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Abstract
In the offering exposition we characterize (k, µ)′- almost Kenmotsu 3-manifolds admitting gradient ∗-Ricci
soliton. It is shown that in a (k, µ)′- almost Kenmotsu manifold with k < −1 admitting a gradient ∗-Ricci
soliton, either the soliton is steady or the manifold is locally isometric to a rigid gradient Ricci soliton
H2(−4)× R.
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1. Introduction
In the present paper we study the nullity distributions which play a functional role in contemporary mathematics.

In the study of Riemannian manifolds (M, g), Gray [10] and Tanno [20] introduced the concept of k-nullity
distribution (k ∈ R), which is defined for any p ∈M and k ∈ R as follows:

Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]}, (1.1)

for any X,Y ∈ TpM , where TpM denotes the tangent vector space of M at any point p ∈ M and R denotes the
Riemannian curvature tensor of type (1, 3). Recently, the (k, µ)-nullity distribution which is a generalized notion
of the k-nullity distribution on a contact metric manifold (M2n+1, φ, ξ, η, g) introduced by Blair, Koufogiorgos and
Papantoniou [5] and defined for any p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ) = {Z ∈ TpM2n+1 : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ] + µ[g(Y, Z)hX − g(X,Z)hY ]},

for any X,Y ∈ TpM and h = 1
2£ξφ, where £ denotes the Lie differentiation.

In 2009, Dileo and Pastore [7] introduced another generalized notion of the (k, µ)-nullity distribution which is
named the (k, µ)′-nullity distribution on an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g) and is defined for any
p ∈M2n+1 and k, µ ∈ R as follows:

Np(k, µ)
′ = {Z ∈ TpM2n+1 : R(X,Y )Z = k[g(Y, Z)X − g(X,Z)Y ]

+µ[g(Y,Z)h′X − g(X,Z)h′Y ]}, (1.1)

for any X,Y ∈ TpM and h′ = h ◦ φ.
The idea of ∗-Ricci tensor on almost Hermitian manifolds was introduced by Tachibana [19] in 1959. Later, in [11]

Hamada studied ∗-Ricci flat real hypersurfaces in non-flat complex space forms and Blair [4] defined ∗-Ricci tensor
in contact metric manifolds by

S∗(X,Y ) = g(Q∗X,Y ) = Trace{φ ◦R(X,φY )}, (1.2)

where Q∗ is called the ∗-Ricci operator.
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A Ricci soliton is nothing but a generalization of an Einstein metric. On a Riemannian manifold (M, g) [12], a
Ricci soliton is defined by

£V g + 2S + 2λg = 0, (1.3)

for a vector field V (called potential vector field) and λ a real scalar and is denoted by a triple (g, V, λ), where £ is
the Lie derivative. The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and
positive respectively.

Ricci solitons have been generalized in several ways, such as almost Ricci solitons ([8],[17]), η-Ricci solitons
([1],[2]), generalized Ricci soliton, ∗-Ricci solitons and many others.

Definition 1.1. [13] A Riemannian metric g on M is called ∗-Ricci soliton if

£V g + 2S∗ + 2λg = 0, (1.4)

where λ is a constant.

Definition 1.2. [13] A Riemannian metric g on M is called gradient ∗-Ricci soliton if

∇∇f + S∗ + λg = 0, (1.5)

where ∇∇f denotes the Hessian of the smooth function f on M with respect to g and λ is a constant.

In 2018, Ghosh and Patra [9] first undertook the study of ∗-Ricci solitons on almost contact metric manifolds.
In the same year, Majhi et. al. [14] studied ∗-Ricci solitons on Sasakian 3-manifolds. Here we also mention the
works of Prakasha and Veeresha [18] within the frame-work of paracontact geometry. If a (k, µ)′- almost Kenmotsu
manifold M satisfies the relation (1.4), then we say that M admits a ∗-Ricci soliton. In the year 2019, Dai et. al. [6]
studied ∗-Ricci solitons on a (k, µ)′- almost Kenmotsu manifold.
Motivated from the above studies, we make the contribution to investigate gradient ∗-Ricci soliton in a 3-dimensional
(k, µ)′- almost Kenmotsu manifold. More precisely, the following theorem is proved.

Theorem 1.1. Let (M3, φ, ξ, η, g) be a (k, µ)′- almost Kenmotsu manifold with k < −1 which admits a gradient ∗-Ricci
soliton. Then either, the soliton is steady or, M3 is locally isometric to a rigid gradient Ricci soliton H2(−4)× R.

2. Almost Kenmotsu manifolds
A differentiable manifold M2n+1 of dimension 2n + 1 is called almost contact metric manifold if it admits a

(1, 1) tensor field φ, a contravariant vector field ξ, a covariant vector field η and a Riemannian metric g such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

where I denotes the identity endomorphism ([3, 4]). Then also φξ = 0 and η ◦φ = 0; in a straight forward calculation
both can be derived from (2.1).

On an almost Kenmotsu manifold M2n+1, the two symmetric tensor fields h = 1
2£ξφ and l = R(·, ξ)ξ, satisfy

the following relations [7]
hξ = 0, lξ = 0, tr(h) = 0, tr(h′) = 0, hφ+ φh = 0, (2.2)

∇Xξ = −φ2X + h′X(⇒ ∇ξξ = 0), (2.3)

φlφ− l = 2(h2 − φ2), (2.4)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y, (2.5)

for any vector fields X,Y .
Now we furnish some basic results on almost Kenmotsu manifolds with ξ belongs to the (k, µ)′-nullity distribution.
The (1, 1)-type symmetric tensor field h′ satisfies h′φ+ φh′ = 0 and h′ξ = 0. Also it is clear that

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2). (2.6)
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For an almost Kenmotsu manifold, we have from (1.1)

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ], (2.7)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(h′X,Y )ξ − η(Y )h′X], (2.8)

where k, µ ∈ R. Contracting Y in (2.8) we have

S(X, ξ) = 2kη(X). (2.9)

Suppose X ∈ D be the eigen vector of h′ corresponding to the eigen value λ. Then λ2 = −(k + 1), a constant, which
follows from (2.6). Therefore k ≤ −1 and λ = ±

√
−k − 1. The non-zero eigen value λ and −λ are respectively

denoted by [λ]′ and [−λ]′, which are the corresponding eigen spaces associated with h′. We have the following
lemmas.

Lemma 2.1. (Prop. 4.1 of [7]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold such that ξ belongs to the (k, µ)′-
nullity distribution and h′ 6= 0. Then k < −1, µ = −2 and Spec (h′) = {0, λ,−λ}, with 0 as simple eigen value and
λ =
√
−k − 1. The distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic leaves. The distributions [λ]′

and [−λ]′ are integrable with totally umbilical leaves.

In a 3-dimensional Riemannian manifold we have

R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

−r
2
{g(Y, Z)X − g(X,Z)Y }, (2.10)

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ) for all X,Y ∈ TpM and r is the scalar curvature of
the manifold.
Putting Y = Z = ξ in (2.10) and using Lemma 2.1 and (2.9) we obtain

QX =
(r
2
− k
)
X −

(r
2
− 3k

)
η(X)ξ − 2h′X, (2.11)

which is equivalent to

S(X,Y ) =
(r
2
− k
)
g(X,Y )−

(r
2
− 3k

)
η(X)η(Y )− 2g(h′X,Y ), (2.12)

for any X,Y ∈ TpM .
With the help of (2.11) and (2.12), it follows from (2.10) that

R(X,Y )Z =
(r
2
− 2k

)
[g(Y,Z)X − g(X,Z)Y ]−

(r
2
− 3k

)
[g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ]

−2g(Y, Z)h′X + 2g(X,Z)h′Y − 2g(h′Y,Z)X + 2g(h′X,Z)Y, (2.13)

for any X,Y, Z ∈ TpM .

Lemma 2.2. In an (k, µ)′- almost Kenmotsu manifold (M3, φ, ξ, η, g) , we have

R̃(X,Y, φZ, φW ) =
(r
2
− 2k

)
[g(Y, φZ)g(X,φW )− g(X,φZ)g(Y, φW )]

−2g(Y, φZ)g(h′X,φW ) + 2g(X,φZ)g(h′Y, φW )

−2g(h′Y, φZ)g(X,φW ) + 2g(h′X,φZ)g(Y, φW ), (2.14)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), for X,Y, Z,W ∈ χ(M).

Proof. To prove the above Lemma we shall use the equation (2.13). From (2.13) one can easily write

R̃(X,Y, Z,W ) =
(r
2
− 2k

)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )](r

2
− 3k

)
[g(Y,Z)η(X)η(W )− g(X,Z)η(Y )η(W )

+η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y,W )]

−2g(Y,Z)g(h′X,W ) + 2g(X,Z)g(h′Y,W )

−2g(h′Y,Z)g(X,W ) + 2g(h′X,Z)g(Y,W ).
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Again replacing Z by φZ and W by φW in the foregoing equation and using η.φ = 0, we get

R̃(X,Y, φZ, φW ) =
(r
2
− 2k

)
[g(Y, φZ)g(X,φW )− g(X,φZ)g(Y, φW )]

−2g(Y, φZ)g(h′X,φW ) + 2g(X,φZ)g(h′Y, φW )

−2g(h′Y, φZ)g(X,φW ) + 2g(h′X,φZ)g(Y, φW ).

This completes the proof. 2

Now we prove the following Lemma which will be used later.

Lemma 2.3. In an (k, µ)′- almost Kenmotsu manifold (M3, φ, ξ, η, g) , the ∗-Ricci tensor is given by

S∗(X,Y ) =
(r
2
− 2k

)
[g(X,Y )− η(X)η(Y )], (2.15)

where S∗ is the ∗-Ricci tensor of type (0, 2).

Proof. Let {ei}, i = 1, 2, 3 be an orthonormal basis of the tangent space at each point of the manifold. From (1.1) and
using (2.14), we infer

S∗(Y,Z) = −
3∑
i=1

R̃(ei, Y, φZ, φei)

=

3∑
i=1

[
(r
2
− 2k

)
[g(Y, φZ)g(ei, φei)− g(ei, φZ)g(Y, φei)]

−2g(Y, φZ)g(h′ei, φei) + 2g(ei, φZ)g(h
′Y, φei)

−2g(h′Y, φZ)g(ei, φei) + 2g(h′ei, φZ)g(Y, φei)]

=
(r
2
− 2k

)
[g(Y,Z)− η(Y )η(Z)].

Hence, the ∗-Ricci tensor is

S∗(Y,Z) =
(r
2
− 2k

)
[g(Y, Z)− η(Y )η(Z)],

for any Y,Z ∈ χ(M). This completes the proof. 2

From the above Lemma, the (1, 1) ∗-Ricci operator Q∗ and the ∗-scalar curvature r∗ are given by

Q∗Y =
(r
2
− 2k

)
[Y − η(Y )ξ], (2.16)

r∗ = r − 4k. (2.17)

3. Proof of the main theorem
Let (M3, φ, ξ, η, g) be a (k, µ)′- almost Kenmotsu manifold with k < −1 and g as a gradient ∗-Ricci soliton. Then

the equation (1.5) can be written as
∇XDf +Q∗X + λX = 0, (3.1)

for any X ∈ χ(M), where D denotes the gradient operator with respect to g. From (3.1) it follows that

R(X,Y )Df = (∇YQ∗)X − (∇XQ∗)Y, X, Y ∈ χ(M). (3.2)

Using (2.7), we have
g(R(ξ,X)Df, ξ) = k[(Xf)− η(X)(ξf)]− 2(h′Xf), (3.3)



A Note on Gradient ∗-Ricci Solitons 83

where we have used µ = −2. With the help of (2.16), we have

(∇XQ∗)Y =
(Xr)

2
[Y − η(Y )ξ]

−
(r
2
− 2k

)
[g(X,Y )ξ + η(Y )X

− 2η(X)η(Y )ξ + g(h′X,Y )ξ + h′Xη(Y )].

(3.4)

Interchanging X and Y , we have

(∇YQ∗)X =
(Y r)

2
[X − η(X)ξ]

−
(r
2
− 2k

)
[g(X,Y )ξ + η(X)Y

− 2η(X)η(Y )ξ + g(h′Y,X)ξ + h′Y η(X)].

(3.5)

Making use of (3.4) and (3.5) we get

(∇YQ∗)X − (∇XQ∗)Y = − (Xr)

2
[Y − η(Y )ξ]

+
(Y r)

2
[X − η(X)ξ]

+
(r
2
− 2k

)
[η(Y )X − η(X)Y + h′Xη(Y )− h′Y η(X)].

(3.6)

Putting X = ξ in (3.6) and taking inner product with ξ, we infer that

g((∇YQ∗)ξ − (∇ξQ∗)Y, ξ) = 0, (3.7)

for any Y ∈ χ(M). From (3.3) and (3.7) we get

2(h′Xf) = k[(Xf)− η(X)(ξf)], (3.8)

for any X ∈ χ(M). Therefore,
2h′Df = k[Df − ξ(ξf)]. (3.9)

Taking into account the equation (2.6) and operating h′ on (3.9) gives that

kh′Df = 2(k + 1)[ξ(ξf)−Df ]. (3.10)

Comparing the above relation with (3.9) gives that either Df = (ξf)ξ or k = −2. Next, we consider the above two
cases as follows.

Case i:
Df = (ξf)ξ. (3.11)

Taking the covariant differentiation of (3.11) along any vector field X ∈ χ(M) and using (2.3) we get

∇XDf = X(ξf)ξ + (ξf)X − (ξf)η(X)ξ + (ξf)h′X. (3.12)

Putting the foregoing equation into (3.1) yields that

Q∗X = −(λ+ (ξf))X −X(ξf)ξ + (ξf)η(X)ξ − (ξf)h′X. (3.13)

Comparing (2.16) and (3.13) gives that

(
r

2
− 2k + λ+ (ξf))X − (

r

2
− 2k + (ξf))η(X)ξ +X(ξf)ξ + (ξf)h′X = 0. (3.14)

Now operating h′ we get

(
r

2
− 2k + λ+ (ξf))h′X + (ξf)(k + 1)(X − η(X)ξ) = 0. (3.15)
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Contracting X in the above equation we get 2(ξf)(k + 1) = 0 and hence by assumption k < −1 we obtain (ξf) = 0.
Using (ξf) = 0 in (3.14) gives

(
r

2
− 2k + λ)X − (

r

2
− 2k)η(X)ξ = 0. (3.16)

Putting X = ξ in the above equation gives λ = 0. Thus we can say that the gradient ∗-Ricci soliton is steady.
Case ii: k = −2. In view of k = µ = −2, according to Corollary 4.2 and Proposition 4.1 of Dileo and Pastore [7] we

obtain thatM3 is locally isometric to the Riemannian product H2(−4)×R. In fact, from Peterson and Wylie ([15],[16])
we state that the product H2(−4)×R is a rigid gradient Ricci soliton. This put an ends the proof of the Theorem 1.1. 2
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