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ABSTRACT 

The drag force is an essential factor in any projectile, from road vehicles to rocket or aircraft. The total 

drag includes skin friction drag, wave drag, and base drag. The base drag is the drag due to low pressure in the 

base region of the projectile. In the case of suddenly expanded flows, due to the sudden expansion of flow from 

the nozzle into the enlarged duct, the low pressure is created in the base region of the enlarged tube, which 

results in base drag and hence overall thrust reduced. In this paper, Computational Fluid Dynamic (CFD) 

analysis is used to analyze the effect of secondary air blowing jets called control jets to control base pressure in 

the base region of suddenly enlarged duct. These control jets are placed at different Pitch Circle Diameters 

(PCD) on the base face of the enlarged pipe. The objective of this work is to increase the base pressure up to 

atmospheric pressure and hence reduces the base drag. Mach number 3.0 is considered for analysis. The CFD 

analysis is done for different combinations of Area Ratios (AR) (2, 5 and 8), Nozzle Pressure Ratios (NPR) (2, 5 

and 8), and PCD (d1, d2, and d3). 

Further analysis is done for different air blowing pressure ratios (BPR) to optimize air blowing pressure. 

The analysis results are plotted for different area ratios, nozzle pressure ratios, and PCD of control jets. By 

observing results, it can be concluded that the base pressure is strongly influenced by AR, NPR, and PCD of 

control jets. The air blowing pressure should be optimum to save energy, and the optimum values can be selected 

from the results. 
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INTRODUCTION 

Suddenly expanded flow is a complex phenomenon characterized by flow separation, flow recirculation, 

and reattachment.  A shear layer into two central regions may divide such a flow field, one being the flow 

recirculation region and the other the primary flow region. Reattachment point is the point at which the dividing 

streamline strikes the wall of the enlarged duct. The features of the suddenly expanded flow field are illustrated 

in Figure 1 [1-5]. 

 

 

Figure 1. Suddenly expanded flow field [1] 

 

A review on drag shows that 50% of the total drags of high-speed objects, such as a missile in jet-off 

condition is due to base drag. Base drag is in the form of pressure drag that dominates at very high speeds and 
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creates a zone of depression behind the bluff bodies [8,13-18]. In this search of reducing drag, scientists have 

come up with passive, active, and reactive controls [9]. Active control techniques are instrumental, such as 

suction [10] and blowing [1, 4, 5, 11], and reactive in the form of rotating cylinders [12]. The various studies on 

the flow through nozzle and diffuser are available in the literature [19-21]. 

The study of base pressure in suddenly expanded flows from nozzle finds applications in many areas 

like a rocket, aircraft, etc. The base pressure for a rocket nozzle is reduced due to expansion fans provided in the 

base. Thus the hot gases coming out of the nozzle tends to fill this region. This is undesirable since the high 

temperature of the gases is continuously felt in the base area. 

Based on the literature, it is essential to increase the base pressure up to atmospheric pressure to reduce 

drag. In this study, the active control technique in the form of control jets is used for blowing pressurized air in 

the base region of the enlarged duct as a secondary jet provided in the base region of the enlarged tube. In this 

study, different cases are analyzed by varying area ratio, nozzle pressure ratio, pitch circle diameter of control 

jets, and blowing pressure ratio. This analysis does not simulate the exact flow conditions of a rocket nozzle 

completely. Still, the results can give an excellent idea to control the base pressure. 

 

MODELING AND MESHING 
For modeling and meshing, academic licensed ANSYS Workbench 16.2 is used. The geometry is 

modeled using the dimensions for Mach number 3. Following figure 2 shows the geometry of the nozzle and 

enlarge duct. 

 

 

Figure 2. Dimensions of the nozzle and enlarged duct  

 

 

Figure 3.  3D geometry 

  

An extra length of 50 mm length is added before the nozzle inlet to develop the exact inlet flow 

condition at the inlet of the nozzle. Area ratios, i.e., the proportion of enlarged duct area to nozzle exit area for all 

the cases, are 2, 5, and 8. According to area ratio, enlarged duct diameter (D) is calculated. The length to 

diameter ratio of the enlarged duct is kept constant for all the cases as 5. 

The mesh should be structured to get accurate results. The model is divided into many parts, as shown 

in figure 3, and each section has meshed separately with the structured grid. Maximum hexahedral elements have 

been selected to generate mesh, as shown in Figure 4. 
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Figure 4.  Structured meshed 3D geometry 

 

ANSYS Fluent is used for the analysis, and the investigation is done by varying the geometry and flow 

parameters. 

 

CFD ANALYSIS 
CFD analysis has many flow assumptions and considerations to be set for better results. In the analysis 

setting, the air is considered as an ideal gas, and Sutherland's law is used to calculate the viscosity of air at 

different temperature values [6-7]. Sutherland's equation to calculate the dynamic viscosity of the air at different 

temperature values is given in equation (1) [8]. 
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k-epsilon turbulent model is used for the analysis. Nozzle pressure ratios, i.e., the proportion of 

stagnation pressure or inlet pressure to backpressure or atmospheric pressure, considered for analysis are 2, 5, 

and 8. Three different pitch circle diameters concerning the difference of radii of an enlarged duct and nozzle 

exit are used to install control jets in the base region of an enlarged tube. As the blowing pressure is extra energy 

supplied to the system to control the base pressure, it should be optimum. Further analysis is done for blowing 

pressure ratios, i.e., the ratio of control jet's blowing pressure to atmospheric pressure is considered as 2, 3, 4, 5, 

6, 7, and 8 to optimize the blowing pressure. Pitch circle diameters d1, d2, and d3 can be calculated using the 

following equations (2), (3), and (4).  

 

( )Cdd e += 25.021  (2) 

( )Cdd e += 50.022  (3) 

( )Cdd e += 75.023  (4) 

 

RESULTS AND DISCUSSION 
Results are extracted with the help of ANSYS Fluent software. The contours of total pressure and 

velocity are shown in figure 5 and figure 6, respectively, for area ratio 8.0, nozzle pressure ratio 8.0, and PCD of 

control jets d3. 

A plane is created parallel to the base face of the enlarged duct at a distance of 2 mm from the base face. 

Contours of total pressure for Area Ratio = 5, Nozzle Pressure Ratio = 5, and PCD of control jets d3 is plotted on 

the XY plane, and a plane 2 mm from the base face is shown in figures 7.  

The total average pressure is calculated with the help of a fluent post-processor on this new plane for all 

the cases without control jets, and with control, jets and graphs are plotted to observe the effectiveness of control 

jets.  All the values of absolute pressure are divided by atmospheric pressure and plotted the graphs to get a clear 

idea about the pressure variations in the base region. The results of this dimensionless pressure values at different 

nozzle pressure ratios are shown in figure 8. 
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Figure 8 is plotted for the ratio of base pressure to atmospheric pressure versus nozzle pressure ratio for 

Area ratio 2. From figure 8, it is observed that, for area ratio 2, the base pressure is less than atmospheric 

pressure for nozzle pressure ratios 2 and 5. When the nozzle pressure ratio becomes 8, the base pressure 

increases and becomes more than atmospheric pressure. The objective of this analysis is to increase the base 

pressure up to atmospheric pressure. When the nozzle pressure ratio is 8, then there is no need of control jets as 

already the base pressure is more than atmospheric pressure. However, when the nozzle pressure ratio is five, the 

base pressure is almost half of atmospheric pressure; in this case, the control jets play an essential role in 

increasing base pressure. From figure 8, it can also be observed that, for ratio 2, the control jets are more 

effective at pitch circle diameter d1. 

 

 

Figure 5.  Pressure contour for NPR=8, AR=8, PCD=d3 

 

 

Figure 6.  Velocity contour for NPR=8, AR=8, PCD=d3 

 

 

Figure 7. Pressure contour for AR = 5, NPR = 5, and PCD=d3 

 

As the area ratio increases, the diameter of enlarged duct increases; this results in a rise in reattachment 

length, and hence base region increases. From above figure 9, it is observed that, for area ratio 5, the base 

pressure is less than atmospheric pressure for all the values of nozzle pressure ratios. In this case, for all nozzle 
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pressure ratios, the control jets are very useful to increase base pressure. From the above graph, it can also be 

observed that for area ratio 5, the control jets have approximately the same effectiveness at pitch circle diameters 

d1, d2 than d3 at NPR 2 and 5, but for NPR 8 the control jets are more effective at PCD d1. 

 

 

Figure 8. Pb/Pa Vs. nozzle pressure ratio for AR=2 

 

 

Figure 9. Pb/Pa Vs. nozzle pressure ratio for AR=5 

 

  

Figure 10. Pb/Pa Vs. nozzle pressure ratio for AR=8 
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When the area ratio becomes 8, the reattachment length gets increases, and hence the base region is 

again increased. From figure 10, it is observed that, for area ratio 8, the base pressure is less than atmospheric 

pressure for all the values of nozzle pressure ratios without control jets. In this case, for all nozzle pressure 

ratios, the control jets are very useful to increase base pressure. From the above graph, it can also be seen that for 

area ratio 8, the control jets are more effective at pitch circle diameter d3 followed d2 and then d1. 

Further analysis is done for different air blowing pressure ratios to optimize blowing pressure. The air 

blowing pressure should be optimum to save energy, and one can select an optimum value by observing the 

following results. In this analysis, the blowing pressure ratios considered are 2, 3, 4, 5, 6, 7, and 8. The results of 

this analysis are shown with the help of the following graphs. 

 

 

Figure 11. Pb/Pa Vs. blowing pressure ratio for AR=2 

 

Figure 11 is plotted for the ratio of base pressure to atmospheric pressure versus blowing pressure ratio 

for Area ratio 2. From figure 11, it is observed that, for area ratio 2, the base pressure is less than atmospheric 

pressure for nozzle pressure ratios 2 and 5, without control jets. Our objective is to optimize the blowing 

pressure ratio. For nozzle pressure ratio 2 and 5, the minimum blowing pressure ratio should be 1.5 and 3.5, 

respectively. 

 

 

Figure 12. Pb/Pa Vs. blowing pressure ratio for AR = 5 

 

Figure 12 is plotted for the ratio of base pressure to atmospheric pressure versus blowing pressure ratio 

for Area ratio 5. From figure 12, it is observed that, for area ratio 5, the base pressure is less than atmospheric 



Journal of Thermal Engineering, Technical Note, Vol. 6, No. 2, Special Issue 11, pp. 15-23, March, 
2020 

21 

 

pressure for all the values nozzle pressure ratios 2, 5, and 8 without control jets. For nozzle pressure ratio 2, 5, 

and 8, the minimum blowing pressure ratio should be 1.5, 2.5, and 4.5, respectively. 

 

 

Figure 13. Pb/Pa Vs. blowing pressure ratio for AR=8 

 

Figure 13 is plotted for the ratio of base pressure to atmospheric pressure versus blowing pressure ratio 

for Area ratio 8. From figure 13, it is observed that, for area ratio 8, the base pressure is less than atmospheric 

pressure for all the values nozzle pressure ratios 2, 5, and 8 without control jets. For nozzle pressure ratio two the 

minimum blowing pressure ratio should be 1.5, for nozzle pressure ratio 5, the minimum blowing pressure ratio 

should be 2.5, and for nozzle pressure ratio 8, the minimum blowing pressure ratio should be 3.5. 

 

CONCLUSIONS 
 From results, it is concluded that the base pressure is strongly influenced by nozzle pressure ratio, area 

ratio, and control jets location. As the area ratio increases, the reattachment length increases, and hence the base 

region increases. As nozzle pressure ratio increases, the nozzle becomes under-expanded, and for under 

expanded nozzle, the control jets are more effective at area ratio 5 and 8. The control jets are very effective in 

controlling base pressure. As the area ratio increases, the effectiveness of control jets increases. 

 For area ratio two at nozzle pressure ratio 8, there is no need of control jets as the base pressure is 

already more than atmospheric pressure. However, when the nozzle pressure ratio is five, the base pressure is 

almost half of atmospheric pressure; in this case, the control jets play an essential role in increasing base 

pressure. For area ratio 2, the control jets are more effective at pitch circle diameter d1 than d2 and d3. 

For area ratio 5 and 8, the base pressure is less than atmospheric pressure for all the values of nozzle 

pressure ratios. In these cases, for all nozzle pressure ratios, the control jets are effective in increasing base 

pressure. For area ratio 5, the control jets have approximately the same effectiveness at pitch circle diameters d1, 

d2 than d3 at NPR 2 and 5, but for NPR 8, the control jets are more effective at PCD d1. For area ratio 8, the 

control jets are more effective at pitch circle diameter d3 followed d2 and then d1. 

From the results, it is observed that the blowing pressure ratio is a function of area ratio and nozzle 

pressure ratio. If the area ratio is increased, the base pressure is decreased in the base region of the enlarged duct, 

and hence, in this case, the control jets are more useful to increase base pressure. The optimum blowing pressure 

ratio for all the combination of area ratios and nozzle pressure ratios are as follows. 

For area ratio 2, at nozzle pressure ratio 2 and 5, the minimum blowing pressure ratio should be 1.5 and 

3.5, respectively. For area ratio 5, at nozzle pressure ratio 2, 5, and 8, the minimum blowing pressure ratios 

should be 1.5, 2.5, and 4.5, respectively. For area ratio 8, at nozzle pressure ratio 2, 5, and 8, the minimum 

blowing pressure ratio should be 1.5, 2.5, and 3.5, respectively. 

 
NOMENCLATURE  
CFD  Computational Fluid Dynamics 

PCD  Pitch circle diameter (d1, d2, and d3) 

AR  Area ratio 



Journal of Thermal Engineering, Technical Note, Vol. 6, No. 2, Special Issue 11, pp. 15-23, March, 
2020 

22 

 

NPR  Nozzle pressure ratio 

BPR  Blowing pressure ratio 

di  Nozzle inlet diameter 

dt  Nozzle throat diameter 

de  Nozzle exit diameter 

Lc  Nozzle convergent length 

Ld  Nozzle divergent length 

L  Enlarge duct length 

D  Enlarge duct diameter 

C  The difference of radii of enlarged duct and nozzle exit 

T  Input temperature 

T0  Reference temperature 

µ  Viscosity at input temperature T 

µ0  Reference viscosity at reference temperature T0 

Ts  Sutherland's constant (for air 120 K) 
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