zeU),

i=1

where A* is given by

P‘iai B
BoF | LI —+ 1527
Af = . (2.10)

m

PYo B
2F 17137‘;2 "rl;ﬂ +B—1

The result is sharp.

Proof. In view of Theorem 2.1, if

<1x>ﬁ(ﬁ;f)>a[+l'rll( 7) ’E (93H5)  1vac:

= )
i=1 5 1+Bz

a;
i=1

then

, PYa
P fi\Y (AT (B-AY) = B
%H< 1B " B1-B) e I .| ' @1

On substituting the value of A* given by (2.10) in the right hand side of the inequality (2.11), we have
H(ﬁ( )) >0 (zel),
i=1 2’

which proves Corollary 2.2. O
PuttingA =1-20(0< 0 < 1) and B= —1 in Theorem 2.1, we have
Corollary 2.3. Let f € B} (4, 04,m;0) with R(L) > 0, then
3
P LG
fi(2) i=1 1

R 1-— Fl|1,1; ;= ]-1

H< i > oc+(1-o0) |2F |1, " + 5

i=1

The result is sharp.
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Putting m = 1 in Corollary 2.3, we have

Corollary 2.4. Let f € %), (A,0;0) with R(A) > 0, then

%(%)a>c+(l—0) {zFl (1,1;%“;%)—1}

The result is sharp.

Theorem 2.5. Let q(z) be univalent in U, A € C*. Suppose also that q(z) satisfies the following inequality:

Zq// (Z) pz Ot,'
9{<1+ : >>max 0,—% | = . 2.12)

q () A

If f € of (p,n) satisfies the following subordination condition:

m o m /(.
R,
m ; i i 4 = i(z A
(1-2) (f E?) + = A= <q()+ 2@, 2.13)
=1\ € Yo PYO
i=1 i=1
then

and q(z) is the best dominant.

Proof. Let the function g (z) be defined by (2.5). We know that (2.6) holds true. Combining (2.6) and (2.13), we find that

Azg (2 Azd (z
g(2)+ ,ﬁ()<q(1)+ Z()- (2.14)
pPY o pPL O
i=1 i=1
By using Lemma 1.4 and (2.14), we easily get the assertion of Theorem 2.5. O

Taking ¢ (z) = ij’rgg (=1 <B<A<1)in Theorem 2.5, we get the following result.

Corollary 2.6. Let A € C* and —1 < B < A < 1. Suppose also that

m
PY o

1-Bz i=1
9§(I+BZ)>maX 0,—R 1

If f € o (p,n) satisfies the following subordination condition:

m o m 7
o M) E (i)
o [ fi R P fi 1+A A(A—B
(14)[[(’0;;)) + =t ! tAz _A(AZB):
i=1

=<

m m ;
! Yo 1Bz pY o (14+B)?

i=1 i=1

then

ﬁ(ﬁ(z))a" | 1Az

ST\ 2P 1+ Bz’

and the function {fgﬁ is the best dominant.

We now derive the following superordination result.

Theorem 2.7. Let g be convex univalent in U, A € C with R (A) > 0. Also let

(1 71)1}1‘1[ (fi(z)>oq- . /lifll (ﬁ-z(pz))a,- :l (%;?8)

M
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be univalent in U. If f € 7 (p) satisfies the following superordination condition:

q(z)+AZZ (Z)_<(] ;L)H(fts)z)) n 1:1< )mll pfi(2) 7
p'Z Q; =1\ % ¥ o

1 i=1

and the function q (z) is the best subordinant.

Proof. Let the function g (z) be defined by (2.5). Then

() § (o2t
/ m . o L zP A~ i(z) /
q(Z)+MZ (z)<(1*l)H<ﬁz§’Z)) * lil( )mll( ’ >: Z+Mf’; =2
g Y o )4 Y o

PYa i=1
i=1 i=1 i=1
An application of Lemma 1.5 yields the assertion of Theorem 2.7.

Taking ¢ (z) = }fgi (=1 <B<A<1)in Theorem 2.7, we get the following corollary.

Corollary 2.8. Let -1 <B<A <1, A € CwithR(A) > 0. Also let

ﬁ(ﬁ—(z))a’e%u,umg
i=1

zP

and

i=1

u—mﬁ

l

<ﬁx@)“+zi%(@?yai(%3%3>
7P

be univalent in U. If f € o (p) satisfies the following superordination condition:

(%)™ E (@)

_ m ; %% 4
irl: ")‘L(A = 2<(171)H<ﬁ2§)) T T 7
p X o (1+82) =1 X
then
LHAz o fi(0))™
14+ Bz -<ll;[1( P ’

1+Az

13: is the best subordinant.

and the function

Combining the above results of subordination and superordination. we easily get the following “Sandwich-type result”.

Theorem 2.9. Let g1 be convex univalent and let q» be univalent in U, A € C with R (1) > 0. Let gy satisfies (2.12). If

[1(22)" e #0100

=1 \ 27

and

m

(1 _x)ﬁ (fi (Z))ai . )Lilz—il (ﬁ%(pz))a,- i:):ll (a,;%i;)
zP

i=1

be univalent in U, also

m o m
ATl (ﬁ(f)) ( ,Zﬁ(Z>>

A zd. m : o ol z° = ' pfi(2) A zq) s
0@+ = <o (42 S <)+ L

PY o =l \ % Yo pPr o

i=1 i=1 i=1

then

m 7P Q;

< N = ’

q1(2) g (ﬁ(z)) 42 (2)

and q1 (z) and q; (z) are, respectively, the best subordinant and the best dominant.
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Theorem 2.10. If f; € %), (04, m; B) with A > 0and 0 < B < 1. Then f; € Z, (A, q;,m; B) for |z| < R, where

R= (2.15)
The bound R is the best possible.

Proof. We begin by writing

m (2 o

[1(52) =p+0-pree ev. 216
i=1

Then clearly, the function g (z) is of the form (1.5), is analytic and has a positive real part in U. By taking the derivatives in the both sides in
equality (2.16), we get

W () § ()
1 m ft (2) i Pake] P = pfi (L) A Zg/ (Z)

T m :
i=1 Y o pPY o
i1 i=1

By making use of the following well-known estimate (see [1, Theorem 1]):

g’ ()] 2w

R{g@)} ~ 1-r
in (2.17), we obtain that

(lzl=r<1)

m o m ’
w e AT(E2)7 X (62dd) \
5% <1—7L>H(f’§f)) b= BVEE YR R —— @18)
=1\ < Yo pY o (1-r")
i=1 i=1

It is seen that the right-hand side of (2.18) is positive, provided that r < R, where R is given by (2.15). In order to show that the bound R is
the best possible, we consider the function f € o7 (p,n) defined by

ﬁ(f—@)m:ﬁmfﬁ)l“" (e U).

—sn
i1 \ 2 l-z

By noting that

m o m e
Af ()" ¢ (a.zm
1 m . 0; Az = ' pfi(z) 1+27" 2A n7"
(I—A)H(ﬁ(Z)) + i=1 ml71 _ﬁ _ +z + nz =0, (2.19)
1— l} 1. zP 1—z" m 5
=1 Y o pYo(l-2")
i=1 i=1

for z=R exp (%), we conclude that the bound is the best possible. Theorem 2.10 is thus proved. O

Theorem 2.11. Let A > A1 >0and —1 < By < By <Ay <Ay < 1. Then
By (M, 0ism; Az, By) C By (M, 0i,m; A1, By). (2.20)

Proof. Suppose that f; € %), (A2, atj,m;Ap,By). We know that

a,‘ m Zﬂ(Z)
T A ol 1S e
? imi \ 2@ %w 1+ Bz
=1

A Ijl (4

Since —1 < B; < By <Ay <A <1, we easily find that

m . o m o
o ff()Z) ' iZfi(Z)
(-2 [T (2% YL zI—_II( ) & (<3t J Iz IvAiz .21
2 I m 1+Byz  1+B2 '

i=1

that is f; € %), (A2, &, m;A1, By). Thus the assertion of Theorem 2.11 holds for A = 4; > 0. If A > 4; > 0, by Theorem 2.1 and (2.21), we
know that f; € %}, (0, 04,m;A1,B)), that is,

ﬁ(ﬁi(z))m S Irdiz 2.22)

1+B]Z.
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At the same time, we have

i=1

m o m "

, AT (42)" § (63

(M f"(Z))% A -] <f"(z>)a' D) g
_<1 /12>£11( » ) I E : (2.23)

i=1

Moreover, since 0 < % < 1,and the function 14412 (=1 <B; <A <1;z€U) is analytic and convex in U. Combining (2.21)-(2.23) and

14+B;z
Lemma 1.6, we find that

()" e)

m o;
fi@\" = i= : 14+Ayz
(1-41) ( + < ,
il;ll > g o; 1 +B1Z
i=1
thatis f; € £} (A1, @;.m;Aq,By), which implies that the assertion (2.20) of Theorem 2.11 holds. O

Theorem 2.12. Let f € B} (L, 04,m;A,B) with A >0and —1 <B <A< L. Then

m m
pX o 1 rEa m o PX G 1 v ¥ o
i=1 1-Au =" fi@)\™ i=1 1+Au ‘&7
w T du <R o ldu. 2.24
nA Jo l—Buu “ 11;11( P ni 0 1+Buu “ ( )

Proof. Let f € %) (A, o;,m;A,B) with A > 0. From Theorem 2.1, we know that (2.7) holds, which implies that

m
m o; P Z o 1 P ﬁ o
f,(Z)) ! i=1 1+Azu =",
R —_— <sup R u ok du
il;Il ( P zEleJ nA  Jo 14+ Bzu
3 r
p o 5 o p Q; ¥ o;
<= l/l supR 1+Azu u ”% R —— L[ LA u ”% “du (2.25)
-oon 0 168 1+ Bzu nA Jo 1+ Bu ’ .
and
>
m o p ai 1 P I£ a;
fi (Z) R i=1 1+Azu =
R — > inf R 7y d
il;ll < P zlglU nA  Jo 1+Bzu “ “
) >
p o p Yo pro p Yo
= . 1+Azu = =1 V1 —Au &7
>#/ f R Sy i 1y, 226
- ni 0 zlgU 1+ Bzu “ u= ni 0 lfBuu “ ( )
Combining (2.25) and (2.26), we get (2.24). The proof of Theorem 2.12 is evidently completed. O

Remark 2.13. Putting m =1 in Theorems 2.1, 2.11 and 2.12,respectively, we obtain the results of Liu [5, Theorems 1, 2 and 3, respectively].
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