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1. Introduction

The notion of statistical convergence was first introduced by Fast [6] as a generalization of ordinary convergence of sequences and excited
the attention of many researchers. Authors studied and applied the notion in different fields of mathematics such as trigonometric series,
number theory, probability theory, approximation theory, summability theory and fuzzy set theory. Among them, Móricz [11] generalized the
notion of statistical convergence to nondiscrete setting and defined the concept statistical limit of a measurable function at ∞ as the following:
A Lebesgue measurable function f on interval (a,∞) has statistical limit at ∞ if there exists a number ` such that for every ε > 0,

lim
b→∞

1
b−a

|{x ∈ (a,b) : | f (x)− `|> ε}|= 0,

where by |{.}| we denote the Lebesgue measure of the set {.}, and is denoted by st-lim
x→∞

f (x) = `.
In [11], Móricz introduced the notions of statistical limit, statistical limit inferior, statistical limit superior of a measurable function at ∞,
studied corresponding properties and as an application he proved that Fourier integral sv( f ,x) of a function f ∈ L1(R)∩C0(R) has statistical
limit as v→ ∞ uniformly on R. Besides in [12, 13], Móricz investigated the statistical limits of Cesàro and logarithmic averages of real- or
complex-valued functions and introduced statistical Cesàro and statistical logarithmic summability of functions. In these studies, Tauberian
conditions of slow decrease type under which statistical Cesàro and statistical logarithmic summability of functions imply ordinary limit at ∞

have also been given.
The main goal of this paper is to extend the concepts of statistical limit and statistical Cesàro summability to fuzzy analysis. In Section 2 we
introduce statistical limits of strongly measurable fuzzy valued functions at infinity and give some basic properties of the statistical limits. In
the sequel we give slowly decreasing-slowly oscillating type Tauberian conditions under which statistical limits of fuzzy valued functions
imply ordinary limits. In Section 3, we first compare the statistical limits and the Cesàro limits in fuzzy setting, and introduce statistical
Cesàro summability of fuzzy valued functions. Then, we give slowly decreasing-slowly oscillating type conditions for statistical Cesàro
summability of fuzzy valued functions to imply ordinary limit in fuzzy number space. Before to continue with main results of the paper we
give some preliminaries concerning fuzzy number space.
Let Kc(Rn) denote the family of all nonempty compact convex subsets of Rn. If A,B ∈Kc(Rn) and k ∈ R then the operations of addition
and scalar multiplication are defined as

A+B = {a+b : a ∈ A,b ∈ B} and kA = {ka : a ∈ A}.

The Hausdorff metric on Kc(Rn) is defined by

d(A,B) = max
{

sup
a∈A

inf
b∈B
‖a−b‖,sup

b∈B
inf
a∈A
‖a−b‖

}
,
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where ‖.‖ denotes the usual Euclidean norm in Rn.
A fuzzy number is a mapping u : Rn→ [0,1] which satisfies the following four conditions:
(i) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1.
(ii) u is fuzzy convex, i.e. u[λx+(1−λ )y]≥min{u(x),u(y)}, for all x,y ∈ Rn and for all λ ∈ [0,1].
(iii) u is upper semi-continuous.
(iv) The set [u]0 := {x ∈ Rn : u(x)> 0} is compact.[16]
The set of all fuzzy numbers is denoted by En and En is called fuzzy number space. If u ∈ En, then α-level set [u]α of u, defined by

[u]α :=

{
{x ∈ Rn : u(x)≥ α} , (0 < α ≤ 1),

{x ∈ Rn : u(x)> 0} , (α = 0),

is a nonempty compact convex subset of Rn.
Let r ∈ Rn. We say that r is a crisp fuzzy number if

r(x) :=
{

1 , ifx = r
0 , otherwise.

The operations addition and scalar multiplication on fuzzy numbers are defined by

u+ v = w ⇐⇒ [w]α = [u]α +[v]α , for all α ∈ [0,1]

and

[ku]α = k[u]α , for all α ∈ [0,1].

The operations addition and scalar multiplication on fuzzy numbers have the following properties.

Lemma 1.1. [10]

(i) 0 ∈ En is neutral element with respect to +, i.e., u+0 = 0+u = u, for all u ∈ En.
(ii) For any a,b ∈R with a,b≥ 0 or a,b≤ 0, and any u ∈ En, we have (a+b)u = au+bu. For general a,b ∈R, the above property does

not hold.
(iii) For any a ∈ R and any u,v ∈ En, we have a(u+ v) = au+av.
(iv) For any a,b ∈ R and any u ∈ En, we have a(bu) = (ab)u.

The metric D on En is defined as follows:

D(u,v) := sup
α∈[0,1]

d([u]α , [v]α ).

From [10], we have the following lemma.

Lemma 1.2. Let u,v,w,z ∈ En and k ∈ R.

(i) (En,D) is a complete metric space.
(ii) D(ku,kv) = |k|D(u,v).

(iii) D(u+ v,w+ v) = D(u,w).
(iv) D(u+ v,w+ z)≤ D(u,w)+D(v,z).
(v) |D(u,0)−D(v,0)| ≤ D(u,v)≤ D(u,0)+D(v,0).

We recall the concepts of measurability and integrability for fuzzy valued function.

Definition 1.3. [7] Let T = [a,b]⊂ R. A function s : T → En is strongly measurable if for all α ∈ [0,1] the set valued function sα : T →
Kc(Rn) defined by

sα (x) = [s(x)]α

is Lebesgue measurable, when Kc(Rn) is endowed with the topology generated by Hausdorff metric d.

Theorem 1.4. [7] If fuzzy valued function s is strongly measurable, then it is measurable with respect to the topology generated by D.

Definition 1.5. [7] Let s : T → En. The integral of s over T is defined by the following:[∫
T

s(x)dx
]

α

=
∫

T
[s(x)]α dx =

{∫
T

f (x)dx | f : T → Rn is a measurable selection of sα

}
,

for α ∈ (0,1].

A function s : T → En is called integrably bounded if there exists an integrable function h : T → R+ such that D(s(t), 0̄)≤ h(t), for all t ∈ T .
A strongly measurable and integrably bounded function s : T → En is said to be integrable over T if∫

T
s(x)dx ∈ En.

Theorem 1.6. [7] If s : T → En is strongly measurable and integrably bounded, then s is integrable.

Definition 1.7. A fuzzy valued function s : T → En is said to be continuous at x0 ∈ T if for each ε > 0 there is a δ > 0 such that
D(s(x),s(x0))< ε , whenever x ∈ T with |x− x0|< δ . If s is continuous at each x ∈ T , then we say s is continuous on T .
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Theorem 1.8. [7] If s : T → En is continuous, then s is integrable.

Theorem 1.9. [7] If s : T → En is continuous, g(x) =
∫ x

a s(t)dt is a Lipschitz continuous on T .

Theorem 1.10. [7] Let f ,g : T → En be integrable and λ ∈ R. Then,

(i)
∫

T ( f (x)+g(x))dx =
∫

T f (x)dx+
∫

T g(x)dx;

(ii)
∫

T λ f (x)dx = λ
∫

T f (x)dx;

(iii)
b∫
a

f (x)dx =
c∫

a
f (x)dx+

b∫
c

f (x)dx, where a < c < b.

(iv) The function F : T → R+ defined by F(x) = D( f (x),g(x)) is integrable on T and

D
(∫

T
f (x)dx,

∫
T

g(x)dx
)
≤
∫

T
D( f (x),g(x))dx.

Lemma 1.11. [10] Suppose µ ∈ En and define s : T → En by s(x) = µ , for all x ∈ [a,b]. Then,

b∫
a

s(x)dx = (b−a)µ.

If u∈ E1, then α-level set [u]α of u is closed, bounded and non-empty interval and we can write [u]α := [u−(α),u+(α)]. The partial ordering
relation on E1 is defined as follows:

u� v⇐⇒ [u]α � [v]α ⇐⇒ u−(α)≤ v−(α) and u+(α)≤ v+(α), for all α ∈ [0,1].

Combining the results of Lemma 6 in [1], Lemma 5 in [2], Lemma 3.4, Theorem 4.9 in [9] and Lemma 14 in[14], following lemma is
obtained.

Lemma 1.12. Let u,v,w,e ∈ E1 and ε > 0. The following statements hold:

(i) D(u,v)≤ ε if and only if u− ε � v� u+ ε

(ii) If u� v+ ε for every ε > 0, then u� v.
(iii) If u� v and v� w, then u� w.
(iv) If u� w and v� e, then u+ v� w+ e.
(v) If u+w� v+w then u� v.

A fuzzy valued function s : T → E1 has the parametric representation

[s(x)]α = [s−α (x),s
+
α (x)],

where s+α ,s
−
α : T → R, for all α ∈ [0,1].

Theorem 1.13. [8] Fuzzy valued function s : T → E1 is strongly measurable if and only if s+α and s−α are measurable for all α ∈ [0,1].

Taking into account Remark 4.2 and Example 4.2 in [7] together, we have following lemma.

Lemma 1.14. Fuzzy valued function s : T → E1 is integrable if and only if s+α ,s
−
α are integrable over T and[∫

T
s(x)dx

]
α

=

[∫
T

s−α (x)dx,
∫

T
s+α (x)dx

]
, (1.1)

for all α ∈ [0,1].

By Lemma 1.14, we obtain following useful lemma.

Lemma 1.15. Let f ,g : T → E1 be integrable and f (x)� g(x), for all x ∈ T . Then,
∫

T f (x)dx�
∫

T g(x)dx.

Definition 1.16. [15] A fuzzy valued function s : [0,∞)→ E1 is said to be slowly decreasing if for every ε > 0 there exist x0 ≥ 0 and λ > 1
such that

s(t)� s(x)− ε, (1.2)

whenever x0 ≤ x < t ≤ λx.

Definition 1.17. [4] A fuzzy valued function s : [0,∞)→ En is said to be slowly oscillating if for every ε > 0 there exist x0 ≥ 0 and λ > 1
such that

D(s(t),s(x))≤ ε, (1.3)

whenever x0 ≤ x < t ≤ λx.
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2. Statistical limits of strongly measurable fuzzy valued functions

In this section, we consider fuzzy valued function s : [a,∞)→ En where a≥ 0, unless otherwise stated.

Definition 2.1. A fuzzy valued function s has limit at ∞, if there exists a fuzzy number µ such that limx→∞ D(s(x),µ) = 0. In this case, we
write lim

x→∞
s(x) = µ .

Very recently(simultaneously with this paper), Belen [5] has defined statistical limits of continuous fuzzy valued functions and obtained
related results. Definition of statistical limit in this paper is for strongly measurable fuzzy valued functions and more general than that of
Belen since every continuous fuzzy valued function is strongly measurable(see [7, Lemma 3.2]). Our definition is as follows.

Definition 2.2. A strongly measurable fuzzy valued function s has statistical limit at ∞, if there exists a fuzzy number µ such that for every
ε > 0,

lim
b→∞

1
b−a

|{x ∈ (a,b) : D(s(x),µ)> ε}|= 0, (2.1)

where by |{.}| we denote the Lebesgue measure of the set {.}. In this case, we write st-lim
x→∞

s(x) = µ .

Remark 2.3. In (2.1), the set {x ∈ (a,b) : D(s(x),µ)> ε} is Lebesgue measurable by Theorem 1.4.

Theorem 2.4. If statistical limit of a fuzzy valued function at ∞ exists, then it is unique.

Proof. Let st-lim
x→∞

s(x) = µ and st-lim
x→∞

s(x) = ν . Since D(µ,ν)≤ D(s(x),µ)+D(s(x),ν), we have D(µ,ν) = 0. So µ = ν .

Theorem 2.5. Let s be strongly measurable fuzzy valued function. Then,

lim
x→∞

s(x) = µ ⇒ st− lim
x→∞

s(x) = µ. (2.2)

Proof. Suppose that lim
x→∞

s(x) = µ . Then, for ε > 0 there exists c > a such that D(s(x),µ)≤ ε , whenever x > c. So

lim
b→∞

1
b−a

|{x ∈ (a,b) : D(s(x),µ)> ε}| ≤ lim
b→∞

c−a
b−a

= 0.

This means that st-lim
x→∞

s(x) = µ.

The converse of Theorem 2.5 does not hold in general. As a counter example, we can give the following.

Example 2.6. Let µ,ν ∈ En with µ 6= ν and define s : T → En by

s(x) :=
{

µ , if x ∈Q
ν , otherwise.

Obviously, st-lim
x→∞

s(x) = ν . However, lim
x→∞

s(x) does not exist.

Theorem 2.7. Let s1,s2 be strongly measurable fuzzy valued functions on some interval [a,∞), µ,ν ∈ En and c ∈R. If st-lim
x→∞

s1(x) = µ and

st-lim
x→∞

s2(x) = ν , then st-lim
x→∞

(s1(x)+ s2(x)) = µ +ν and st-lim
x→∞

(cs1(x)) = cµ.

Proof. We have the following inclusion: for every ε > 0 and b > a,

{x ∈ (a,b) : D(s1(x)+ s2(x),µ +ν)> ε} ⊆
{

x ∈ (a,b) : D(s1(x),µ)>
ε

2

}
∪
{

x ∈ (a,b) : D(s2(x),ν)>
ε

2

}
.

So st-lim
x→∞

(s1(x)+ s2(x)) = µ +ν . Similarly, we have the following equation: for every ε > 0 and b > a,

{x ∈ (a,b) : D(cs1(x),cµ)> ε}=
{

x ∈ (a,b) : D(s1(x),µ)>
ε

|c|

}
,

where c 6= 0. For c = 0, validity of st-lim
x→∞

(cs1(x)) = cµ is obvious. So st-lim
x→∞

(cs1(x)) = cµ .

Theorem 2.8. If a strongly measurable fuzzy valued function s : [0,∞)→ E1 is slowly decreasing, then st-lim
x→∞

s(x) = µ implies lim
x→∞

s(x) = µ .

Proof. Let fuzzy valued function s : [0,∞)→ E1 be slowly decreasing and st-lim
x→∞

s(x) = µ . Then, for given an ε > 0 there exist x0 ≥ 0 and

λ > 1 such that slow decrease condition (1.2) is satisfied. Besides, replacing absolute value with metric D in [12, Lemma 1] we obtain fuzzy
analogue of Lemma 1 in[12]. Then, since st-lim

x→∞
s(x) = µ , there is a sequence bn ↑ ∞ of positive real numbers such that

D(s(bn),µ)≤ ε, n = 1,2, . . . (2.3)

and for some n0 we have

bn+1 < λbn, n = n0 +1,n0 +2, . . . . (2.4)
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Now consider t ∈ (bn,bn+1] for n > n0. In view of (2.4) and monotonicity of sequence (bn) we get

bn < t ≤ bn+1 < λbn < λ t.

So by slow decrease condition (1.2) and by (2.3), for every n > n0 and t ∈ (bn,bn+1] we have

s(t)� s(bn)− ε̄ � µ−2ε̄. (2.5)

Again for every n > n0 and t ∈ (bn,bn+1] we have

s(t)� s(bn+1)+ ε̄ � µ +2ε̄. (2.6)

Then, combining (2.5) and (2.6) we get

D(s(t),µ)≤ 2ε, f or every t ∈
∞⋃

n=n0+1
(bn,bn+1] = (bn0+1,∞)

by (i) of Lemma 1.12. This proves lim
x→∞

s(x) = µ .

Theorem 2.9. If a strongly measurable fuzzy valued function s : [0,∞)→ En is slowly oscillating, then st-lim
x→∞

s(x) = µ implies lim
x→∞

s(x) = µ .

Proof. Let st-lim
x→∞

s(x) = µ and s be slowly oscillating. Then, as in the proof of Theorem 2.8, for given ε > 0 and λ > 1 there exists a

sequence bn ↑ ∞ such that (2.3) and (2.4) are satisfied. By condition (2.4) and by condition of slow oscillation we have

D(s(t),s(bn))≤ ε, whenever x0 ≤ bn < t < bn+1 (2.7)

for large enough n, say n > n1. From (2.3) and (2.7) it follows that

D(s(t),µ)≤ D(s(t),s(bn))+D(s(bn),µ)≤ 2ε,

for every t ∈
⋃

∞
n=n1+1(bn,bn+1] = (bn1+1,∞). This means that lim

x→∞
s(x) = µ .

3. Statistical Cesàro summability of fuzzy valued functions

By Lloc([a,∞),En), we denote the set of fuzzy valued functions s : [a,∞)→ En such that s is integrable on every bounded interval [a,x],
x > a. Cesàro means of fuzzy valued functions are studied by many authors [3, 4, 15] and defined by the following.

Definition 3.1. [15] Let s ∈ Lloc([a,∞),En) and µ ∈ En. s is said to be Cesàro summable to µ if

lim
b→∞

1
b−a

∫ b

a
s(x)dx = µ, (3.1)

and s is said to be strongly p-Cesàro summable µ if

lim
b→∞

1
b−a

∫ b

a
D(s(x),µ)pdx = 0. (0 < p < ∞) (3.2)

Theorem 3.2. Let s ∈ Lloc([a,∞),En), where a≥ 0.

(i) If s is strongly p-Cesàro summable to some µ ∈ En, then the statistical limit of s at ∞ exists and equals to µ .
(ii) If the statistical limit of s at ∞ exists and equals to µ ∈ En, and s is bounded, then s is strongly p-Cesàro summable to µ , for every

0 < p < ∞.

Proof. We assume that s is strongly p-Cesàro summable to µ . Given ε > 0, By Markov’s inequality,

ε
p |{a < x < b : D(s(x),µ)> ε}| ≤

∫ b

a
D(s(x),µ)pdx,

for all 0 < p < ∞ and a < b < ∞. So we obtain (2.1) from (3.2).
Conversely, we assume that the statistical limit of s at ∞ equals to µ and there exists B > 0 such that D(s(x), 0̄)≤ B, for all x. Then,∫ b

a
D(s(x),µ)pdx =

∫
{a<x<b:D(s(x),µ)≤ε}

+
∫
{a<x<b:D(s(x),µ)>ε}

≤ (b−a)ε p +(B+D(µ, 0̄))p |{a < x < b : D(s(x),µ)> ε}| .

By (2.1), we obtain that

lim
b→∞

1
b−a

∫ b

a
D(s(x),µ)pdx≤ ε

p.

Since ε is arbitrary, we have (3.2).
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For convenience we take a = 0 in the rest of the paper. Then, for s ∈ Lloc([0,∞),En), Cesàro average σ(x) of s is

σ(x) =
1
x

∫ x

0
s(u)du, x ∈ (0,∞).

We say that s is statistically Cesàro summable to a fuzzy number µ , if st-lim
x→∞

σ(x) = µ .

Analogous of Corollary 1 in [15] may be given for s ∈ Lloc([0,∞),E1) as the following. The proof is similar and hence omitted.

Theorem 3.3. If s ∈ Lloc([0,∞),E1) is Cesàro summable to a fuzzy number µ and is slowly decreasing, then lim
x→∞

s(x) = µ .

Note that in case of p = 1, condition (3.2) implies condition (3.1) and so does statistical Cesàro summability. Then in view of (ii) of Theorem
3.2 we conclude that statistical limit of fuzzy valued functions implies statistical Cesàro summability under the condition of boundedness.
In this section, we give the conditions (called Tauberian conditions) for statistical Cesàro summability of fuzzy valued functions to imply
ordinary limit at ∞. That is, we aim to replace Cesàro summability with statistical Cesàro summability in Theorem 3.3 in view of the results
of Móricz[12].

Lemma 3.4. If s : [0,∞)→ E1 is a fuzzy valued function such that slow decrease condition (1.2) is satisfied for ε := 1, where x0 > 0 and
λ > 1, then there exists a constant B1 > 0 such that

s(t)� s(x)−B1 ln
( t

x

)
whenever x0 ≤ x <

t
λ
· (3.3)

Proof. Let s : [0,∞)→ E1 be a fuzzy valued function such that slow decrease condition (1.2) is satisfied only for ε := 1, where x0 > 0 and
λ > 1 and let x0 ≤ x < t

λ
be given. Then, consider the sequence

t0 := t, tp :=
tp−1

λ
, p = 1,2, . . . ,q+1,

where q is defined by the condition tq+1 ≤ x < tq. Since (1.2) is satisfied for ε := 1, we get

s(t)� s(t1)−1� s(t2)−2� ·· · � s(tq)−q� s(x)−q−1.

Then, since q < 1
lnλ

ln
( t

x
)

we get

s(t)� s(x)−1− 1
lnλ

ln
( t

x

)
, whenever x0 ≤ x <

t
λ
· (3.4)

Then, in view of x < t
λ

we have lnλ < ln
( t

x
)
, and as result we conclude

s(t)� s(x)−B1 ln
( t

x

)
, whenever x0 ≤ x <

t
λ

,

where B1 := 2/lnλ .

Lemma 3.5. Let s ∈ Lloc([0,∞),E1). Under the assumptions of Lemma 3.4, there exists a constant B2 > 0 such that

1
t

∫ t

x0

s(t)dx� 1
t

∫ t

x0

s(x)dx−B2, whenever t > λx0. (3.5)

Proof. Let the fuzzy valued function s satisfy slow decrease condition only for ε := 1, where this time assume x0 > 0. Then, by (3.3), we
get the following: ∫ t

x0

s(t)dx =
∫ t

λ

x0

s(t)dx+
∫ t

t
λ

s(t)dx

�
∫ t

λ

x0

s(x)dx−B1

∫ t
λ

x0

ln
( t

x

)
dx+

∫ t

t
λ

s(x)dx−
∫ t

t
λ

dx

�
∫ t

x0

s(x)dx−B1

∫ t
λ

0
ln
( t

x

)
dx−

∫ t

0
dx

=
∫ t

x0

s(x)dx−B1t
(

lnλ +1
λ

)
− t

=
∫ t

x0

s(x)dx− t
{

B1

(
lnλ +1

λ

)
+1
}
.

If we take

B2 := B1

(
lnλ +1

λ

)
+1,

this proves (3.5).

Lemma 3.6. If s ∈ Lloc([0,∞),E1) is slowly decreasing, then Cesàro mean σ is also slowly decreasing.
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Proof. Let s ∈ Lloc([0,∞),E1) and s be slowly decreasing. We aim to show that Cesàro mean σ of s is also slowly decreasing.
Let some 0 < ε < 1 be given. Then, consider 0 < x0 ≤ x < t ≤ λx that in slow decrease condition (1.2), where

1 < λ ≤ 1+
ε

max{1,B2}

and B2 is from (3.5).
By the following equality

σ(t)+
(

1− x
t

) 1
x

∫ x0

0
s(u)du+

(
1− x

t

) 1
x

∫ x

x0

s(u)du+
(

1− x
t

) x0

x
s(x) = σ(t)+

(
1− x

t

)
σ(x)+

(
1− x

t

) x0

x
s(x)

= σ(x)+
1
t

∫ t

x
s(u)du+

(
1− x

t

) x0

x
s(x),

we have

σ(t)+
(

1− x
t

) 1
x

∫ x0

0
s(u)du+

(
1− x

t

) 1
x

∫ x

x0

s(u)du+
(

1− x
t

) x0

x
s(x) = σ(x)+

1
t

∫ t

x
s(u)du+

(
1− x

t

) x0

x
s(x). (3.6)

Then, by Lemma 3.5 and from slow decrease condition, we get

σ(t)+
(

1− x
t

) 1
x

∫ x0

0
s(u)du+

(
1− x

t

){1
x

∫ x

x0

s(x)du+B2

}
+
(

1− x
t

) x0

x
s(x)� σ(x)+

1
t

∫ t

x
(s(x)−1)du+

(
1− x

t

) x0

x
s(x),

which yields

σ(t)+
(

1− x
t

) 1
x

∫ x0

0
s(u)du+

(
1− x

t

)
B2 � σ(x)−

(
1− x

t

)
+
(

1− x
t

) x0

x
s(x). (3.7)

At this point there exists x1 > λx0 such that (
1− x

t

) x0

x
s(x)�−ε̄, whenever x > x1 (3.8)

holds since by (3.4) we have

s(x)
x
� s(x0)−1

x
− 1

x lnλ
ln
(

x
x0

)
→ 0, as x→ ∞.

Besides there exists x2 such that (
1− x

t

) 1
x

∫ x0

0
s(u)du� ε̄, whenever x > x2, (3.9)

since

lim
x→∞

(
1− x

t

) 1
x

∫ x0

0
s(u)du = 0̄.

Also, from the fact 1
λ
≤ x

t we have (
1− x

t

)
B2 ≤

(
1− 1

λ

)
B2 ≤ (λ −1)B2 ≤ ε. (3.10)

Again from the fact that 1
λ
≤ x

t , we get

−
(

1− x
t

)
≥−

(
1− 1

λ

)
≥−(λ −1)≥−ε. (3.11)

Then, inserting the expressions (3.8)–(3.11) in (3.7), we get

σ(t)� σ(x)−4ε̄, whenever x3 ≤ x < t ≤ λx,

where x3 = max{x1,x2}. This proves that σ is slowly decreasing.

In view of Theorem 2.8, Theorem 3.3 and Lemma 3.6 we give the following result.

Theorem 3.7. If s ∈ Lloc([0,∞),E1) is slowly decreasing, then st-lim
x→∞

σ(x) = µ implies lim
x→∞

s(x) = µ .

Replacing absolute value with metric D in Lemma 3 and Lemma 5 in [12] we obtain the following lemmas in fuzzy setting.

Lemma 3.8. If s : [0,∞)→ En is a fuzzy valued function such that slow oscillation condition (1.3) is satisfied for ε := 1, where x0 > 0 and
λ > 1, then there exists a constant B3 > 0 such that

D(s(t),s(x))≤ B3 ln
( t

x

)
, whenever x0 ≤ x <

t
λ
·
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Lemma 3.9. Let s ∈ Lloc([0,∞),En). Under the assumptions of Lemma 3.8, there exists a constant B4 > 0 such that

1
t

∫ t

x0

D(s(t),s(x))dx≤ B4, whenever t > λx0.

Lemma 3.10. If s ∈ Lloc([0,∞),En) is slowly oscillating, then Cesàro mean σ is also slowly oscillating.

Proof. As in the proof of Lemma 3.6, for given 0 < ε < 1 consider 0 < x0 ≤ x < t ≤ λx that in slow oscillation condition (1.3), where

1 < λ ≤ 1+
ε

max{1,B4}

and B4 is from Lemma 3.9. Adding 2
(
1− x

t
)(

1− x0
x
)

s(x) to both sides of the equation (3.6), we get

σ(t)+
t− x

tx

∫ x0

0
s(u)du+

t− x
tx

∫ x

x0

s(u)du+
1
t

∫ t

x
s(x)du+

t− x
tx

(x− x0)s(x) = σ(x)+
1
t

∫ t

x
s(u)du+

t− x
t

s(x)+
t− x

tx

∫ x

x0

s(x)du.

Then, by the properties given in Lemma 1.2 and Theorem 1.10, we have

D(σ(t),σ(x)) = D
(

t− x
tx

∫ x0

0
s(u)du+

t− x
tx

∫ x

x0

s(u)du+
1
t

∫ t

x
s(x)du+

t− x
tx

(x− x0)s(x),
1
t

∫ t

x
s(u)du+

t− x
t

s(x)+
t− x

tx

∫ x

x0

s(x)du
)

≤ t− x
tx

x0D(s(x), 0̄)+
t− x

tx

∫ x0

0
D(s(u), 0̄)du+

t− x
tx

∫ x

x0

D(s(u),s(x))du+
1
t

∫ t

x
D(s(u),s(x))du

= J1 + J2 + J3 + J4.

By Lemma 3.8, there exists x1 > λx0 such that J1 ≤ ε for x > x1 in view of the fact that

D(s(x), 0̄)
x

≤ D(s(x),s(x0))

x
+

D(s(x0), 0̄)
x

≤ B3
ln(x/x0)

x
+

D(s(x0), 0̄)
x

→ 0 (as x→ ∞).

Besides, since

lim
x→∞

t− x
tx

∫ x0

0
D(s(u), 0̄)du = 0,

there exists x2 such that J2 ≤ ε for x > x2.
Furthermore, from the fact that 1

λ
≤ x

t and by Lemma 3.9 we have J3 ≤ (λ −1)B4 ≤ ε , for x > λx0.
Again from the fact that 1

λ
≤ x

t and by slow oscillation condition we have J4 ≤ ε .
Hence combining all findings we have

D(σ(t),σ(x))≤ J1 + J2 + J3 + J4 ≤ 4ε, whenever x3 ≤ x < t ≤ λx,

where x3 = max{x1,x2}, and this completes the proof.

Analogous of Corollary 2.1 in [4] may be given for s ∈ Lloc([0,∞),En) as the following. The proof is similar and hence omitted.

Theorem 3.11. If s ∈ Lloc([0,∞),En) is Cesàro summable to a fuzzy number µ and is slowly oscillating, then lim
x→∞

s(x) = µ

In view of Theorem 2.9, Lemma 3.10 and Theorem 3.11 we give the following result.

Theorem 3.12. If s ∈ Lloc([0,∞),En) is slowly oscillating, then st-lim
x→∞

σ(x) = µ implies lim
x→∞

s(x) = µ .
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