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Abstract. With the assistance of representative calculation programming, the present paper examines the care-
ful voyaging wave arrangements from the nonlinear time fractional modified Kawahara equation by utilizing the
advanced exp (−ϕ (ξ))-expansion strategy in-terms of hyperbolic, trigonometric and rational function with some
appreciated parameters. The dynamics nonlinear wave solution is examined and demonstrated by maple18 in 3-D,
2-d plots and contour plot with specific values of the intricate parameters are plotted. The advanced exp (−ϕ (ξ))-
expansion method is reliable treatment for searching essential nonlinear waves that enrich a variety of dynamic
models that arises in engineering fields.
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1. Introduction

As of late, fractional partial differential equations (FPDEs) is comprehensively used to delineate various huge mar-
vels and dynamic methodology in various fields of science and designing, particularly in liquid mechanics, hydro-
dynamics, numerical science, dissemination process, strong state material science, plasma material science, neural
material science, substance energy and geo-optical filaments. [25, 28, 31]. Numerous researchers arranged through
nonlinear evolution equations (NEEs) to build voyaging wave arrangement by executing a few techniques. The meth-
ods that are entrenched in ongoing writing, for example, the sub-equation method [26, 33], the improved sub-equation
meth-od [18, 38], the modified simple equation method [3],the tanh-coth method [29], sine-cosine method [30],the
first integral method [11], the (G′/G, 1/G)−expansion method [23], the exponential rational function method [2],
the extended Kudryashov method [39], the modified simple equation method [7], the new extended (G′/G) expan-
sion method [12, 34], the darboux transformation [36], the trial solution method [10], the exp-function Method [19],
the multiple simplest equation method [42], exp (−ϕ (ξ))-expansion method [4, 6], Pseudo parabolic model [35, 37],
the sine-Gordon expansion method [16] ,the complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-
Newell-Segur equation [15], the modified auxiliary expansion method [13],the method of line [14],the bernoulli sub-
equation function method [8, 9], The modified exponential function method [20], the improved Bernoulli sub equation
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function method [40],the finite difference method [41] and so on. The purpose of this paper is to examine the approxi-
mated solution of the nonlinear time fractional modified Kawahara equation in the form

Dδ
t u + u2ux + αuxx + βuxxx = 0, t > 0, x ∈ R (1.1)

where δ is a parameter describing the order of the fractional time derivative and 0 < δ ≤ 1.The nonlinear time
fractional modified Ka-wahara equation was studied by different researchers for in-stance, Atangana et al. [5] studied
the numerical solutions of time fractional modified nonlinear Kawahara equation using the homotopy decomposition
and the Sumudu transform methods. Kumar and rayand solved the time fractional modified nonlinear Kawahara
equation using extended exp (−ϕ (ξ))-expansion method [17].Guner and Hasan [27] solved the time fractional modified
nonlinear Kawahara equation using another analytical method namely fractional exp-function method and secured
some exact soliton solutions.

The target of this article is to apply the advanced exp (−ϕ (ξ))-expansion strategy [32] to build the precise voyaging
wave answers for nonlinear advancement conditions in scientific material science by means of the time fractional non-
linear modified Kawahara equations. . The article is set up as pursues: In section 2, the description of the conformable
fractional derivative and method are discussed, In section 3, the advanced exp (−ϕ (ξ))-expansion scheme has been
talked about. In segment 4, we apply this plan to then nonlinear modified Kawahara equations. In section 5, represents
Results and Discussion, In section 6, ends are given.

2. Preliminaries andMethods

2.1. Definition and Some Features of Conformable Fractional Derivative. The conformable derivative with a limit
operator which was initially introduced by Khalil et al. [24].

Definition 2.1. f : (0,∞)→ R, then, the conformable derivative of f of order δ is defined as

Dδ
t f (t) = lim

ε→0

 f
(
t + εt1−δ

)
− f (t)

ε

 f or all t > 0, 0 < δ ≤ 1.

Later, Abdeljawad [1] has also offered chain rule, exponential functions, Gronwalls inequality, integration by parts,
Taylor power series expansions and Laplace transform for conformable derivative in fractional versions. The defini-
tion of conformable derivative can easily overcome the difficulties of exiting modified Riemann-Liouville derivative
definition [21].

Theorem 2.2. Let δ ∈ (0, 1] and f = f (t) , g = g (t) be δ conformable differentiable at a point t > 0 then:

(1) Dδ
t (c f + dg) = cDδ

t f + dDδ
t g ∀ c, d ∈ R.

(2) Dδ
t (tγ) = γtγ−δ∀ γ ∈ R.

(3) Dδ
t ( f g) = gDδ

t ( f ) + f Dδ
t (g).

(4) Dδ
t ( f /g) =

gDδ
t ( f )− f Dδ

t (g)
g2 .

Furthermore, if f is differentiable, then Dδ
t ( f (t)) = t1−δ d f

dt .

Theorem 2.3. Let f : (0,∝) → R be a function such that f is differentiable and alpha-conformable differentiable.
Also, let g be a differentiable function defined in the range of f . Then

Dδ
t ( f og) (t) = t1−δg(t)δ−1g′ (t) ,

Dδ
t ( f (t))t = g (t) .

3. The Advanced exp (−ϕ (ξ)) -ExpansionMethod

In this section, we will precis exp (−ϕ (ξ))-expansion method step by step. Consider a nonlinear partial differential
equation in the following form,

P(U,Uxx,Uxz,Uxx,Uxy,Uxtt, . . . . . .) = 0 (3.1)
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where U = U(x, y, z, t) is an unknown function, R is a polynomial of U, its different type partial derivatives, in which
the nonlinear terms and the highest order derivatives are involved.
Step 1: Now we consider a transformation variable to convert all independent variable into one variable, such as,

U(x, t) = u(ξ), ξ = kx + ly + mz ± Vt. (3.2)

By implementing this variable Eq. (3.2) permits us reducing Eq.(3.1) in an ODE for u (x, t) = u(ξ)

P(u, u′, u′′, · · · · · · · · · ) = 0. (3.3)

Step 2: Suppose that the solution of ODE Eq. (3.3) can be expressed by a polynomial in exp (−ϕ (ξ)) as follows

u =

m∑
i=0

ai exp (−φ(ξ))i, am , 0 (3.4)

where the positive integer m can be determined by balancing the highest order derivatives to the highest order nonlinear
terms appear in Eq. (3.3). And the derivative of φ(ξ) satisfies the ODE in the following form

ϕ′(ξ) + λ exp(−ϕ(ξ)) + µ exp(ϕ(ξ)) = 0 (3.5)

then the solutions of ODE Eq. (3.5) are
Case I: Hyperbolic function solution (when λµ < 0 ):

ϕ(ξ) = ln


√

λ

−µ
tanh(

√
−λµ(ξ + C))


and

ϕ(ξ) = ln


√

λ

−µ
coth(

√
−λµ(ξ + C))

 .
Case II: Trigonometric function solution (when λµ > 0 ):

ϕ(ξ) = ln


√
λ

µ
tan(

√
λµ(ξ + C))


and

ϕ(ξ) = ln

−
√
λ

µ
cot(

√
λµ(ξ + C))

 .
Case III: When µ > 0 and λ = 0

ϕ(ξ) = ln
(

1
−µ(ξ + C)

)
.

Case IV: When µ = 0 and λ ∈ <

ϕ(ξ) = ln (λ(ξ + C)) .

Where C is integrating constants and λµ < 0 or λµ > 0 depends on sign of µ.
Step 3: By substituting Eq. (3.4) into Eq. (3.3) and using the ODE (3.5), collecting all same order of exp(−mϕ(ξ)),m =

0, 1, 2, 3... together, then we execute an polynomial form of exp(−mϕ(ξ)) . Equating each coefficients of this polynomial
to zero, yields a set of algebraic system.
Step 4: Assume the estimation of the constants can be gotten by fathoming the mathematical conditions got in step 4.
Substituting the estimations of the constants together with the arrangements of Eq. (3.5), we will acquire new and far
reaching precise traveling wave arrangements of the nonlinear development Eq. (3.1).
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4. Application of theMethod

In this subsection we implement advanced exp(−φ(ξ)) expansion method in Eq. (1.1) And now using the following
transformation:
u(x, t) = u(ξ), ξ = kx − ωtδ

δ
. where k and ω are nonzero constants. We get ODE from Eq. (1.1)

− ωu′ + ku2u′ + αk2u′′ + βk3u′′′ = 0. (4.1)

Now we integrating the Eq. (4.1) with respect to ξ and we get

− ωu +
k
3

u3 + αk2u′ + βk3u′′ = 0. (4.2)

where symbolize prime represent the derivative with respect to ξ. Now we compute the balance number of Eq. (4.2)
between the linear term u′′ and the nonlinear term u3 is m = 1so the solution Eq. (4.2) takes the form

u (ξ) = A0 + A1 exp (−ϕ (ξ)) . (4.3)

Differential Eq. (4.3) with respect to ξ and substituting the value of u, u′, u′′ into the Eq. (4.2) and equating the
coefficients of eiϕ(ξ) is equal to zero where i = 0,±1,±2... Solving those the system of equations, we attain the only
two set solutions.
Set 1:

k = ±

√
− 1

36λµα

β
, ω = ∓

2
9

√
− 1

36λµα
3

β2 , A0 = α

√
−

1
6β
, A1 = ±

1
6

α
√
− 1

6β√
− 1

36λµµ
.

Set 2:

k = ±

√
− 1

36λµα

β
, ω = ∓

2
9

√
− 1

36λµα
3

β2 , A0 = −α

√
−

1
6β
, A1 = ∓

1
6

α
√
− 1

6β√
− 1

36λµµ
.

Case I: When λµ < 0 we get following hyperbolic solution

Family-1

u1,2 (x, t) =
α

6

√
−

6
β
±

1
6

α
√
− 6
β√

− 1
λµ
µ
√
−λ
µ

tanh
(√
−λµ (ξ + C)

) ,

u3,4 (x, t) =
α

6

√
−

6
β
±

1
6

α
√
− 6
β√

− 1
λµ
µ
√
−λ
µ

coth
(√
−λµ (ξ + C)

) ,
Family-2

u5,6 (x, t) = −
α

6

√
−

6
β
∓

1
6

α
√
− 6
β√

− 1
λµ
µ
√
−λ
µ

tanh
(√
−λµ (ξ + C)

) ,

u7,8 (x, t) = −
α

6

√
−

6
β
∓

1
6

α
√
− 6
β√

− 1
λµ
µ
√
−λ
µ

coth
(√
−λµ (ξ + C)

) ,
where ξ = ±

√
− 1

36λµα

β
x ±

2
9

√
− 1

36λµ α
3

β2 tδ

δ
.

Case II: When λµ > 0 we get following trigonometric solution
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Family-3

u9,10 (x, t) =
α

6

√
−

6
β
±

1
6

α
√
− 6
β√

− 1
λµ
µ
√

λ
µ
tan

(√
λµ (ξ + C)

) ,

u11,12 (x, t) =
α

6

√
−

6
β
∓

1
6

α
√
− 6
β√

− 1
λµ
µ
√

λ
µ
cot

(√
λµ (ξ + C)

)
Family-4

u13,14 (x, t) = −
α

6

√
−

6
β
∓

1
6

α
√
− 6
β√

− 1
λµ
µ
√

λ
µ
tan

(√
λµ (ξ + C)

) ,

u15,16 (x, t) = −
α

6

√
−

6
β
±

1
6

α
√
− 6
β√

− 1
λµ
µ
√

λ
µ
cot

(√
−λµ (ξ + C)

)
where ξ = ±

√
− 1

36λµα

β
x ±

2
9

√
− 1

36λµ α
3

β2 tδ

δ
.

Case III and Case IV: When λ = 0 the executing value of A1 undefined. So the solution cannot be obtained. For this
purpose this case is rejected. Similarly when µ = 0 the executing value of A1 undefined. So the solution cannot be
obtained. So this case is also rejected.

5. Results and Discussions

5.1. Graphical Explanation: This sub-section represents the graphical representation of the time fractional modified
nonlinear Kawahara equations. By using mathematical software Maple 18, Contour, 3D and 2D plots of some achieved
solutions have been shown in Fig. 1 - Fig. 6 to envisage the essential instrument of the original equations.
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(a) 3D plot

(b) 2D plot

Figure 1. Anti bright kink shape solution of u7 for α = 2.5, β = 1, δ = 1,C = 1, λ = 3, µ = −1 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
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(a) 3D plot

(b) 2D plot

Figure 2. Anti bright kink shape solution of u7 for α = −2.5, β = 1, δ = 1,C = 1, λ = 3, µ = −1
within −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
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(a) 3D plot

(b) 2D plot

Figure 3. Bright bell shape solution of u13 for α = 2.5, β = 2, δ = 1,C = 1, λ = 4, µ = 2 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
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(a) 3D plot

(b) 2D plot

Figure 4. Dark bell shape solution of u13 for α = −2.5, β = 2, δ = 1,C = 1, λ = 4, µ = 2 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
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(a) Contour plot

(b) 2D plot

Figure 5. Lump shape solution of u13 for α = −2.5, β = 2, δ = .65,C = 1, λ = 4, µ = 2 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
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(a) 3D plot

(b) Contour plot

Figure 6. Lump shape solution of u5 for α = 2.9, β = .9, δ = .45,C = 1, λ = 3, µ = −1 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.

6. Conclusions

In this segment, we have seen that two kinds of traveling wave arrangements as far as hyperbolic and trigonometric
capacities for the time fractional modified nonlinear Kawahara equations is effectively discovered by utilizing the
advancedexp (−ϕ (ξ))-expansion method under some parametric conditions. From our outcomes got in this paper, we
finish up the advanced exp (−ϕ (ξ))-expansion method strategy is amazing, powerful and helpful. The exhibition of
this technique is dependable, basic and gives numerous new arrangements. This equation could be a model equation
of pulse extension in communication systems. We investigated the stability of the solitary wave solutions on the
parametric conditions. We also investigated to examine the approximated solution of the nonlinear time fractional
modified Kawahara equation. As an outcomes, the progressed exp (−ϕ (ξ))- extension technique shows a significant
method to discover novel voyaging wave arrangements. We here included six types of solutions. Anti bright kink shape,
Bright Bell kink shape, Dark bell shape, lump shape and other Soliton shape solutions are found. The got arrangements
in this paper uncover that the technique is a powerful and effectively material of defining more definite voyaging wave
arrangements than others strategy for the nonlinear advancement conditions emerging in numerical physical science.
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