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Abstract. The aim of this paper is to present the new double Binomial sequence space Br,s
p which consists of all

sequences whose double Binomial transforms of orders r, s (r and s are nonzero real numbers with r + s , 0) are
in the space Lp, where 0 < p < ∞. We examine its topological and algebraic properties and inclusion relations.
Furthermore, the α−, β(bp)− and γ−duals of the space Br,s

p are determined and finally, some 4-dimensional matrix
mapping classes related to this space are characterized.
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1. Introduction

Let us begin by giving some basic concepts which are going to be used in the rest of the article. All complex valued
double sequences are represented by Ω which is a vector space with coordinatewise addition and scalar multiplication.
Any linear subspace of Ω is known as double sequence space. The set of all bounded complex valued double sequences
is denoted byMu, that is,

Mu =

{
u = (ui j) ∈ Ω : ‖u‖∞ = sup

i, j∈N
|ui j| < ∞

}
,

where N = {0, 1, 2, ...}. We say that the double sequence u = (ui j) is convergent in the Pringsheim’s sense if for every
ε > 0 there exists nε ∈ N such that |ui j − L| < ε whenever i, j > nε. L ∈ C is called the Pringsheim limit of u and stated
by p − limi, j→∞ ui j = L; where C denotes the complex field. Cp represents the space of all such u which are called
shortly as p-convergent. Of particular interest is unlike single sequences, p-convergent double sequences need not be
bounded. For example, consider the sequence u = (ui j) identified by

ui j :=


i , i ∈ N, j = 0,
j , j ∈ N, i = 0,
0 , i, j ∈ N\{0}.

Then, it can be easily seen that p − lim ui j = 0 but supi, j∈N |ui j| = ∞. As a conclusion u ∈ Cp\Mu. The bounded
sequences which are also p-convergent are indicated by Cbp, that is, Cbp = Cp∩Mu. A double sequence u = (ui j) ∈ Cp

is called as regularly convergent if the limits ui := lim j ui j, (i ∈ N) and u j := limi ui j, ( j ∈ N) exist, and the limits
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limi lim j ui j and lim j limi ui j exist and are equivalent to the p − lim of u. The space of all such double sequences is
denoted by Cr. Obviously, the regular convergence of a double sequence u implies the convergence in Pringsheim’s
sense as well as the boundedness of the terms of u, but the converse implication fails. A sequence u = (ui j) is called
double null sequence if it converges to zero. Additionally, all double null sequences in the spaces Cbp and Cr are
represent by Cbp0 and Cr0, respectively. Móricz [10] showed that the spaces Mu, Cbp,Cbp0,Cr and Cr0 are Banach
spaces endowed with the norm ‖.‖∞.

Let us take any u ∈ Ω and consider the sequence S = (skl) defined by

skl :=
k∑

i=0

l∑
j=0

ui j, (k, l ∈ N).

Thus, the pair ((ukl), (skl)) is called as double series. Here, the sequence S = (skl) is the sequence of partial sums of the
double series.

Let Ψ be a space of double sequences, converging with respect to some linear convergence rule ϑ − lim : Ψ → C.
The sum of a double series

∑
i, j ui j with respect to this rule is defined by ϑ −

∑
i, j ui j = ϑ − limk,l→∞

∑k,l
i, j ui j. Here and

thereafter, we will use the summation
∑

i, j instead of
∑∞

i=0
∑∞

j=0 and assume ϑ ∈ {p, bp, r}. In the rest of the article p′

denotes the conjugate of p, that is, p′ = p/(p − 1) for 1 < p < ∞.
The α−dual Ψα, β(ϑ)−dual Ψβ(ϑ) with respect to the ϑ−convergence and the γ−dual Ψγ of a double sequence space

Ψ are respectively described as

Ψα :=
{
t = (ti j) ∈ Ω :

∑
i, j

|ti jui j| < ∞ for all (ui j) ∈ Ψ

}
,

Ψβ(ϑ) :=
{
t = (ti j) ∈ Ω : ϑ −

∑
i, j

ti jui j exists for all (ui j) ∈ Ψ

}
,

Ψγ :=
{
t = (ti j) ∈ Ω : sup

k,l∈N

∣∣∣∣∣ k,l∑
i, j=0

ti jui j

∣∣∣∣∣ < ∞ for all (ui j) ∈ Ψ

}
.

It can be easily seen that if Ψ ⊂ Λ, then Λα ⊂ Ψα. Furthermore, Ψα ⊂ Ψγ for the double sequence spaces Ψ and Λ.
Now, we shall deal with matrix mapping. Let us consider double sequence spaces Ψ and Λ and the 4-dimensional

complex infinite matrix D = (dkli j). Then, it is said that D is a matrix mapping from Ψ into Λ and is written as
D : Ψ→ Λ, if for every u = (ui j) ∈ Ψ, the D-transform Du = {(Du)kl}k,l∈N of u exists and is in Λ, where

(Du)kl = ϑ −
∑
i, j

dkli jui j for each k, l ∈ N. (1.1)

(Ψ : Λ) stands for the class of all 4-dimensional complex infinite matrices from a double sequence space Ψ into a
double sequence space Λ. Then, D ∈ (Ψ : Λ) if and only if Dkl ∈ Ψβ(ϑ), where Dkl = (dkli j)i, j∈N for all k, l ∈ N.

The ϑ-summability domain Ψ
(ϑ)
D of a 4-dimensional complex infinite matrix D in a double sequence space Ψ consists

of whose D-transforms are in Ψ; that is,

Ψ
(ϑ)
D :=

u = (ui j) ∈ Ω : Du :=

ϑ −∑
i j

dkli jui j


k,l∈N

exists and is in Ψ

 .
In the past, double sequence spaces have been studied by many authors. Now, let us give some information about

these studies. In her doctoral dissertation, Zeltser [21] has fundamentally examined both the topological structure and
the theory of summability of double sequences. Recently, Altay and Başar [1] defined the double sequence spaces BS,
BS(t), CSp, CSbp, CSr and BV of double series whose sequences of partial sums are in the spacesMu, Mu(t), Cp,
Cbp, Cr and Lu, respectively, and also examined some properties of those sequence spaces. Later, in [3], Başar and
Sever have defined the Banach space Lp by

Lp :=
{
(ui j) ∈ Ω :

∑
i, j

|ui j|
p < ∞

}
, (1 ≤ p < ∞)
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with the norm ‖.‖Lp , which is defined in the following way:

‖.‖Lp =

∑
i, j

|ui j|
p


1
p

.

It is also significant that the double sequence space Lu which was defined by Zeltser [22] is the special case of the
space Lp for p = 1. For more details about the double sequences and related topics, the reader may refer to Altay and
Bas.ar [1], Bas.ar [2], Bas.ar and Sever [3], Çapan [6], Demiriz and Duyar [7], Demiriz and Erdem [8], Mursaleen [11],
Talebi [14], Tug̃ [15–17] and Yes.ilkayagil and Bas.ar [18–20].

The sequence space Er,s
p has been studied by Talebi [14] for 1 ≤ p < ∞ and also by Yes.ilkayagil and Bas.ar [20]

for 0 < p < 1 as the set of all double sequences such that E(r, s)-transforms of them are in the spaces Lp where
E(r, s) denotes the method of double Euler means of orders r, s (0 < r, s < 1) defined by the 4-dimensional matrix
E(r, s) = (er,s

kli j), which is described in the following way:

er,s
kli j :=


(

k
i

) (
l
j

)
ris j(1 − r)k−i(1 − s)l− j , 0 ≤ i ≤ k , 0 ≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N.
Assume that r, s and r + s are nonzero real numbers. Then, the 2-dimensional binomial matrix Br,s = (br,s

ki ) is
described in the following way:

br,s
ki :=


1

(r + s)k

(
k
i

)
sk−iri , 0 ≤ i ≤ k ,

0 , otherwise,

for every k, i ∈ N. It should be noted that if r.s > 0, then the 2-dimensional binomial matrix is regular. By using
the binomial matrix Br,s = (br,s

ki ), the binomial sequence spaces br,s
p and br,s

∞ which consist of all sequences whose
Br,s-transforms are in the spaces `p of absolutely p-summable and `∞ of bounded single sequences are introduced by
Bis.gin. For more details on the spaces br,s

p and br,s
∞ , the reader may refer to [4].

The general frame of the rest of the study can be given as follows: In the second section, at the beginning the double
sequence space Br,s

p is introduced, where 0 < p < ∞. Also, the algebraic and topological properties of this space are
examined and some inclusion relations are given. In section 3, we determine the α−, β(bp)− and γ−duals of the space
B

r,s
p . Finally, in the last section, some matrix classes on this new space are characterized.

2. Main Results

In the current section, we present the double sequence space Br,s
p by using the 4-dimensional Binomial mean B(r,s)

of orders r, s and give some properties and results on this space.
Assume that r, s and r + s are nonzero real numbers. Now, we define the binomial mean of orders r and s for double

sequences described by the 4-dimensional matrix B(r,s) = (br,s
kli j) as follows:

br,s
kli j :=


1

(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j , 0 ≤ i ≤ k , 0 ≤ j ≤ l,

0 , otherwise,

(2.1)

for every k, l, i, j ∈ N. Therefore, the B(r,s)-transform of a double sequence u = (ui j) is given by

νkl := {B(r,s)u}kl =

k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j, (2.2)

for every k, l ∈ N. We will assume unless stated otherwise that the double sequences u = (ui j) and ν = (νi j) are
connected with the relation (2.2) and r, s and r + s are nonzero real numbers. We would like touch on a point, in the
special case r + s = 1, we obtain the 4-dimensional Euler matrix E(r, s) = (er,s

kli j) from the 4-dimensional Binomial
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matrix B(r,s) = (br,s
kli j). So, the matrix B(r,s) generalizes the matrix E(r, s). Let I = (δkli j) be a 4-dimensional unit matrix,

that is,

δkli j =


1 , (k, l) = (i, j),

0 , otherwise.
It is clear that by using the equality

δkli j =
∑
m,n

br,s
klmn.c

r,s
mni j,

the inverse {B(r,s)}−1 = (cr,s
kli j) of the triangle matrix B(r,s) can be found as

cr,s
kli j :=


(−1)k+l−(i+ j)

(
k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ j , 0 ≤ i ≤ k, 0 ≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N. We introduce the sequence spaceBr,s
p as the set of all double sequences such that B(r,s)-transforms

of them are in the space Lp, that is,

Br,s
p =

u = (ui j) ∈ Ω :
∑
k,l

∣∣∣∣∣∣∣∣
k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

∣∣∣∣∣∣∣∣
p

< ∞


for 0 < p < ∞. In that case, Br,s

p can be rewritten as Br,s
p = (Lp)B(r,s) with the notation of (1.1). If Ψ is any normed

double sequence space, then we call the matrix domain ΨB(r,s) as the double Binomial sequence space.

Definition 2.1 (See [9,12]). A 4-dimensional matrix D is said to be RH-regular if it maps every bounded p-convergent
sequence into a p-convergent sequence with the same p-limit.

Lemma 2.2 (See [9, 12]). A 4-dimensional triangle matrix D = (dkli j) is RH-regular if and only if

RH1 : p − lim
k,l→∞

dkli j = 0 for each i, j ∈ N,

RH2 : p − lim
k,l→∞

∑
i, j

dkli j = 1,

RH3 : p − lim
k,l→∞

∑
i

∣∣∣dkli j

∣∣∣ = 0 for each j ∈ N,

RH4 : p − lim
k,l→∞

∑
j

∣∣∣dkli j

∣∣∣ = 0 for each i ∈ N,

RH5 : There exists finite positive integers M and N such that∑
i, j>N

∣∣∣dkli j

∣∣∣ < M.

Theorem 2.3. Let r.s > 0. Then the 4-dimensional Binomial matrix B(r,s) of orders r, s defined by (2.1) is RH-regular.

Proof. Since 1
(r+s)k

(
k
i

)
sk−iri → 0, as k → ∞ and 1

(r+s)l

(
l
j

)
rl− js j → 0, as l → ∞ for r.s > 0, then it can be easily seen

that br,s
kli j → 0, as k, l→ ∞ for each i, j ∈ N, that is, RH1 satisfies. By taking into account the equality

∑
i, j

br,s
kli j =

1
(r + s)k+l

k,l∑
i, j=0

(
k
i

) (
l
j

)
sk+ j−irl+i− j = 1, (2.3)

so, RH2 holds. We deduce from the equation
∑

i

∣∣∣bkli j

∣∣∣ = 1
(r+s)k

(
l
j

)
rl− js j that RH3 satisfies. With the similar way, the

condition RH4 holds. Using the relation (2.3) and the positivity of the matrix B(r,s) for r.s > 0, i.e., br,s
kli j ≥ 0 for every

k, l, i, j ∈ N, it is clear that the condition RH5 satisfies. This step concludes the proof. �

In the rest of the article, it will be assumed that r.s > 0.
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Theorem 2.4. The set Br,s
p becomes a linear space with coordinatewise addition and scalar multiplication for double

sequences and the following statements hold:
(i) If 0 < p < 1, then Br,s

p is a complete p−normed space with

‖u‖o
B

r,s
p

= ‖B(r,s)u‖o
Lp

=
∑
k,l

∣∣∣∣∣∣∣∣
k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

∣∣∣∣∣∣∣∣
p

,

which is p−norm isomorphic to the space Lp.

(ii) If 1 ≤ p < ∞, then Br,s
p is a Banach space with

‖u‖Br,s
p

= ‖B(r,s)u‖Lp =

∑
k,l

∣∣∣∣∣∣∣∣
k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

∣∣∣∣∣∣∣∣
p

1
p

, (2.4)

which is norm isomorphic to the space Lp.

Proof. Part (i) can be proved in a similar way, therefore we give the proof only for part (ii).
Since the initial assertion is simple and easy to prove, we ignore its proof in here. To confirm the fact that Br,s

p is
norm isomorphic to the space Lp, we need to be sure the existence of a linear and norm preserving bijection between
the spaces Br,s

p and Lp for 1 ≤ p < ∞. For this purpose, let us take the transformation T defined from Br,s
p into Lp by

u 7→ ν = Tu, where ν = (νkl) is the B(r,s)-transform of the sequence u = (ukl). The linearity of T is clear. Consider the
equality

Tu =



u00
...

∑l
j=0

1
(r+s)l

(
l
j

)
s jrl− ju0 j

...

su00+ru10
r+s

...
∑1,l

i=0, j=0
1

(r+s)1+l

(
1
i

) (
l
j

)
s1+ j−irl+i− jui j

...
...

...
...

...∑k
i=0

1
(r+s)k

(
k
i

)
sk−iriui j

...
∑k,l

i=0, j=0
1

(r+s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

...
...

...
...

...


= θ

which yields ui j = 0 for every i, j ∈ N. So, u = θ. Therefore, T is injective. Let us consider ν ∈ Lp for 1 ≤ p < ∞ and
describe the double sequence u = (ukl) by

ukl =

k,l∑
i, j

(
k
i

) (
l
j

)
(−1)k+l−(i+ j)sk−l−irl−k− j(r + s)i+ jνi j (2.5)

for every k, l ∈ N. In that case, for 1 ≤ p < ∞, it is seen that

‖u‖Br,s
p

= ‖B(r,s)u‖Lp

=

∑
k,l

∣∣∣∣∣∣∣∣
k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

∣∣∣∣∣∣∣∣
p

1/p

=

∑
k,l

∣∣∣∣∣∣∣∣
k,l∑
i, j

δkli jνi j

∣∣∣∣∣∣∣∣
p

1/p

=

∑
k,l

|νkl|
p

1/p

= ‖ν‖Lp < ∞.

Thus, we have that u ∈ Br,s
p for 1 ≤ p < ∞ and consequently T is surjective and norm preserving. Hence, T is a linear

and norm preserving bijection which means that the spaces Br,s
p and Lp are norm isomorphic, as desired.

Now, let us prove thatBr,s
p is a Banach space with the norm ‖.‖Br,s

p
described by (2.4). To do this, it can be used Section

(b) of Corollary 6.3.41 in [5] which says that ”Let (X, σ) and (Y, ς) be semi-normed spaces and T : (X, σ) → (Y, ς) be
an isometric isomorphism. Then, (X, σ) is complete if and only if (Y, ς) is complete. In particular, (X, σ) is a Banach
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space if and only if (Y, ς) is a Banach space.” Since the map T described in the proof of this theorem from Br,s
p to Lp

is an isometric isomorphism and the double sequence space Lp is a Banach space from Theorem 2.1 in [3], it can be
obviously seen that the space Br,s

p is a Banach space. In fact, this is exactly what we want to prove. �

It can be easily checked that the absolute property does not hold on the space Br,s
p , that is ‖u‖Br,s

p
, ‖|u|‖Br,s

p
for at

least one sequence in the space Br,s
p , and this says that Br,s

p is a sequence space of nonabsolute type, where |u| = (|ui j|).

Definition 2.5 ( [5]). Let Ψ be a locally convex space. Then, a subset of Ψ is called barrel if it is absolutely convex,
absorbing and closed in Ψ. Moreover, Ψ is called a barrelled space if each barrel is a neighborhood of zero.

Lemma 2.6 ( [13]). If the sequence space Ψ is a Banach space or a Fréchet space, then it is a barelled space.

Theorem 2.7. Let 1 ≤ p < ∞. Then, Br,s
p is a barelled space.

Proof. The proof is clearly seen by applying Theorem 2.4 and Lemma 2.6. �

With the notation Zeltzer [21], we define the double sequence ei j = (ei j
kl) by

ei j
kl =


1 , (k, l) = (i, j),

0 , otherwise,

for every i, j, k, l ∈ N.

Definition 2.8 ( [5]). A non-empty subset X of a locally convex space Ψ is called fundamental if the closure of the
linear span of X equals Ψ.

From the previous description, Yeşilkayagil and Başar [18] have showed that X is the fundamental set of Lp, where
X := {ei j : i, j ∈ N}. In the light of this fact, let us describe the double sequences f i j = ( f i j

kl ) by

f i j
kl :=


(−1)k+l−(i+ j)

(
k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ j , 0 ≤ i ≤ k , 0 ≤ j ≤ l,

0 , otherwise,

for every i, j, k, l ∈ N. Thus, { f i j : i, j ∈ N} is the fundamental set of the space Br,s
p ; because B(r,s) f i j = ei j.

If ut = (ui jti j) ∈ Ψ for every u = (ui j) ∈ Ψ and t = (ti j) ∈ {0, 1}N×N, then we say that a double sequence space Ψ is
monotone, where {0, 1}N×N represents the set of all double sequences of zeros and ones.

Theorem 2.9. Let 1 ≤ p < ∞. If
(

skrl

(r+s)k+l

)
< Lp, then the space Br,s

p is not monotone.

Proof. Let 1 ≤ p < ∞ and
(

skrl

(r+s)k+l

)
< Lp. Let us select the sequence u = (ui j) ∈ Br,s

p as u00 , 0 and define the sequence
t = (ti j) = e00 ∈ {0, 1}N×N. Thus, if we take the sequence z = tu = e00u, it can be easily seen that

(
B(r,s)z

)
kl

=
skrl

(r + s)k+l u00.

Since
(

skrl

(r+s)k+l

)
< Lp, then

(
B(r,s)z

)
< Lp. Therefore, z < Br,s

p . This completes the proof. �

Theorem 2.10. The inclusion Lp ⊂ B
r,s
p strictly holds for 1 ≤ p < ∞.
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Proof. Suppose that u = (ui j) ∈ Lp is an arbitrary double sequence. By applying Hölder’s inequality together taking
into account the relation (2.2), we obtain that

|νkl|
p =

∣∣∣∣∣∣∣∣
k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− jui j

∣∣∣∣∣∣∣∣
p

≤

 k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j|ui j|

p


×

 k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j


p−1

=

 k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j|ui j|

p


×

 1
(r + s)k

k∑
i=0

(
k
i

)
sk−iri 1

(r + s)l

l∑
j=0

(
l
j

)
s jrl− j


p−1

=

k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j|ui j|

p. (2.6)

By applying (2.6), it is seen that∑
k,l

|νkl|
p ≤

∑
k,l

 k,l∑
i, j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j|ui j|

p


=

∞,∞∑
i, j

|ui j|
p

 ∞∑
k=i

∞∑
l= j

1
(r + s)k+l

(
k
i

) (
l
j

)
sk+ j−irl+i− j


=

∞,∞∑
i, j

|ui j|
p

 ∞∑
k=i

1
(r + s)k

(
k
i

)
sk−iri

∞∑
l= j

1
(r + s)l

(
l
j

)
rl− js j


=

∞,∞∑
i, j

|ui j|
p

 ∞∑
k=i

(
k
i

) ( s
r + s

)k ( r
s

)i ∞∑
l= j

(
l
j

) ( r
r + s

)l ( s
r

) j


=
(r + s)2

rs

∞,∞∑
i, j

|ui j|
p

which yields us that

‖u‖Br,s
p
≤

(
(r + s)2

rs

)1/p

‖u‖Lp .

Moreover, since the sequence u = (ui j) = (−1)i+ j is inBr,s
p −Lp , then the inclusionLp ⊂ B

r,s
p is strict for 1 ≤ p < ∞. �

Theorem 2.11. Let 1 ≤ p < p1 < ∞. Then the inclusion Br,s
p ⊂ B

r,s
p1 holds.

Proof. Suppose that u = (ui j) ∈ Br,s
p is an arbitrary double sequence. Then, B(r,s)u ∈ Lp. Since the inclusion Lp ⊂ Lp1

for 1 ≤ p < p1 < ∞ from Bas.ar and Sever [3], it is concluded that B(r,s)u ∈ Lp1 . Hence u ∈ Br,s
p1 , as desired. �

3. The α−, β(bp)− and γ−Duals of The Space Br,s
p

In the present section, we will determine the α−, β(bp)− and γ−duals of the space Br,s
p . For this purpose, firstly we

need to give a lemma.
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Lemma 3.1 ( [18]). Suppose that D = (dkli j) be a 4-dimensional infinite matrix. At that time, the following statements
hold:

(i) Assume that 0 < p ≤ 1. In that case, D ∈ (Lp :Mu) iff

N = sup
k,l,i, j∈N

∣∣∣dkli j

∣∣∣ < ∞. (3.1)

(ii) Assume that 1 < p < ∞. In that case, D ∈ (Lp :Mu) iff

M1 = sup
k,l∈N

∑
i, j

∣∣∣dkli j

∣∣∣p′ < ∞. (3.2)

(iii) Assume that 0 < p ≤ 1 and 1 ≤ p1 < ∞. In that case, D ∈ (Lp : Lp1 ) iff

sup
i, j∈N

∑
k,l

∣∣∣dkli j

∣∣∣p1
< ∞.

(iv) Assume that 0 < p ≤ 1. In that case, D ∈ (Lp : Cbp) iff the condition (3.1) holds and there exists a sequence
(αi j) ∈ Ω such that

bp − lim
k,l→∞

dkli j = αi j. (3.3)

(v) Assume that 1 < p < ∞. In that case, D ∈ (Lp : Cbp) iff (3.2) and (3.3) hold.

Theorem 3.2. Consider the set w1 defined by

w1 =

t = (ti j) ∈ Ω : sup
i, j∈N

∑
k,l

∣∣∣∣∣∣
(

k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ jtkl

∣∣∣∣∣∣ < ∞
 .

Then,
(
B

r,s
p

)α
= w1 for 0 < p ≤ 1.

Proof. Consider the 4-dimensional matrix Gr,s = (gr,s
kli j) defined by

gr,s
kli j :=


(−1)k+l−(i+ j)

(
k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ jtkl , 0 ≤ i ≤ k, 0 ≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N. In that case, by using the relation (2.5) we obtain that

tklukl = tkl

k,l∑
i, j=0

(−1)k+l−(i+ j)
(

k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ jνi j

=

k,l∑
i, j=0

{
(−1)k+l−(i+ j)

(
k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ jtkl

}
νi j

= (Gr,sν)kl (3.4)

for every k, l ∈ N. In this fact, we conclude from relation (3.4) that tu = (tklukl) ∈ Lu whenever u ∈ Br,s
p iff Gr,sν ∈ Lu

whenever ν ∈ Lp. This means that t = (tkl) ∈
(
B

r,s
p

)α
iff Gr,s ∈

(
Lp : Lu

)
. Then, we derive by using part (iii) of Lemma

3.1 with p1 = 1 that

sup
i, j∈N

∑
k,l

∣∣∣∣∣∣
(

k
i

) (
l
j

)
sk−l−irl−k− j(r + s)i+ jtkl

∣∣∣∣∣∣ < ∞.
This yields the desired consequence that

(
B

r,s
p

)α
= w1 for 0 < p ≤ 1. �
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Theorem 3.3. Consider the sets w2, w3 and w4 defined by

w2 =

t = (ti j) ∈ Ω : sup
k,l,i, j∈N

∣∣∣∣∣∣∣∣
k∑

m=i

l∑
n= j

(m
i

) (n
j

)
sm−n−irn−m− j(r + s)i+ jtmn

∣∣∣∣∣∣∣∣ < ∞
 ,

w3 =

t = (ti j) ∈ Ω : bp − lim
k,l→∞

k∑
m=i

l∑
n= j

(m
i

) (n
j

)
(−1)m+n−(i+ j)sm−n−irn−m− j(r + s)i+ jtmn exists

 ,
w4 =

t = (ti j) ∈ Ω : sup
k,l∈N

∑
i, j

∣∣∣∣∣∣∣∣
k∑

m=i

l∑
n= j

(m
i

) (n
j

)
sm−n−irn−m− j(r + s)i+ jtmn

∣∣∣∣∣∣∣∣
p′

< ∞

 .
In that case, following statements are satisfied:

(i) Assume that 0 < p ≤ 1. In that case,
(
B

r,s
p

)β(bp)
= w2 ∩ w3,

(ii) Assume that 1 < p < ∞. In that case,
(
B

r,s
p

)β(bp)
= w3 ∩ w4.

Proof. Let t = (ti j) ∈ Ω and u ∈ Br,s
p be given. Then, we can conclude from Theorem 2.4 that there exists a double

sequence ν = (νi j) ∈ Lp. Define the 4-dimensional matrix Or,s = (or,s
kli j) by

or,s
kli j :=


k∑

m=i

l∑
n= j

(−1)k+l−(i+ j)
(m

i

) (n
j

)
sm−n−irn−m− j(r + s)i+ jtmn , 0 ≤ i ≤ k, 0 ≤ j ≤ l,

0 , otherwise,

for every k, l, i, j ∈ N. Therefore, we obtain by the relation (2.5) that,

zkl =

k,l∑
i, j=0

ti jui j

=

k,l∑
i, j=0

ti j

 i, j∑
m,n=0

(−1)i+ j−(m+n)
( i
m

) ( j
n

)
si− j−mr j−i−n(r + s)m+nνmn


=

k,l∑
i, j=0


k∑

m=i

l∑
n= j

(−1)m+n−(i+ j)
(

k
i

) (
l
j

)
sm−n−irn−m− j(r + s)i+ jtmn

 νi j

= (Or,sν)kl

for every k, l ∈ N. Then by considering the equality above, we deduce that tu = (tklukl) ∈ CSbp whenever u = (ukl) ∈

B
r,s
p iff z = (zkl) ∈ Cbp whenever ν = (νkl) ∈ Lp. This leads us to the fact that t = (tkl) ∈

(
B

r,s
p

)β(bp)
iff Or,s ∈

(
Lp : Cbp

)
.

Hence;
(i) If 0 < p ≤ 1, then from Part (iv) of Lemma 3.1, we achieve that

(
B

r,s
p

)β(bp)
= w2 ∩ w3,

(ii) If 1 < p < ∞, then from Part (v) of Lemma 3.1, we have
(
B

r,s
p

)β(bp)
= w3 ∩ w4. �

Theorem 3.4. (i) If 0 < p ≤ 1, then
(
B

r,s
p

)γ
= w2,

(ii) If 1 < p < ∞, then
(
B

r,s
p

)γ
= w4.

Proof. This can be obtained by analogy with the proof of Theorem 3.3 with Parts (i) and (ii) of Lemma 3.1 instead of
Parts (iv) and (v), respectively. Therefore, we leave the details. �

4. SomeMatrix Transformations Related to the Sequence Space Br,s
p

In this section, we give the characterization of the classes
(
B

r,s
p : Λ

)
, where Λ ∈ {Mu,Cbp} for the both cases

0 < p ≤ 1 and 1 < p < ∞ and
(
B

r,s
p : Lq

)
for 0 < p ≤ 1 and 1 ≤ q < ∞.
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Theorem 4.1. Assume that D = (dkli j) be an arbitrary 4-dimensional infinite matrix. In that case:
(i) If 0 < p ≤ 1, then D ∈ (Br,s

p :Mu) iff

Dkl ∈ {B
r,s
p }

β(ϑ) (4.1)
and

sup
k,l,i, j∈N

∣∣∣∣∣∣∣∣
∞∑

a=i

∞∑
b= j

(a
i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab

∣∣∣∣∣∣∣∣ < ∞. (4.2)

(ii) If 1 < p < ∞, then D ∈ (Br,s
p :Mu) iff the condition (4.1) holds and

sup
k,l∈N

∑
i, j

∣∣∣∣∣∣∣∣
∞∑

a=i

∞∑
b= j

(a
i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab

∣∣∣∣∣∣∣∣
p′

< ∞. (4.3)

Proof. In the case of 0 < p ≤ 1, the theorem can be proved by using similar method of the proof of the second part,
we give the proof only for 1 < p < ∞.

(ii) Let 1 < p < ∞ and D ∈ (Br,s
p : Mu). Then, Du exists and inMu for every u ∈ Br,s

p which implies the fact that
Dkl ∈ {B

r,s
p }

β(ϑ). By taking into account the equality (2.5), the (m, n)th rectangular partial sum of the series
∑

i, j dkli jui j

obtained as

(Du)[m,n]
kl =

m,n∑
i, j=0

dkli jui j

=

m,n∑
i, j=0

dkli j

 i∑
a=0

j∑
b=0

(−1)i+ j−(a+b)
( i
a

) ( j
b

)
si− j−ar j−i−b(r + s)a+bνab


=

m,n∑
i, j=0

 m∑
a=i

n∑
b= j

(−1)a+b−(i+ j)
(a

i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab

 νi j (4.4)

for all k, l,m, n ∈ N. Let us define the 4-dimensional matrix H =
(
hkli j

)
as hkli j :=

∞∑
a=i

∞∑
b= j

(−1)a+b−(i+ j)
(a

i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab , 0 ≤ k ≤ i, 0 ≤ l ≤ j,

0 , otherwise

for all k, l, i, j ∈ N. Then, by taking ϑ−limit on (4.4) while m, n → ∞, we have that Du = Hν. So, if we take into
account the fact that D = (dkli j) ∈ (Br,s

p : Mu) if and only if H ∈ (Lp : Mu) with Part (ii) of Lemma 3.1, then it is
obvious that the condition (4.3) holds.

Conversely, suppose that the conditions (4.1) and (4.3) hold. Let us choose the sequence u ∈ Br,s
p with ν ∈ Lp from

the relation (2.2). Since, the condition (4.1) holds, then Du exists. By using the relation (2.5), one can derive from the
($, ς)th rectangular partial sum of the series

∑
i, j dkli jui j for all k, l, $, ς that

$,ς∑
i, j=0

dkli jui j =

$,ς∑
i, j=0

 $∑
a=i

ς∑
b= j

(−1)a+b−(i+ j)
(a

i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab

 νi j.

By taking ϑ−limit in the equality above as $, ς → ∞, it can be easily obtain from the following equality for every
k, l ∈ N ∑

i, j

dkli jui j =
∑
i, j

hkli jνi j

that Du = Hν. From the condition (4.3), it is known that H ∈ (Lp :Mu) and thus it is obvious that D ∈ (Br,s
p :Mu), as

desired. �

To avoid the repetition of the similar statements, we give the following two theorems without proof since they may
be proved in the similar way used in proving Theorem 4.1.
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Theorem 4.2. Let D = (dkli j) be any 4-dimensional matrix. In that case, following statements are hold:
(i) Let 0 < p ≤ 1. Then, D ∈ (Br,s

p : Cbp) iff the conditions (4.1) and (4.2) hold and there exists (αi j) ∈ Ω such that

bp − lim
k,l→∞

∞∑
a=i

∞∑
b= j

(−1)a+b−i+ j
(a

i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab = αi j, (4.5)

(ii) Let 1 < p < ∞. Then, D ∈ (Br,s
p : Cbp) iff the conditions (4.1), (4.3) and (4.5) hold.

Theorem 4.3. Let 0 < p ≤ 1, 1 ≤ q < ∞ and D = (dkli j) be any 4-dimensional matrix. Then, D ∈ (Br,s
p : Lq) iff the

condition (4.1) holds and

sup
k,l∈N

∑
i, j

∣∣∣∣∣∣∣∣
∞∑

a=i

∞∑
b= j

(a
i

) (b
j

)
sa−b−irb−a− j(r + s)i+ jdklab

∣∣∣∣∣∣∣∣
q

< ∞.
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