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A Note on Gradient x-Ricci Solitons
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Abstract
In the offering exposition we characterize (k, 11)’- almost Kenmotsu 3-manifolds admitting gradient *-Ricci
soliton. It is shown that in a (k, p)’- almost Kenmotsu manifold with & < —1 admitting a gradient *-Ricci

soliton, either the soliton is steady or the manifold is locally isometric to a rigid gradient Ricci soliton
H2(—4) x R.
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1. Introduction

In the present paper we study the nullity distributions which play a functional role in contemporary mathematics.
In the study of Riemannian manifolds (M, g), Gray [10] and Tanno [20] introduced the concept of k-nullity
distribution (k € R), which is defined for any p € M and k € R as follows:

N,y(k) ={Z € T,M : R(X,Y)Z = klg(Y, Z)X — g(X, Z)Y]}, (1.1)

for any X,Y € T,M, where T,M denotes the tangent vector space of M at any point p € M and R denotes the
Riemannian curvature tensor of type (1, 3). Recently, the (%, u)-nullity distribution which is a generalized notion
of the k-nullity distribution on a contact metric manifold (M?"*1, ¢, £, n, g) introduced by Blair, Koufogiorgos and
Papantoniou [5] and defined for any p € M?"*! and k, u € R as follows:

Np(k,p) = {Z € T,M*"*' : R(X,Y)Z = k[g(Y, 2)X — g(X, Z)Y] + plg(Y, Z)hX — g(X, Z)hY]},

forany X,Y € T,M and h = 1 £¢¢, where £ denotes the Lie differentiation.

In 2009, Dileo and Pastore [7] introduced another generalized notion of the (k, ;¢)-nullity distribution which is
named the (k, 1)/ -nullity distribution on an almost Kenmotsu manifold (M?"*! ¢, ¢ 7, g) and is defined for any
p € M?"*1 and k, 1 € R as follows:

Ny(k,p) ={Z e T,M* " : R(X,Y)Z = k[g(Y,2)X — g(X,2)Y]
forany X,Y € T,M and i/ = h o ¢.
The idea of *-Ricci tensor on almost Hermitian manifolds was introduced by Tachibana [19] in 1959. Later, in [11]

Hamada studied *-Ricci flat real hypersurfaces in non-flat complex space forms and Blair [4] defined *-Ricci tensor
in contact metric manifolds by

S*(X,Y) = g(Q*X,Y) = Trace{¢ o R(X,$Y)}, (1.2)

where @Q* is called the *-Ricci operator.
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A Ricci soliton is nothing but a generalization of an Einstein metric. On a Riemannian manifold (M, g) [12], a
Ricci soliton is defined by
£yvg+25+2Xg =0, (1.3)

for a vector field V' (called potential vector field) and X a real scalar and is denoted by a triple (g, V, A), where £ is
the Lie derivative. The Ricci soliton is said to be shrinking, steady and expanding according as A is negative, zero and
positive respectively.

Ricci solitons have been generalized in several ways, such as almost Ricci solitons ([8],[17]), n-Ricci solitons
([11,[2]), generalized Ricci soliton, *-Ricci solitons and many others.

Definition 1.1. [13] A Riemannian metric g on M is called *-Ricci soliton if
£yvg+25"+2\g =0, (1.4)
where ) is a constant.

Definition 1.2. [13] A Riemannian metric g on M is called gradient %-Ricci soliton if
VVf+85"4+ =0, (1.5)
where VV f denotes the Hessian of the smooth function f on M with respect to g and ) is a constant.

In 2018, Ghosh and Patra [9] first undertook the study of *-Ricci solitons on almost contact metric manifolds.
In the same year, Majhi et. al. [14] studied *-Ricci solitons on Sasakian 3-manifolds. Here we also mention the
works of Prakasha and Veeresha [18] within the frame-work of paracontact geometry. If a (k, 11)’- almost Kenmotsu
manifold M satisfies the relation (1.4), then we say that M admits a *-Ricci soliton. In the year 2019, Dai et. al. [6]
studied =-Ricci solitons on a (k, i)'~ almost Kenmotsu manifold.
Motivated from the above studies, we make the contribution to investigate gradient *-Ricci soliton in a 3-dimensional
(k, p)’- almost Kenmotsu manifold. More precisely, the following theorem is proved.

Theorem 1.1. Let (M3, $,&,1m,9) be a (k, )~ almost Kenmotsu manifold with k < —1 which admits a gradient x-Ricci
soliton. Then either, the soliton is steady or, M? is locally isometric to a rigid gradient Ricci soliton H?(—4) x R.

2. Almost Kenmotsu manifolds

A differentiable manifold M?2"*+! of dimension 2n + 1 is called almost contact metric manifold if it admits a
(1,1) tensor field ¢, a contravariant vector field &, a covariant vector field n and a Riemannian metric g such that

P*=—-I+n®¢E nE) =1, (2.1)

9(¢X,8Y) = g(X,Y) — n(X)n(Y),
where I denotes the identity endomorphism ([3, 4]). Then also ¢¢ = 0 and no ¢ = 0; in a straight forward calculation
both can be derived from (2.1).

On an almost Kenmotsu manifold M?"*!, the two symmetric tensor fields h = %,5 ¢pand l = R(-,§)¢E, satisfy
the following relations [7]

he =0, 1€ =0, tr(h) =0, tr(h') = 0, ho + ¢ph =0, 2.2)
Vxé=—¢’X + 1 X (= Ve =0), (2.3)

plo — 1 =2(h* = ¢%), (2.4)

R(X,Y)E =n(X)(Y = ¢hY) = n(Y)(X — ¢hX) + (Vyoh) X — (Vx¢h)Y, (2.5)

for any vector fields X, Y.
Now we furnish some basic results on almost Kenmotsu manifolds with £ belongs to the (&, i)’ -nullity distribution.
The (1, 1)-type symmetric tensor field h’ satisfies h'¢) + ¢h’ = 0 and h'§ = 0. Also it is clear that

h=0&h =0, h?=(k+1)¢*(< h* = (k+ 1)¢?). (2.6)
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For an almost Kenmotsu manifold, we have from (1.1)
R(X,Y)E = k[n(Y)X = n(X)Y]+ uln(Y)W'X = n(X)R'Y], 2.7)
R(§, X)Y = k[g(X,Y)§ = n(Y)X] + plg(h' X, Y)§ —n(Y)h'X], (2.8)
where k, 1 € R. Contracting Y in (2.8) we have
S(X,€) = 2kn(X). (2.9)

Suppose X € D be the eigen vector of b’ corresponding to the eigen value A\. Then A\*> = —(k + 1), a constant, which
follows from (2.6). Therefore k¥ < —1 and A = ++/—k — 1. The non-zero eigen value A and —\ are respectively
denoted by [\]" and [—\]’, which are the corresponding eigen spaces associated with 4’. We have the following
lemmas.

Lemma 2.1. (Prop. 4.1 of [7]) Let (M*"1 ¢, &, n, g) be an almost Kenmotsu manifold such that & belongs to the (k, u)'-
nullity distribution and b’ # 0. Then k < —1, p = —2 and Spec (1) = {0, A\, —A}, with 0 as simple eigen value and
A = v/ —k — 1. The distributions [£] ® [\ and [£] @ [— )]’ are integrable with totally geodesic leaves. The distributions [A]’
and [— ] are integrable with totally umbilical leaves.

In a 3-dimensional Riemannian manifold we have
RIX,V)Z = S(Y,2)X —S(X,2)Y +g(Y,2)QX — g(X,Z)QY
~5 L. 2)X — (X, )Y}, (2:10)
where @ is the Ricci operator defined by g(QX,Y) = S(X,Y) for all X, Y € T,M and r is the scalar curvature of

the manifold.
Putting Y = Z = £ in (2.10) and using Lemma 2.1 and (2.9) we obtain

QX = (% - k) X - (g - 3k> n(X)E — 20X, (2.11)
which is equivalent to
S(X,Y) = (g - k;) g(X,Y) - (g - 3k) n(X)n(Y) - 29(K'X,Y), (2.12)

forany X,Y € T,M.
With the help of (2.11) and (2.12), it follows from (2.10) that

RX,YV)Z = (5 =2k) 9V, 2)X = g(X, 2)Y] = (5 = 3k) [g(V, Z)n(X)¢
—9(X, Z)n(Y)§ +n(Y)n(Z)X —n(X)n(2)Y]
—29(Y, Z)W X +29(X, Z)W'Y — 29(W'Y, Z2)X + 29(h' X, Z)Y, (2.13)
forany X,Y,Z € T,M.

Lemma 2.2. Inan (k, )'- almost Kenmotsu manifold (M3, $,€,1m,g) , we have
ROX.Y,0Z,0W) = (5 = 2k) [9(Y,02)9(X, 0W) — g(X,62)g(Y, oW}
—29(Y,6Z)g(W' X, oW) + 29(X, $Z)g(K'Y, oW')
—29(M'Y, $Z)g(X, oW) + 29(W' X, $Z)g(Y, oW, (2.14)
where R(X,Y, Z,W) = g(R(X,Y)Z,W), for X,Y, Z,W € x(M).

Proof. To prove the above Lemma we shall use the equation (2.13). From (2.13) one can easily write

RX,Y,2,W) = (5 —2k) [o(Y. 2)g(X, W) = g(X, Z)g(Y, W)]

(5 = 3k) lo¥. 2m(OmW) = g(X, Z)n(¥ (W)
+n(Y)n(Z2)g(X, W) —n(X)n(Z)g(Y, W)]

_29(}/’ Z)g(h/Xa W) + QQ(X’ Z)g(h/Y, W)
—29(W'Y, Z)g(X, W) +29(W X, Z)g(Y,W).
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Again replacing Z by ¢Z and W by ¢W in the foregoing equation and using 7.¢ = 0, we get

RX.Y,0Z,6W) = (5 =2k) oV, 02)9(X, 0W) = g(X, 6Z)g(Y. oW )]

—29(Y,¢Z)g(W X, ¢W) + 29(X, ¢Z)g(I'Y, W)
—29(h'Y,¢Z)g(X, ¢W) + 29(h' X, ¢Z)g(Y, W).

This completes the proof. O

Now we prove the following Lemma which will be used later.

Lemma 2.3. Inan (k, p)’- almost Kenmotsu manifold (M3, ¢,&,n, g) , the x-Ricci tensor is given by
« T
§U(X,Y) = (5 = 2k) [9(X.Y) = n(X)n(¥)]; (2.15)
where S* is the x-Ricci tensor of type (0, 2).

Proof. Let {e;},i = 1,2,3 be an orthonormal basis of the tangent space at each point of the manifold. From (1.1) and
using (2.14), we infer

w

S*(Y, Z) Z (e, Y, ¢Z, pe)

3
_ (g _ Qk) (Y, Z)g(ei, de;) — gles, $Z)g(Y, de;)]

¢ Z)g(h'e;, pei) + 2g(ei, ¢ Z)g(N'Y, pe;)
Y 0Z)g(ei, pe;) + 2g9(h'ei, 9 Z)g(Y, pe;)]

c- 2k) [9(Y, Z) = (Y )n(Z)].

I
/\

Hence, the *-Ricci tensor is
. T
§'(v,2) = (5 — 2k) [9(Y. 2) = (¥ )n(2)],
forany Y, Z € x(M). This completes the proof. O

From the above Lemma, the (1, 1) *-Ricci operator Q* and the *-scalar curvature r* are given by
QY = (5 —2k) [V —n(¥)el, (2.16)

r* =r —4k. (2.17)

3. Proof of the main theorem

Let (M3,¢,¢,n,g) be a (k, )~ almost Kenmotsu manifold with k < —1 and g as a gradient *-Ricci soliton. Then
the equation (1.5) can be written as

VxDf+Q*X + XX =0, (3.1)
for any X € x (M), where D denotes the gradient operator with respect to g. From (3.1) it follows that
RX.)Y)Df = (VyQ")X — (VxQ")Y, X,Y € x(M). (3.2)

Using (2.7), we have
9(R(§, X)Df, &) = k(X f) —n(X)(&f)] — 2(M' X ), (3.3)
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where we have used p = —2. With the help of (2.16), we have
(X7)

(VxQMY = ==Y —n(Y)¢]
- (g - 2k) [9(X, V)¢ +n(Y)X 34)

= 20(X)n(Y)E + g(M' X, Y)E + W Xn(Y)].
Interchanging X and Y, we have

(wr@)x = T px —yxe

— (5 - 2%) WX Vg +n(X)Y (35)

—2n(X)n(Y)E + g(h'Y, X)& + h'Yn(X)].

Making use of (3.4) and (3.5) we get

(Vv @)X~ (vx@)y = -0y g
o)
2

i (% - 2k) (V)X —n(X)Y +h Xn(Y) — K'Y n(X)].

+ (X —n(X)¢] (36)

Putting X = £ in (3.6) and taking inner product with £, we infer that

9(Vy@)E = (VeQ)Y,§) =0, 3.7)
forany Y € x(M). From (3.3) and (3.7) we get
2(W' X f) = k(X f) = n(X)(&F)], (3.8)
forany X € x(M). Therefore,
o1'Df = K[Df — E(f). (3.9)

Taking into account the equation (2.6) and operating /' on (3.9) gives that

kWDf =2(k+1)[¢Ef) — Df]. (3.10)

Comparing the above relation with (3.9) gives that either Df = (£ )¢ or k = —2. Next, we consider the above two
cases as follows.

Case i:
Df = (££)¢- (3.11)
Taking the covariant differentiation of (3.11) along any vector field X € x(M) and using (2.3) we get
VxDf =X (NS + (ENHX = (€N MmX)E+ (EHP'X. (3.12)
Putting the foregoing equation into (3.1) yields that
Q"X = —(A+ (E))X = X(££)E + (Ef)n(X)E — (EfN'X. (3.13)
Comparing (2.16) and (3.13) gives that
(5 = 2k + A+ (EN)X = (5 = 2k + (ENMXE + X (ENE+ (€M X = 0. (3.14)

2 2

Now operating 1’ we get

(5 = 2k + A+ (EFNX + (€N (k+1)(X —n(X)¢) =0, (3.15)



84

K. De

Contracting X in the above equation we get 2(£f)(k + 1) = 0 and hence by assumption k& < —1 we obtain (£ f) = 0.
Using (£f) = 0in (3.14) gives

(g — 2%+ N)X — (g — 2k)n(X)€ = 0. (3.16)

Putting X = £ in the above equation gives A = 0. Thus we can say that the gradient *-Ricci soliton is steady.

Caseii: k = —2. In view of k = = —2, according to Corollary 4.2 and Proposition 4.1 of Dileo and Pastore [7] we

obtain that M? is locally isometric to the Riemannian product H?(—4) x R. In fact, from Peterson and Wylie ([15],[16])
we state that the product H?(—4) x R is a rigid gradient Ricci soliton. This put an ends the proof of the Theorem 1.1. O
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