On Trans-Sasakian Manifolds with the Schouten-van Kampen Connection

Semra Zeren ${ }^{1}$ and Ahmet Yıldız ${ }^{2^{*}}$
${ }^{1}$ Enderun Highschool, Malatya, Turkey
${ }^{2}$ Department of Mathematics, Education Faculty, Inonu University, Malatya, Turkey
*Corresponding author

Abstract

The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds with respect to the Schouten-van Kampen connection.

Keywords: Conharmonical curvature tensor; Projective curvature tensor; Schouten-van Kampen connection; Trans-Sasakian manifolds. 2010 Mathematics Subject Classification: 53C15; 53C25; 53A30.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures by Chinae and Gonzales [4]. These type of manifolds appear as a natural generalization of both Sasakian and Kenmotsu manifolds. In the Gray-Hervella classification of almost Hermitian manifolds [6], there appears a class, W_{4}, of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [3]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [12] if the product manifold $M \times \mathbb{R}$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}$ [11] coincides with the class of the trans-Sasakian structures of type (α, β). In [11], local nature of the two subclasses, namely, C_{5} and C_{6} structures of trans-Sasakian structures are characterized completely.
We note that trans-Sasakian structures of type $(0,0),(0, \beta)$ and $(\alpha, 0)$ are cosymplectic [2], β-Kenmotsu [8] and α-Sasakian [8], respectively. Also it is proved that trans-Sasakian structures are generalized quasi-Sasakian [8]. Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.
On the other hand the Schouten-van Kampen connection is one of the most natural connections adapted to a pair of complementary distributions on a differentiable manifold endowed with an affine connection [1, 7, 9, 14]. Solov'ev investigated hyperdistributions in Riemannian manifolds using the Schouten-van Kampen connection [15, 16, 17, 18]. Then Olszak studied the Schouten-van Kampen connection to an almost contact metric structure and characterized some classes of almost contact metric manifolds with the Schouten-van Kampen connection and found certain curvature properties of this connection on these manifolds [13]. Also, Yildiz studied projectively flat and conharmonically flat 3 -dimensional f-Kenmotsu manifolds with the Schouten-van Kampen connection [19].
The present paper is organized as follows: After preliminaries, we give some basic information about the Schouten-van Kampen connection and trans-Sasakian manifolds. Then we adapte the Schouten-van Kampen connection on 3-dimensional trans-Sasakian manifolds. In section 5, we consider projectively flat and conharmonically flat 3-dimensional trans-Sasakian manifolds with respect to the Schouten-van Kampen connection. In the last section, we give an example of a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$-tensor field, ξ is a vector field, η is a 1 -form and g is the compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
g(X, \phi Y)=-g(\phi X, Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{equation*}
$$

for all $X, Y \in T M$ [2]. The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.4}
\end{equation*}
$$

for $X, Y \in T M$.
An almost contact metric struce (ϕ, ξ, η, g) on a connected manifold M is called trans-Sasakian structure [12] if $(M \times \mathbb{R}, J, G)$ belongs to the class W_{4} [6], where J is the almost complex structure on $M \times \mathbb{R}$ defined by

$$
J(X, f d / d t)=(\phi X-f \xi, \eta(X) d / d t)
$$

for all vector fields X on M and smooth function f on $M \times \mathbb{R}$, and G is the product metric on $M \times \mathbb{R}$. This may be expressed by the condition [3]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

for smooth functions α and β on M. Here we say that the trans-Sasakian structure is of type (α, β). From the formula (2.5) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.7}
\end{equation*}
$$

An explicit example of 3-dimensional proper trans-Sasakian manifold was constructed in [10]. In [5], the Ricci tensor and curvature tensor for 3-dimensional trans-Sasakian manifolds were studied and their explicit formulae were given.
From [5] we know that for a 3-dimensional trans-Sasakian manifold

$$
\begin{gather*}
2 \alpha \beta+\xi \alpha=0 \tag{2.8}\\
S(X, \xi)=\left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-X \beta-(\phi X) \alpha \tag{2.9}\\
S(X, Y)=\left(\frac{\tau}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y) \\
-\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \tag{2.10}\\
-(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y)
\end{gather*}
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{\tau}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
& -g(Y, Z)\left[\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Z)\left[\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \tag{2.11}\\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.+\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.+\left(\frac{\tau}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y
\end{align*}
$$

where S is the Ricci tensor, R is the curvature tensor and τ is the scalar curvature of the manifold M, respectively.
For constants α and β are the above relations become

$$
\begin{gather*}
R(X, Y) Z=\quad\left(\frac{\tau}{2}-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
 \tag{2.12}\\
-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y) \tag{2.13}\\
S(X, Y)=\left(\frac{\tau}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y)-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \tag{2.14}\\
S(X, \xi)=2\left(\alpha^{2}-\beta^{2}\right) \eta(X) \tag{2.15}\\
R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y) \tag{2.16}\\
Q X=\left(\frac{\tau}{2}-\left(\alpha^{2}-\beta^{2}\right)\right) X-\left(\frac{\tau}{2}-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi
\end{gather*}
$$

From (2.8) it follows that if α and β are constants, then the manifold is either α-Sasakian or β-Kenmotsu or cosymplectic.

3. The Schouten-van Kampen connection

Let M be a connected pseudo-Riemannian manifold of an arbitrary signature $(p, n-p), 0 \leq p \leq n, n=\operatorname{dim} M \geq 2$. By g and ∇ we denote the pseudo-Riemannian metric and Levi-Civita connection induced from the metric g on M respectively. Assume that H and V are two complementary, orthogonal distributions on M such that $\operatorname{dim} H=n-1, \operatorname{dim} V=1$, and the distribution V is non-null. Thus $T M=H \oplus V$, $H \cap V=\{0\}$ and $H \perp V$. Assume that ξ is a unit vector field and η is a linear form such that $\eta(\xi)=1, g(\xi, \xi)=\varepsilon= \pm 1$ and

$$
\begin{equation*}
H=\operatorname{ker} \eta, \quad V=\operatorname{span}\{\xi\} \tag{3.1}
\end{equation*}
$$

We can always choose such ξ and η at least locally (in a certain neighborhood of an arbitrary chosen point of M). We also have $\eta(X)=\varepsilon g(X, \xi)$. Moreover, it holds that $\nabla_{X} \xi \in H$.
For any $X \in T M$, by X^{h} and X^{v} we denote the projections of X onto H and V, respectively. Thus, we have $X=X^{h}+X^{v}$ with

$$
\begin{equation*}
X^{h}=X-\eta(X) \xi, \quad X^{v}=\eta(X) \xi \tag{3.2}
\end{equation*}
$$

The Schouten-van Kampen connection $\tilde{\nabla}$ associated to the Levi-Civita connection ∇ and adapted to the pair of the distributions (H, V) is defined by [1]

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\left(\nabla_{X} Y^{h}\right)^{h}+\left(\nabla_{X} Y^{v}\right)^{v} \tag{3.3}
\end{equation*}
$$

and the corresponding second fundamental form B is defined by $B=\nabla-\tilde{\nabla}$. Note that the condition (3.3) implies the parallelism of the distributions H and V with respect to the Schouten-van Kampen connection $\tilde{\nabla}$.
From (3.2), one can compute

$$
\begin{aligned}
\left(\nabla_{X} Y^{h}\right)^{h} & =\nabla_{X} Y-\eta\left(\nabla_{X} Y\right) \xi-\eta(Y) \nabla_{X} \xi \\
\left(\nabla_{X} Y^{v}\right)^{v} & =\left(\nabla_{X} \eta\right)(Y) \xi+\eta\left(\nabla_{X} Y\right) \xi
\end{aligned}
$$

which enables us to express the Schouten-van Kampen connection with the help of the Levi-Civita connection in the following way [15]

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y-\eta(Y) \nabla_{X} \xi+\left(\nabla_{X} \eta\right)(Y) \xi \tag{3.4}
\end{equation*}
$$

Thus, the second fundamental form B and the torsion \tilde{T} of $\tilde{\nabla}$ are $[15,16]$

$$
B(X, Y)=\eta(Y) \nabla_{X} \xi-\left(\nabla_{X} \eta\right)(Y) \xi
$$

and

$$
\tilde{T}(X, Y)=\eta(X) \nabla_{Y} \xi-\eta(Y) \nabla_{X} \xi+2 d \eta(X, Y) \xi
$$

With the help of the Schouten-van Kampen connection (3.4), many properties of some geometric objects connected with the distributions H, V can be characterized $[15,16,17]$. Probably, the most spectacular is the following statement: g, ξ and η are parallel with respect to $\tilde{\nabla}$, that is, $\tilde{\nabla} \xi=0, \tilde{\nabla} g=0, \tilde{\nabla} \eta=0$.

4. Trans-Sasakian manifolds with respect to the Schouten-van Kampen connection

Let M be a 3-dimensional trans-Sasakian manifold with α and β are constants with respect to the Schouten-van Kampen connection. Then using (2.6) and (2.7) in (3.4), we get

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\alpha\{\eta(Y) \phi X-g(\phi X, Y) \xi\}+\beta\{g(X, Y) \xi-\eta(Y) X\} \tag{4.1}
\end{equation*}
$$

Let R and \tilde{R} be the curvature tensors of the Levi-Civita connection ∇ and the Schouten-van Kampen connection $\tilde{\nabla}$

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}, \quad \tilde{R}(X, Y)=\left[\tilde{\nabla}_{X}, \tilde{\nabla}_{Y}\right]-\tilde{\nabla}_{[X, Y]}
$$

Using (4.1), by direct calculations, we obtain the following formula connecting R and \tilde{R} on a 3-dimensional trans-Sasakian manifold M

$$
\begin{align*}
\tilde{R}(X, Y) Z= & R(X, Y) Z \\
& +\alpha^{2}\{g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y+\eta(X) \eta(Z) Y \tag{4.2}\\
& -\eta(Y) \eta(Z) X-g(Y, Z) \eta(X) \xi+g(X, Z) \eta(Y) \xi\} \\
& +\beta^{2}\{g(Y, Z) X-g(X, Z) Y\}
\end{align*}
$$

We will also consider the Riemann curvature (0,4)-tensors \tilde{R}, R, the Ricci tensors \tilde{S}, S, the Ricci operators \tilde{Q}, Q and the scalar curvatures $\tilde{\tau}, \tau$ of the connections $\tilde{\nabla}$ and ∇ are given by

$$
\begin{align*}
& \tilde{R}(X, Y, Z, W)= R(X, Y, Z, W) \\
&+\alpha^{2}\{g(\phi Y, Z) g(\phi X, W)-g(\phi X, Z) g(\phi Y, W) \\
&+g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z) \tag{4.3}\\
&-g(Y, Z) \eta(X) \eta(W)+g(X, Z) \eta(Y) \eta(W)\} \\
&+\beta^{2}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\}, \\
&\left.\tilde{S}(Y, Z)=S(Y, Z)+2 \beta^{2} g(Y, Z)-2 \alpha^{2} \eta(Y) \eta(Z)\right), \tag{4.4}\\
& \tilde{Q} X= Q X+2 \beta^{2} X-2 \alpha^{2} \eta(X) \xi \tag{4.5}\\
& \tilde{\tau}=\tau-2 \alpha^{2}+6 \beta^{2}, \tag{4.6}
\end{align*}
$$

respectively, where $\tilde{R}(X, Y, Z, W)=g(\tilde{R}(X, Y) Z, W)$ and $R(X, Y, Z, W)=g(R(X, Y) Z, W)$.

5. Main results

In this section, we give some geometric results on 3-dimensional trans-Sasakian manifolds with α and β are constants with respect to the Schouten-van Kampen connection.
The Projective curvature tensor is an important tensor from the differential geometric point of view. If there exists a one-to-one correspondence between each coordinate neighbourhood of M and a domain in Euclidean space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 1, M$ is locally projectively flat if and only if the projective curvature tensor P vanishes. In fact M is projectively flat if and only if it is of constant curvature [2]. Thus the projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.
In a 3-dimensional trans-Sasakian manifold, the projective curvature tensor with respect to the Schouten-van Kampen connection is given by

$$
\begin{equation*}
\tilde{P}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{1}{2}\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y\} \tag{5.1}
\end{equation*}
$$

If $\tilde{P}=0$, then the manifold M is called projectively flat with respect to the Schouten-van Kampen connection.
Let M be projectively flat manifold with respect to the Schouten-van Kampen connection. From (5.1), we have

$$
\tilde{R}(X, Y) Z=\frac{1}{2}\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y\}
$$

i.e.

$$
\begin{equation*}
\tilde{R}(X, Y, Z, W)=\frac{1}{2}\{\tilde{S}(Y, Z) g(X, W)-\tilde{S}(X, Z) g(Y, W)\} \tag{5.2}
\end{equation*}
$$

Then using (4.3) and (4.4) in (5.2), we get

$$
\begin{align*}
& R(X, Y, Z, W)+\beta^{2}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +\alpha^{2}\{g(\phi Y, Z) g(\phi X, W)-g(\phi Y, W) g(\phi X, Z)+g(Y, W) \eta(X) \eta(Z) \\
& -g(X, W) \eta(Y) \eta(Z)-g(Y, Z) \eta(X) \eta(W)+g(X, Z) \eta(Y) \eta(W)\} \\
= & \frac{1}{2}\left\{\left[S(Y, Z)+2 \beta^{2} g(Y, Z)-2 \alpha^{2} \eta(Y) \eta(Z)\right] g(X, W)\right. \tag{5.3}\\
& \left.-\left[S(X, Z)+2 \beta^{2} g(X, Z)-2 \alpha^{2} \eta(X) \eta(Z)\right] g(Y, W)\right\}
\end{align*}
$$

Taking $W=\xi$ and using (2.15) in (5.3), we obtain

$$
0=S(Y, Z) \eta(X)+2 \beta^{2} g(Y, Z) \eta(X)-2 \alpha^{2} \eta(Y) \eta(Z) \eta(X)-S(X, Z) \eta(Y)-2 \beta^{2} g(X, Z) \eta(Y)+2 \alpha^{2} \eta(Y) \eta(Z) \eta(X)
$$

i.e.

$$
\begin{equation*}
0=\left\{S(Y, Z) \eta(X)-S(X, Z) \eta(Y)+2 \beta^{2} g(Y, Z) \eta(X)-2 \beta^{2} g(X, Z) \eta(Y)\right\} \tag{5.4}
\end{equation*}
$$

Again taking $X=\xi$ in (5.4), we have

$$
\begin{equation*}
S(Y, Z)=S(\xi, Z) \eta(Y)-2 \beta^{2} g(Y, Z)+2 \beta^{2} \eta(Y) \eta(Z) \tag{5.5}
\end{equation*}
$$

Using (2.14) in (5.5), we obtain

$$
\begin{equation*}
S(Y, Z)=-2 \beta^{2} g(Y, Z)+2 \alpha^{2} \eta(Y) \eta(Z) \tag{5.6}
\end{equation*}
$$

Now using (5.6) in (4.4), we get

$$
\tilde{S}(Y, Z)=0
$$

Thus the manifold M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.2), we have

$$
\tilde{R}=0
$$

Now we can say the manifold M is flat with respect to the Schouten-van Kampen connection.
Conversely, if M is flat manifold with respect to the Schouten-van Kampen connection then M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.1), M is projectively flat with respect to the Schouten-van Kampen connection.
Thus we have the following:
Theorem 5.1. Let M be a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then the following statements are equivalent: i) M is projectively flat with respect to the Schouten-van Kampen connection, ii) M is the Ricci flat with respect to the Schouten-van Kampen connection, iii) M is flat with respect to the Schouten-van Kampen connection.

In a 3-dimensional trans-Sasakian manifold the conharmonic curvature tensor with respect to the Schouten-van Kampen connection is given by

$$
\begin{equation*}
\tilde{K}(X, Y) Z=\tilde{R}(X, Y) Z-\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y+g(Y, Z) \tilde{Q} X-g(X, Z) \tilde{Q} Y\} \tag{5.7}
\end{equation*}
$$

If $\tilde{K}=0$, then the manifold M is called conharmonically flat manifold with respect to the Schouten-van Kampen connection. Then we have

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\{\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y+g(Y, Z) \tilde{Q} X-g(X, Z) \tilde{Q} Y\} \tag{5.8}
\end{equation*}
$$

Let M be conharmonically flat trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then using (4.3), (4.4) and (4.5) in (5.8), we get

$$
\begin{align*}
& R(X, Y, Z, W)+\beta^{2}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +\alpha^{2}\{g(\phi Y, Z) g(\phi X, W)-g(\phi Y, W) g(\phi X, Z)+g(Y, W) \eta(X) \eta(Z) \\
& -g(X, W) \eta(Y) \eta(Z)-g(Y, Z) \eta(X) \eta(W)+g(X, Z) \eta(Y) \eta(W)\} \\
= & S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \tag{5.9}\\
& +S(X, W) g(Y, Z)-S(Y, W) g(X, Z) \\
& +4 \beta^{2}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& -2 \alpha^{2}\{g(X, W) \eta(Y) \eta(Z)-g(Y, W) \eta(X) \eta(Z) \\
& +g(Y, Z) \eta(X) \eta(W)-g(X, Z) \eta(Y) \eta(W)\} .
\end{align*}
$$

Taking $W=\xi$ in (5.9), we obtain

$$
\begin{align*}
& R(X, Y, Z, \xi)+\left(\beta^{2}-\alpha^{2}\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \\
= & S(Y, Z) \eta(X)-S(X, Z) \eta(Y)+g(Y, Z) S(X, \xi)-g(X, Z) S(Y, \xi) \\
& +\left(4 \beta^{2}-2 \alpha^{2}\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\}, \tag{5.10}
\end{align*}
$$

i.e.

$$
\begin{equation*}
0=S(Y, Z) \eta(X)-S(X, Z) \eta(Y)+2 \beta^{2}\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} . \tag{5.11}
\end{equation*}
$$

Again taking $X=\xi$ and using (2.14) in (5.11), we have

$$
\begin{equation*}
S(Y, Z)=-4 \beta^{2} g(Y, Z)+2\left(\alpha^{2}+\beta^{2}\right) \eta(Y) \eta(Z) . \tag{5.12}
\end{equation*}
$$

Now using (5.12) in (4.4), we get

$$
\tilde{S}(Y, Z)=0 .
$$

Thus the manifold M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.8), we have

$$
\tilde{R}=0
$$

Now we can say the manifold M is flat with respect to the Schouten-van Kampen connection.
Conversely, if M is flat manifold with respect to the Schouten-van Kampen connection then M is the Ricci-flat with respect to the Schouten-van Kampen connection. From (5.7), M is conharmonically flat with respect to the Schouten-van Kampen connection.
Thus we have the following:
Theorem 5.2. Let M be a 3-dimensional trans-Sasakian manifold with respect to the Schouten-van Kampen connection. Then the following statements are equivalent: i) M is conharmonically flat with respect to the Schouten-van Kampen connection, ii) M is the Ricci flat with respect to the Schouten-van Kampen connection, iii) M is flat with respect to the Schouten-van Kampen connection.

6. Example

We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{gathered}
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0, \\
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1 .
\end{gathered}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=-e_{2}, \phi\left(e_{2}\right)=e_{1}$, $\phi\left(e_{3}\right)=0$. Then using linearity of ϕ and g we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=1, \quad \phi^{2} Z=-Z+\eta(Z) e_{3}, \\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \in \chi(M)$. Thus for $e_{3}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, by direct computations we obtain

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=-e_{2}, \quad\left[e_{1}, e_{3}\right]=-e_{1}
$$

The Riemannian connection ∇ of the metric tensor g is given by the Koszul's formula which is

$$
\begin{equation*}
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) \tag{6.1}
\end{equation*}
$$

Using (6.1), we have

$$
\begin{aligned}
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=2 g\left(-e_{1}, e_{1}\right), \\
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(-e_{1}, e_{2}\right), \\
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(-e_{1}, e_{3}\right) .
\end{aligned}
$$

Hence $\nabla_{e_{1}} e_{3}=-e_{1}$. Similarly, $\nabla_{e_{2}} e_{3}=-e_{2}$ and $\nabla_{e_{3}} e_{3}=0$. (6.1) further yields

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=e_{3} \\
\nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{1}=0 \tag{6.2}\\
\nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0
\end{array}
$$

We see that

$$
\begin{align*}
\left(\nabla_{e_{1}} \phi\right) e_{1} & =\nabla_{e_{1}} \phi e_{1}-\phi \nabla_{e_{1}} e_{1}=-\nabla_{e_{1}} e_{2}-\phi e_{3}=-\nabla_{e_{1}} e_{2}=0 \tag{6.3}\\
& =0\left(g\left(e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) \phi e_{1}\right) \\
\left(\nabla_{e_{1}} \phi\right) e_{2} & =\nabla_{e_{1}} \phi e_{2}-\phi \nabla_{e_{1}} e_{2}=-\nabla_{e_{1}} e_{1}-0=e_{3} \tag{6.4}\\
& =0\left(g\left(e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) \phi e_{1}\right) \\
\left(\nabla_{e_{1}} \phi\right) e_{3} & =\nabla_{e_{1}} \phi e_{3}-\phi \nabla_{e_{1}} e_{3}=0+\phi e_{1}=-e_{2} \tag{6.5}\\
& =0\left(g\left(e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) \phi e_{1}\right)
\end{align*}
$$

By (6.3), (6.4) and (6.5) we see that the manifold satisfies (2.5) for $X=e_{1}, \alpha=0, \beta=-1$, and $e_{3}=\xi$. Similarly, it can be shown that for $X=e_{2}$ and $X=e_{3}$ the manifold also satisfies (2.5) for $\alpha=0, \beta=-1$, and $e_{3}=\xi$. Hence the manifold is a trans-Sasakian manifold of type $(0,-1)$. Using (6.2), we get

$$
\begin{array}{llll}
R\left(e_{1}, e_{2}\right) e_{1} & =e_{2}, & R\left(e_{1}, e_{2}\right) e_{2}=e_{1}, & R\left(e_{1}, e_{2}\right) e_{3}=0 \\
R\left(e_{1}, e_{3}\right) e_{1} & =e_{3}, & R\left(e_{1}, e_{3}\right) e_{2}=0, & R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \tag{6.6}\\
R\left(e_{2}, e_{3}\right) e_{1} & =0, & R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}
\end{array}
$$

Now we consider the Schouten-van Kampen connection to this example. Using (4.1) and (6.2), we calculate

$$
\begin{array}{lcc}
\tilde{\nabla}_{e_{1}} e_{1}=(\beta+1) e_{3}, & \tilde{\nabla}_{e_{1}} e_{2}=\alpha e_{3}, & \tilde{\nabla}_{e_{1}} e_{3}=(\beta+1) e_{1}-\alpha e_{2}, \\
\tilde{\nabla}_{e_{2}} e_{1}=-\alpha e_{3}, & \tilde{\nabla}_{e_{2}} e_{2}=(\beta+1) e_{3}, & \tilde{\nabla}_{e_{2}} e_{3}=\alpha e_{1}-(\beta+1) e_{2}, \tag{6.7}\\
\tilde{\nabla}_{e_{3}} e_{1}=0, & \tilde{\nabla}_{e_{3}} e_{2}=0, & \tilde{\nabla}_{e_{3}} e_{3}=0 .
\end{array}
$$

Thus using (4.2) and (6.6), we get

$$
\begin{array}{lll}
\tilde{R}\left(e_{1}, e_{2}\right) e_{1} & =\left(1-\alpha^{2}-\beta^{2}\right) e_{2}, & \tilde{R}\left(e_{1}, e_{2}\right) e_{2}=\left(-1+\alpha^{2}+\beta^{2}\right) e_{1} \\
\tilde{R}\left(e_{1}, e_{2}\right) e_{3} & =0, & \tilde{R}\left(e_{1}, e_{3}\right) e_{1}=\left(1-\alpha^{2}-\beta^{2}\right) e_{3} \\
\tilde{R}\left(e_{1}, e_{3}\right) e_{2} & =0, & \tilde{R}\left(e_{1}, e_{3}\right) e_{3}=\left(-1-\alpha^{2}+\beta^{2}\right) e_{1} \tag{6.8}\\
\tilde{R}\left(e_{2}, e_{3}\right) e_{1} & =0, & \tilde{R}\left(e_{2}, e_{3}\right) e_{2}=\left(1-\alpha^{2}-\beta^{2}\right) e_{3} \\
\tilde{R}\left(e_{2}, e_{3}\right) e_{3} & =\left(-1-\alpha^{2}+\beta^{2}\right) e_{2} &
\end{array}
$$

From (6.7), we can see that $\tilde{\nabla}_{e_{i}} e_{j}=0(1 \leq i, j \leq 3)$ for $\xi=e_{3}$ and $\alpha=0, \beta=\mp 1$. Hence M is a 3-dimensional trans-Sasakian manifold of type $(0,-1)$ with respect to the Schouten-van Kampen connection. Also using (6.8), it can be seen that $\tilde{R}=0$. Thus the manifold M is flat manifold with respect to the Schouten-van Kampen connection. Since a flat manifold is the Ricci-flat manifold with respect to the Schouten-van Kampen connection, the manifold M is both projectively flat and conharmonically flat 3-dimensional β-Kenmotsu manifold with respect to the Schouten-van Kampen connection. So, from Theorem 5.1 and Theorem 5.2, the manifold M is an η-Einstein manifold with respect to the Levi-Civita connection.

References

[1] A. Bejancu and H. R. Faran, Foliations and Geometric Structures, Math. and Its Appl. 580, Springer, Dordrecht, 2006.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics. 509, Springer-Verlag, Berlin-New York, 1976.
[3] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34 (1990), 199-207.
[4] D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl., 156 (1990), 15-36.
[5] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43 (2003), 247-255.
[6] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
[7] S. Ianuş, Some almost product structures on manifolds with linear connection, Kodai Math. Sem. Rep., 23 (1971), 305-310.
[8] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
[9] A. Kazan and H. B. Karadag̃, Trans-Sasakian manifolds with Schouten-van Kampen Connection, Ilirias Journal of Mathematics, 7 (2018), 1-12.
[10] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162 (1992), 77-86.
[11] J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, in Proceedings of the XIV ${ }^{\text {th }}$ Spanish-Portuguese Conference on Mathematics, Vol. $1,1989$.
[12] J. A. Oubina, New classes of almost contact metric structures, Publ. Mat. Debrecen, 32(1985), 187-193.
[13] Z. Olszak, The Schouten-van Kampen affine connection adapted an almost (para) contact metric structure, Publ. De L'inst. Math., 94 (2013), 31-42.
[14] J. Schouten and E. van Kampen, Zur Einbettungs-und Krümmungsthorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783.
[15] A. F. Solov'ev, On the curvature of the connection induced on a hyperdistribution in a Riemannian space, Geom. Sb., 19 (1978), 12-23.
[16] A. F. Solov'ev, The bending of hyperdistributions, Geom. Sb., 20 (1979), 101-112.
[17] A. F. Solov'ev, Second fundamental form of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 31 (1982), 71-75.
[18] A. F. Solov'ev, Curvature of a distribution, Mathematical notes of the Academy of Sciences of the USSR, 35 (1984), 61-68.
[19] A. Yıldız, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. de I'Inst. Math., 102 (2017), 93-105.

