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Abstract

In this paper, we introduce the concepts (θ ,ϕ)-density of a subset of the product time scale T2 and (θ ,ϕ)-statistical convergence of ∆-
measurable function f defined on the product time scale T2 with the help of lacunary sequences. Later, we have discussed the connection
between classical convergence and (θ ,ϕ)-statistical convergence. In addition, we have seen that f is strongly (θ ,ϕ)-Cesàro summable on
T2 then f is (θ ,ϕ)-statistical convergent.
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1. Introduction

The concept of statistical convergence which is a generalization of classical convergence was first given by Zygmund [27] and later were
introduced independently by Steinhaus [21] and Fast [11]. This concept is discussed under different names in different spaces.

The time scale calculus was first introduced by Hilger in his Ph.D. thesis in 1988 (see[16],[17],[4]). In later years, the integral theory on time
scales was given by Guseinov [15], and further studies were developed by Cabada-Vivero [7] and Rzezuchowski [19]. Recently, Seyyidoğlu
and Tan [20] defined the density of the subset of the time scale. By using this definition, they gave ∆-convergence and ∆-Cauchy concepts
for a real valued function defined on time scale. Turan and Duman [23] introduced the notion of lacunary statistically convergence of a
∆-measurable function by using the lacunary sequence defined by Freedman et.al.(see[12]).
In this paper, our aim is to define (θ ,ϕ)-statistical convergence of ∆- measurable functions defined on the product time scale T2 by using lacu-
nary sequences θ =(kr) and ϕ=(lt) in light of works of Çınar et al. [10], Seyyidoğlu and Tan [20] and others [3],[9],[14],[15],[2],[22],[25],[26].

2. Prelimineries

The statistical convergence concept is based on the asymptotic (natural) density of a subset B in N (the set of positive integers) which is
defined as

δ (B) = lim
n→∞

|{k ≤ n : k ∈ B}|
n

,

where |B| denotes the number of elements in B (see [11],[13]). A measurable (Lebesque) function f : R→ R is said to be statistically
convergent to a number L if, for every ε > 0

δ ({t ∈ R : | f (t)−L| ≥ ε}) = 0.

In this case, we write st- lim
t→∞

f (t) = L.

In this study, we shall give the notion of (θ ,ϕ)-statistical convergence on any product time scale T2 and its some properties. Throughout this
paper, we consider the time scales T1 and T2 which are unbounded from above and have minimum points.
Lets remember some concepts related to time scale T. A non-empty closed subset of R is called a time scale and is denoted by T. We
suppose that a time scale has the topology inherited from R with the standart topology. For t ∈ T, we consider the forward jump operator
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σ : T→ T by σ (t) := inf{s ∈ T : s > t}. In this definition, we take inf /0 = supT. For t ∈ T with a≤ b, it is defined the interval [a,b] in T
by [a,b] = {t ∈ T : a≤ t ≤ b} . Let T be a time scale. Denote by F the family of all left-closed and right-open intervals of T of the form
[a,b) = {t ∈ T : a≤ t < b} with a,b ∈ T and a ≤ b. It is clear that the interval [a,a) is an empty set, F is semiring of subsets of T. Let
m:F → [0,∞) be the set function on F that assings to each interval [a,b) its lenght b−a;m([a,b)) = b−a. Then m is a countably additive
measure on F . The Caratheodory extension of the set function m associated with family F (for the Caratheodory extension, see [20]) is
denoted by µ∆, the Lebesgue ∆-measure on T, and that is a countably additive measure . In this case, it is known that if a ∈ T−{maxT},
then the single point set {a} is ∆-measurable and µ∆(a) =σ (a)−a. If a,b ∈ T and a≤ b then µ∆(a,b)T = b−σ (a) . If a,b ∈ T−{maxT}
and a ≤ b then µ∆(a,b]T = σ(b)−σ (a) and µ∆[a,b]T= σ(b)−a . It can be easily seen that the measure of a subset of N is equal to its
cardinality (see [20],[23],[24]).
Assume that θ = {kr}∞

r=0 is an increasing sequence of non-negative integers with k0 = 0 and σ(kr)−σ(kr−1)→ ∞ as r→ ∞, where
σ : R→ T is the forward jump operator given by σ(x) = in f{y ∈ T : y > x}. In this case, we say that θ is a lacunary sequence with respect
to T. Throughout this study, Θ is supposed as the set of all such lacunary sequences and by [a,b]T, we denote the interval in T, i.e., [a,b]∩T,
where [a,b] is the usual real interval and T is a time scale. Turan and Duman [23] introduced the notion of lacunary statistical convergence
(or θ -statistically convergence) on time scale T. A ∆-measurable function f : T→ R is said to be lacunary statistically convergent to a
number L if, for every ε > 0

lim
r→∞

µ∆({s ∈ (kr−1,kr]T : | f (s)−L| ≥ ε})
µ∆((kr−1,kr]T)

= 0 (2.1)

where (kr−1,kr]T = (kr−1,kr]∩T. In this case, stT-limt→∞ f (t) = L.

In this paper, using θ ,ϕ ∈ Θ and taking on the product time scale T2 in place of the time scale T, we introduce the notion of lacunary
statistically convergence on product time scale T2.

3. Main Results

Let θ = (kr), ϕ=(lt) ∈ Θ,T1 and T2 time scales such that t0 = minT1, r0 = minT2 and T2 = T1×T2, the set of cartasian product of
T1 and T2 time scales. Throughout the paper, we denote A = {(kr−1,kr]T1×(lt−1, lt ]T2}, B = {[t0, t]T1×[r0,r]T2}, where (kr−1,kr]T1

=
(kr−1,kr]∩T1, (lt−1, lt ]T2 = (lt−1, lt ]∩T2. It is easy to see that µ∆(A)= µ∆((kr−1,kr]T1).µ∆((lt−1, lt ]T2) and µ∆(B)= µ∆([t0, t]T1).µ∆([r0,r]T2)
([5],[6]).
The convergence method in (2.1) can also be defined with respect to the density on product time scales as in the following way.

Definition 3.1. Suppose that Ω be a ∆-measurable subset of T2 =T1×T2. Then, one defines the set Ω (t,r,θ ,ϕ) by Ω(t,r,θ ,ϕ) =: {(s,u)∈
A : (s,u) ∈Ω} for (t,r) ∈ T2. That is Ω (t,r,θ ,ϕ) = Ω∩A . In this case, the (θ ,ϕ)-density of Ω on T2 is defined as

δ
(θ ,ϕ)
T2 (Ω) = lim

(t,r)→∞

µ∆(Ω(t,r,θ ,ϕ))
µ∆(A)

provided that the limit exists.
In case of T1=T2 = N, this reduces to the classical concept of the product asymptotic density, which in the case of T= N was first introduced
by Fast. If T1=T2 = [a,∞),a > 0, this reduces to the product asymptotic density of measurable functions that the asymptotic density of
measurable functions was studied by Moricz [18]. Finally, if T= qN, q > 1, then we get the notion of (q,q)-statistical convergence which
q-statistical convergence introduced by Aktuğlu and Bekar [1].

Definition 3.2. Let f : T2→ R be a ∆- measurable function. It is said that f is (θ ,ϕ)-statistically convergent to a real number L on T2 if

lim
(t,r)→∞

µ∆({(s,u) ∈ A : | f (s,u)−L| ≥ ε})
µ∆(A)

= 0 (3.1)

for every ε > 0. In this case, we can write st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L. The set of all (θ ,ϕ)- statistically convergent functions on T2 will be

denoted by S(θ ,ϕ)T2 .

If one take k0 = l0 = 0, k−1 = t0 and l−1 = r0 in (3.1), we get the ∆- statistically convergent function to a real number L on T2, for the
function f , which is defined as

lim
(t,r)→∞

µ∆({(s,u) ∈ B : | f (s,u)−L| ≥ ε})
µ∆(B)

= 0.

In this case, we can writes stT2 - lim
(t,r)→∞

f (t,r) = L. The set of all ∆- statistically convergent functions on T2 will be denoted by ST2 .

Finally, if T2 = qN×qN, q > 1, then we get the notion of the product q−statistical convergence which in the case of T= qN is introduced by
Aktuğlu and Bekar [1].

Proposition 3.3. Let f ,g : T2→ R be a ∆- measurable functions such that st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L1 and st(θ ,ϕ)T2 - lim
(t,r)→∞

g(t,r) = L2 . Then

the following statements hold:
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i) st(θ ,ϕ)T2 - lim
(t,r)→∞

( f (t,r)+g(t,r)) = L1 +L2,

ii) st(θ ,ϕ)T2 - lim
(t,r)→∞

(c f (t,r)) = cL1.

Proof. It is easy to prove and we omit it.

Theorem 3.4. ST2 ⊆ S(θ ,ϕ)T2 if and only if

liminf
(t,r)→∞

µ∆(A)
µ∆(B)

> 0.

Proof. For given ε > 0, we have

µ∆({(s,u) ∈ B : | f (s,u)−L| ≥ ε})⊃ µ∆({(s,u) ∈ A : | f (s,u)−L| ≥ ε})).

Then

µ∆({(s,u) ∈ B : | f (s,u)−L| ≥ ε})
µ∆(B)

≥ µ∆({(s,u) ∈ A : | f (s,u)−L| ≥ ε})
µ∆(B)

=
µ∆(A )

µ∆(B)
1

µ∆(A )
. µ∆({(s,u) ∈ A : | f (s,u)−L| ≥ ε}) (3.2)

Hence by using (3.2) and taking the limit as (t,r)→ ∞, we get stT2 - lim
(t,r)→∞

f (t,r)→L implies st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r)=L .

The definition of strongly p-Cesàro summability on time scale T was given by Turan and Duman [23],[24]. Using it, we get the following.

Definition 3.5. [24] Let f : T2→ R be a ∆-measurable function and 0 < p < ∞. Then, f is strongly p-Cesàro summable function on T2 if
there exists some L ∈ R such that

lim
(t,r)→∞

1
µ∆(B)

∫∫
B

| f (s,u)−L|p ∆s ∆u = 0.

The set of all strongly p-Cesàro summable functions on T2 is denoted by [Wp]T2 .
We need to emphasize that measure theory on time scale was first constructed by Guseinov [15] and Lebesque ∆-integral on time scales
introduced by Cabada and Vivero [7],[8]. Using this we have following definition.

Definition 3.6. Let f : T2→ R be a ∆- measurable function, θ ,ϕ ∈Θ and 0 < p < ∞. We say that f is strongly (θ ,ϕ)p-Cesàro summable
function on T2 if there exists some L ∈ R such that

lim
(t,r)→∞

1
µ∆(A)

∫∫
A

| f (s,u)−L|p ∆s ∆u = 0.

In this case we write (W,(θ ,ϕ)p)T2 - lim
(t,r)→∞

f (t,r) = L. The set of all strongly (θ ,ϕ)p-Cesàro summable functions on T2 will be denoted

by [W,(θ ,ϕ)p)]T2 .

Lemma 3.7. Let f : T2→ R be a ∆- measurable function and Ω(t,r,θ ,ϕ) = { (s,u) ∈ A : | f (s,u)−L| ≥ ε } for ε > 0. In this case, we have

µ∆(Ω(t,r,θ ,ϕ))≤ 1
ε

∫∫
Ω(t,r,θ ,ϕ)

| f (s,u)−L|p ∆s ∆u≤ 1
ε

∫∫
A

| f (s,u)−L|p ∆s ∆u

Proof. It can be proved by using similar method in [24].

Theorem 3.8. Let f : T2→ R be a ∆- measurable function, θ ,ϕ ∈Θ , L ∈ R and 0 < p < ∞. Then we get:

(i) If f is strongly (θ ,ϕ)p-Cesàro summable to L, then st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L

(ii) If st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L and f is a bounded function, then f is strongly (θ ,ϕ)p-Cesàro summable to L.
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Proof. (i) Let f is strongly (θ ,ϕ)p-Cesàro summable to L. For given ε > 0, let Ω(t,r,θ ,ϕ) = { s ∈ A : | f (s,u)−L| ≥ ε } on time scale T2.
Then, it follows from lemma 3.7

ε µ∆(Ω(t,r,θ ,ϕ))≤
∫∫
A

| f (s,u)−L|p ∆s ∆u. (3.3)

Dividing both sides of the last equality by µ∆(A) and taking limit as (t,r)→ ∞, we obtain

lim
(t,r)→∞

µ∆(Ω(t,r,θ ,ϕ))
µ∆(A)

≤ 1
ε

lim
(t,r)→∞

1
µ∆(A)

∫∫
A

| f (s,u)−L|p ∆s∆u = 0

which yields that st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L.

(ii) Let f be bounded and (θ ,ϕ)-statistically convergent to L on T2. Then, there exists a positive number M such that | f (s,u)−L| ≤M for
all (s,u) ∈ T2 and also

lim
(t,r)→∞

µ∆(Ω(t,r,θ ,ϕ))
µ∆(A)

= 0 (3.4)

where Ω(t,r,θ ,ϕ) = { (s,u) ∈ A : | f (s,u)−L|p ≥ ε } as stated before. Since∫
A

| f (s,u)−L|p ∆s ∆u =
∫∫

Ω(t,r,θ ,ϕ)

| f (s,u)−L|p ∆s ∆u
∫∫

A/Ω(t,r,θ ,ϕ)

| f (s,u)−L|p ∆s ∆u

≤Mp
∫∫

Ω(t,r,θ ,ϕ)

∆s ∆u+ ε

∫∫
A/Ω(t,r,θ ,ϕ)

∆s ∆u,

we obtain

lim
(t,r)→∞

1
µ∆(A)

∫∫
A

| f (s,u)−L| ∆s ∆u≤Mp lim
(t,r)→∞

µ∆(Ω(t,r,θ ,ϕ))
µ∆(A)

+ ε. (3.5)

Since ε > 0 is arbitrary, the proof follows from (3.4) and (3.5).

Theorem 3.9. Let f be a ∆-measurable function. Then, st(θ ,ϕ)T2 - lim
(t,r)→∞

f (t,r) = L if and only if there exists a ∆-measurable set Ω⊆ T2 such

that δ
(θ ,ϕ)
T2 (Ω) = 1 and lim

(t,r)→∞

| f (t,r)−L|= 0, ((t,r) ∈Ω(t,r,θ ,ϕ)).

Proof. It can be easily proved by using similar way in Theorem 3.9 of Turan and Duman [24].
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[26] N. Turan and M. Başarır, On the ∆g-statistical convergence of the function defined time scale, AIP Conference Proceedings, 2183, 040017 (2019);

https://doi.org/10.1063/1.5136137.
[27] A. Zygmund, Trigonometric Series, United Kingtom: Cambridge Univ. Press (1979).


	Introduction
	Prelimineries
	Main Results

