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Abstract

In this paper, we investigate a class of doublynonlinear parabolic Krichhoff-type equations. We give appropriate conditions in order to have
nonexistence of global solutions or exponential growth incase of global existence.
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1. Introduction

Our main interest lies in the following reaction-diffusion equations with multiple nonlinearities ut −∆ut −M(‖∇u‖2)∆u+ |u|q−2 ut = |u|p−2 u, in Ω× (0,T )
u(x, t) = 0, on ∂Ω× (0,T )
u(x,0) = u0 (x) , in Ω× (0,T )

(1.1)

where p, q > 2 are real numbers and Ω is a bounded domain in Rn (n = 1,2,3) with smooth boundary ∂Ω and 0 < T < ∞.
In the absence of the terms4ut and |u|q−2 ut , equation (1.1) become to the following equation

ut −M(‖∇u‖2)∆u = |u|p−2 u, (1.2)

when M(s) = a+bs. Han and Li [1] used potential well method and variational method to the investigation of the long time behaviours of
solution for problem (1.2). They obtain global exitence and blow up of solutions when initial energy is supercritical, critical or subcritical.
Also Han et al. [2] investigated the upper and lower bounds for the blow-up time and gave a new blow-up criterion for problem (1.2) when
the initial energy is positive.
Tuan et al. [3] considered

ut −M(‖∇u‖2)∆u = F(x, t,u(x, t)). (1.3)

They gave the condition for the existence of the first time backward problem (1.3) and showed that problem (1.3) is ill-posed in the sense of
Hadamard. In [4, 5] the authors studied problem (1.3) with initial-boundary conditions and F (nonlinear source) is limited.
Kundu et al. [6] studied the following problem with the initial and boundary conditions of Dirichlet type

ut − (1+‖∇u‖)∆u = F(x, t). (1.4)

In [7, 8] the authors considered the following nonlinear parabolic equations

ut −M(‖∇u‖)∆u = F(x, t), (1.5)

where M has a nonlinear nonlocal form in u. Elliptic and hiperbolic Kirchhoff equation with initial value problems are investigated in a lot of
works, see [9, 10, 11, 12, 13, 14]
This paper is organized as follows: In Section 2, we present some notations and stament of assumptions. In Section 3, the blow up of the
solution is given and Section is devoted to show the exponential growth of solution.
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2. Preliminaries

In this section, we shall give some assumptions for the proof of our results. Let ‖.‖, ‖.‖p and (u,v) =
∫

Ω
u(x)v(x)dx denote the usual L2 (Ω)

norm, Lp (Ω) norm and inner product of L2(Ω), respectively.
M(s) is a nonnegative C1 function for s≥ 0 satisfying

M(s) = 1+ sγ , γ > 0.

For the numbers p and q, we suppose that{
2 < q < p≤ 2(n−1)

n−2 if n≥ 3,
2 < q < p <+∞ if n = 1,2.

(2.1)

Similar to [15], we call u(x, t) a solution of problem (1.1) on Ω× [0,T ) if
u ∈ L∞(0,T ;H1

0 (Ω)),
ut ∈ L2(0,T ;L2(Ω)),

|u|q−2 ut ∈ L2(Ω× [0,T ))
(2.2)

satisfying the initial condition u(x,0) = u0(x) and

(ut ,v)+(∇ut ,∇v)+
((

1+
(∫

Ω

|∇u|2 dx
)γ)

∇u,∇v
)
+
(
|u|q−2 ut ,v

)
=
(
|u|p−2 u,v

)
, (2.3)

for all v ∈C(0,T ;H1
0 (Ω)).

In this paper, we assume that the problem (1.1) has a unique regular local solution (see [16]).
The energy functional associated with problem (1.1) is

E (t) =− 1
p
‖u‖p

p +
1
2
‖∇u‖2 +

1
2(γ +1)

‖∇u‖2(γ+1) , (2.4)

where u ∈ H1
0 (Ω).

Multiplying the first equation in (1.1) by ut , integrating over Ω, we have

E ′(t) =−‖ut‖2−‖∇ut‖2−
∫

Ω

|u|q−2 u2
t dx < 0, (2.5)

and then

E(t)≤ E(0). (2.6)

3. Blow up of solutions

In this section, we state and prove the blow up result for the problem (1.1).

Theorem 3.1. Suppose that (2.1) hold and p > 2(γ +1), u0 ∈ H1
0 (Ω) and u is a local solution of the system (1.1), and E(0)< 0. Then the

solution of the system (1.1) blows up in finite time.

Proof. Let

H (t) =−E (t) . (3.1)

By the definition of H(t) and (2.5)

H ′(t) =−E ′(t)≥ 0. (3.2)

Consequently, by E(0)< 0, we have

H(0) =−E(0)> 0. (3.3)

By integrating (3.2) on [0, t], we obtain

0 < H (0)≤ H (t) . (3.4)

From (2.4) and (3.1)

H(t)− 1
p
‖u‖p

p =−
1
2
‖∇u‖2− 1

2(γ +1)
‖∇u‖2(γ+1) < 0, (3.5)

then, we have

0 < H (0)≤ H (t)≤ 1
p
‖u‖p

p . (3.6)
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We define

Ψ(t) = H1−σ (t)+
ε

2
‖u‖2 +

ε

2
‖∇u‖2 , (3.7)

where ε > 0 is a small parameter to be chosen later and 0 < σ < (p−q)/p.
Taking the derivative of (3.7) and using equation (1.1), we get

Ψ
′ (t) = (1−σ)H−σ (t)H ′ (t)+ ε

(∫
Ω

uutdx+
∫

Ω

∇u∇utdx
)

= (1−σ)H−σ (t)H ′ (t)+2(γ +1)εH(t)+2(γ +1)εE(t)

−ε ‖∇u‖2− ε ‖∇u‖2(γ+1)+ ε ‖u‖p
p− ε

∫
Ω

|u|q−2 uutdx

= (1−σ)H−σ (t)H ′ (t)+2(γ +1)εH(t)

+ε

(
1− 2(γ +1)

p

)
‖u‖p

p + εγ ‖∇u‖2− ε

∫
Ω

|u|q−2 uutdx. (3.8)

We just need to estimate the last term of the right-hand terms of (3.8).
By using the following Young’s inequality

XY ≤ δ
−1X2 +δY 2, (3.9)

for δ > 0, with X = |u|
q−2

2 ut and Y = |u|
q−2

2 u, we find∫
Ω

|u|q−2 uutdx ≤
∫

Ω

|u|
q−2

2 ut |u|
q−2

2 udx

≤ δ
−1
∫

Ω

|u|q−2 u2
t dx+δ

∫
Ω

|u|q dx. (3.10)

and therefore, (3.8) becomes

Ψ
′ (t) ≥ (1−σ)H−σ (t)H ′ (t)+2(γ +1)εH(t)+ ε

(
1− 2(γ +1)

p

)
‖u‖p

p

+εγ ‖∇u‖2− εδ ‖u‖q
q− εδ

−1
∫

Ω

|u|q−2 u2
t dx. (3.11)

By taking δ such that δ−1 = λH−σ (t) for λ enough large constants to be fixed later, and by using (2.5), we have

Ψ
′ (t) ≥ (1−σ −λε)H−σ (t)H ′ (t)+ εγ ‖∇u‖2 +2(γ +1)εH(t)

+ε

(
1− 2(γ +1)

p

)
‖u‖p

p− ελ
−1Hσ (t)‖u‖q

q . (3.12)

By the embeddings Lp (Ω) ↪→ Lq (Ω) ↪→ L2 (Ω) (since p > q > 2), taking into account (3.6), we obtain

Hσ (t)‖u‖q
q ≤ c1 ‖u‖pσ

p ‖u‖
q
q

≤ c2 ‖u‖pσ+q
p , (3.13)

where c1 and c2 are positive constants.
Since 0 < q

p < 1, now applying the following algebraic inequality

xl ≤ (x+1)≤ (1+
1
z
)(x+ z), ∀x≥ 0, 0≤ l ≤ 1, z > 0, (3.14)

especially, by the selection of σ , taking x = ‖u‖p
p , l = (pσ +q)/p, z = H(0), and by using (3.6), we get

‖u‖pσ+q
p ≤ (1+

1
H(0)

)(‖u‖p
p +H(0))

≤ c3 ‖u‖p
p . (3.15)

Taking into account (3.12) and (3.15), we have

Ψ
′ (t) ≥ (1−σ −λε)H−σ (t)H ′ (t)+ εγ ‖∇u‖2 +2(γ +1)εH(t)

+ε(1− 2(γ +1)
p

− c3λ
−1)‖u‖p

p . (3.16)

For large λ such that 1− 2(γ+1)
p − c3λ−1 = c4 > 0, once λ is fixed, we choose ε small enough such that 1−σ −λε > 0, then there exist

c5 > 0 such that (3.16) become

Ψ
′ (t)≥ c5

(
H(t)+‖u‖p

p +‖∇u‖2
)
. (3.17)

Then we have

Ψ(t)≥Ψ(0)> 0, ∀t ≥ 0. (3.18)
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We now estimate Ψ(t)
1

1−σ . By using (3.7) and (3.5), we obtain

Ψ(t) = H1−σ (t)− ε

(
1

2(γ +1)
‖∇u‖2(γ+1)+H(t)− 1

p
‖u‖p

p

)
+

ε

2
‖u‖2

≤ (1− ε)H1−σ (t)+
ε

p
‖u‖p

p−
ε

2(γ +1)
‖∇u‖2(γ+1)+

ε

2
‖u‖2 ,

where we have used the fact that H(t)≥ H1−σ (t) (this can be ensured by (3.3), (3.4) and 0 < σ < 1). By Poincare’s inequality

Ψ(t)≤ (1− ε)H1−σ (t)+
ε

p
‖u‖p

p +
ε

2
‖∇u‖2 .

Now, by using algebraic inequality (3.14) for x = ‖u‖p/(1−σ)
p , l = 1−σ < 1, z = H1/(1−σ)(0), we have

‖u‖p
p ≤ (1+

1
H1/(1−σ)(0)

)
(
‖u‖p/(1−σ)

p +H1/(1−σ)(0)
)

≤ C‖u‖p/(1−σ)
p . (3.19)

Also, again using algebraic inequality (3.14) for x = ‖∇u‖2/(1−σ)
2 , l = 1−σ < 1, z = H1/(1−σ)(0), we get

‖∇u‖2
2 ≤ (1+

1
H1/(1−σ)(0)

)
(
‖∇u‖2/(1−σ)

2 +H1/(1−σ)(0)
)

≤ C‖∇u‖2/(1−σ)
2 .

Thus

Ψ
1

1−σ (t)≤C
[
H (t)+‖u‖p

p +‖∇u‖2
]
. (3.20)

By combining of (3.17) and (3.20) we arrive at

Ψ
′
(t)≥ ξ Ψ

1
1−σ (t) , (3.21)

where ξ > 0 is a constant.
A simple integration of (3.21) over (0, t) yields

Ψ
σ

1−σ (t)≥ 1

Ψ
− σ

1−σ (0)− ξ σt
1−σ

. (3.22)

The estimate (3.22) shows that Ψ(t) blows up in time

T ∗ ≤ 1−σ

ξ σΨ
σ

1−σ (0)
.

4. Exponential growth of solutions

In this section, we state and prove exponential growth result. Throughout this proof, C is used to point out general positive constant.

Theorem 4.1. Suppose that (2.1) hold and p > 4(γ +1), u0 ∈ H1
0 (Ω) and u is a solution of the system (1.1), E(0)< 0. Then the solution of

the system (1.1) grows exponentially.

Proof. We define

G(t) = H (t)+
ε

2
‖u‖2 +

ε

2
‖∇u‖2 , (4.1)

where H (t) =−E (t) . By taking the time derivative of (4.1) and by (1.1), we have

G
′
(t) = H

′
(t)+ ε

(∫
Ω

uutdx+
∫

Ω

∇u∇utdx
)

= ‖∇ut‖2 +‖ut‖2 +
∫

Ω

|u|q−2 u2
t dx

−ε ‖∇u‖2− ε ‖∇u‖2(γ+1)+ ε ‖u‖p
p− ε

∫
Ω

|u|q−2 uutdx

≥ ‖ut‖2 +
∫

Ω

|u|q−2 u2
t dx+ ε ‖u‖p

p− ε ‖∇u‖2

−ε ‖∇u‖2(γ+1)− ε

∫
Ω

|u|q−2 uutdx. (4.2)
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We just need to estimate the last term of the right-hand terms of (4.2). Applying inequality (3.9), we find

∫
Ω

|u|q−2 uutdx ≤
∫

Ω

|u|
q−2

2 ut |u|
q−2

2 udx

≤ δ
−1
∫

Ω

|u|q−2 u2
t dx+δ

∫
Ω

|u|q dx.

Therefore, we have

G
′
(t) ≥ ‖ut‖2− ε ‖∇u‖2− ε ‖∇u‖2(γ+1)

+ε ‖u‖p
p− εδ ‖u‖q

q +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx. (4.3)

By using

‖u‖p
p = pH(t)+

p
2
‖∇u‖2 +

p
2(γ +1)

‖∇u‖2(γ+1) .

Hence, (4.3) becomes

G′ (t) ≥ ‖ut‖2− ε ‖∇u‖2− ε ‖∇u‖2(γ+1)

+ε

[
pH(t)+

p
2
‖∇u‖2 +

p
2(γ +1)

‖∇u‖2(γ+1)
]

−εδ ‖u‖q
q +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx

≥ ‖ut‖2 +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx

+εa1 ‖∇u‖2(γ+1)+ εb1 ‖∇u‖2 + ε pH(t)− εδ ‖u‖q
q (4.4)

where a1 =
p

2(γ+1) −1 > 0 and b1 =
p
2 −1 > 0.

Thanks to the embedding Lp ↪→ Lq, p > q

‖u‖q
q ≤ C‖u‖q

p

≤ C
(
‖u‖p

p

) q
p
. (4.5)

Since 0 < q
p < 1, now applying algebraic inequality (3.14), in particular, taking x = ‖u‖p

p , l = q/p, z = H(0), we get

(
‖u‖p

p

) q
p ≤ (1+

1
H(0)

)(‖u‖p
p +H(0)),

then from (4.5) and (3.6), we obtain

‖u‖q
q ≤ C‖u‖q

p

≤ C1 ‖u‖p
p . (4.6)

So, we have

G′ (t) ≥ ‖ut‖2 +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx+ εa1 ‖∇u‖2(γ+1)

+εb1 ‖∇u‖2 + ε pH(t)− εδC1 ‖u‖p
p . (4.7)

Taking

2(γ +1)a2 = a1 > 0,

2b2 = b1 > 0,

and noting that

2(γ +1)H(t) =
2(γ +1)

p
‖u‖p

p−‖∇u‖2(γ+1)− (γ +1)‖∇u‖2 ,

2H(t) =
2
p
‖u‖p

p−
1

γ +1
‖∇u‖2(γ+1)−‖∇u‖2 ,
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we get

G′ (t) ≥ ‖ut‖2 +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx+ ε (a1−a2)‖∇u‖2(γ+1)+ εa2 ‖∇u‖2(γ+1)

+ε (b1−b2)‖∇u‖2 + εb2 ‖∇u‖2 + ε pH(t)− εδC1 ‖u‖p
p

≥ ‖ut‖2 +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx+ ε (a1−a2)‖∇u‖2(γ+1)

+ε (b1−b2)‖∇u‖2 + ε pH(t)+ εa2

[
‖∇u‖2(γ+1)− 2(γ +1)

p
‖u‖p

p +(γ +1)‖∇u‖2
]

+εa2

[
2(γ +1)

p
‖u‖p

p− (γ +1)‖∇u‖2
]

+εb2

[
‖∇u‖2− 2

p
‖u‖p

p +
1

γ +1
‖∇u‖2(γ+1)

]
+εb2

[
2
p
‖u‖p

p−
1

γ +1
‖∇u‖2(γ+1)

]
− εδC1 ‖u‖p

p

= ‖ut‖2 +
(

1− εδ
−1
)∫

Ω

|u|q−2 u2
t dx+ ε

[
(2γ +1)a2−

b2

γ +1

]
‖∇u‖2(γ+1)

+ε [b2−a2(γ +1)]‖∇u‖2

+ε (p−2(γ +1)a2−2b2)H(t)+ ε

(
2(γ +1)

p
a2 +

2
p

b2−δC1

)
‖u‖p

p . (4.8)

Taking δ small enough such that 2(γ+1)
p a2 +

2
p b2−δC1 > 0, then taking ε small enough such that 1−εδ−1 > 0, and (2γ +1)a2− b2

γ+1 > 0,
b2−a2(γ +1)> 0 and noting that

p−2(γ +1)a2−2b2 = p−a1−b1

=
pγ

2(γ +1)
+2 > 0,

then

G′ (t)≥C
(
‖ut‖2 +‖∇u‖2(γ+1)+‖∇u‖2 +‖u‖p

p +H(t)
)
. (4.9)

Thus, the functional G(t) is strictly positive and increasing for all t ≥ 0.
Conversely, from G(t) function we obtain

G(t) = H (t)+
ε

2
‖u‖2 +

ε

2
‖∇u‖2

≤ C(‖∇u‖2 +H(t))

≤ C(‖∇u‖2 +‖∇u‖2(γ+1)+‖ut‖2 +‖u‖p
p +H(t)). (4.10)

From (4.10) and (4.9) we arrive at

G′ (t)≥ rG(t) (4.11)

where r > 0 is a constant.
Integration of (4.11) over (0, t) gives us

G(t)≥ G(0)exp(rt).
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